王兆昊,郭興茹,張樂歡,何永睿,陳善春,姚利曉
csi-miR399響應柑橘潰瘍病菌侵染的表達模式及其抗病性分析

西南大學柑桔研究所/國家柑桔工程技術研究中心/國家柑桔品種改良中心,重慶 400712
【目的】明確csi-miR399響應柑橘潰瘍病菌(subsp.,)侵染的表達模式,篩選其靶基因,進而分析csi-miR399與寄主抗性的相關性,為柑橘潰瘍病抗性種質的創制打下基礎?!痉椒ā糠謩e以柑橘潰瘍病抗性品種四季橘()和感病品種紐荷爾臍橙()為試材,通過莖環qPCR方法分析csi-miR399在葉片離體注射1、3和5 d時的表達量變化,明確抗/感品種中csi-miR399響應侵染的表達模式;利用在線軟件psRNATarget預測csi-miR399的靶基因,并通過qPCR分析候選靶基因在接種柑橘葉片和瞬時表達csi-miR399葉片中表達量的變化;克隆csi-miR399前體基因序列,通過同源重組方法構建病毒表達載體 pCLBV202-MIR399,根癌農桿菌介導的真空浸潤法接種尤力克檸檬(),通過qPCR分析csi-miR399表達量;進而采用離體葉片針刺法接種,觀察發病癥狀,統計病情指數,分析csi-miR399過表達對抗性的影響?!窘Y果】接種后,csi-miR399在抗病品種四季橘中的表達呈現先下降再上升的趨勢,而在感病品種紐荷爾臍橙中的表達呈持續下降趨勢。接種5 d時,csi-miR399在四季橘與紐荷爾臍橙中的表達量分別是健康對照的4.64倍和7.61%,初步表明csi-miR399與柑橘的潰瘍病抗性相關。從13個預測靶基因中篩選鑒定了csi-miR399的3個靶基因Cs2g06030、Cs7g03830、Cs8g18800,分別編碼泛素偶聯酶PHO2、未知蛋白和漆酶。利用構建的病毒表達載體pCLBV202-MIR399獲得過表達csi-miR399的檸檬植株(Y37、Y41和Y57),與空載體對照pCLBV202接種植株(L35)相比,Y37、Y41和Y57中csi-miR399表達量顯著增加,接種后的潰瘍病病斑面積顯著減小,病情指數顯著降低(<0.01),表明csi-miR399過表達顯著提高了檸檬的潰瘍病抗性?!窘Y論】csi-miR399與柑橘的潰瘍病抗性密切相關,過表達csi-miR399顯著提高柑橘對潰瘍病的抗性,可應用于柑橘抗潰瘍病的分子育種。
csi-miR399;柑橘潰瘍病;靶基因;柑橘病毒表達載體;生物脅迫
【研究意義】柑橘潰瘍病(citrus canker)是由柑橘黃單胞桿菌屬柑橘致病變種(subsp,)引起的一種傳播廣泛、危害嚴重的細菌性病害[1],造成柑橘果實、葉片和莖段出現水浸狀膿包樣壞死性病變[2],給世界柑橘產業造成了巨大的經濟損失。當前柑橘潰瘍病主要通過傳統農業措施、銅制劑農藥等化學藥劑及相關生物治理手段進行防治,存在成本高和環境不友好等系列問題[3-5]。篩選、鑒定優質的抗性基因或調控分子,開展抗性品種培育和應用成為柑橘潰瘍病防控的最經濟、有效的措施[6-8]?!厩叭搜芯窟M展】miRNA是生物體內一種長度約為20—24 nt的小RNA,能夠與AGO1蛋白結合形成RISC(RNA-induced silencing complex),在植物中主要通過剪切轉錄本的方式來抑制靶基因翻譯,發揮基因轉錄后調控作用[9-10],在植物-病原互作機制中具有非常重要的調節作用[11]。擬南芥miR393是植物中第一個發現的具有抗病作用的miRNA分子,被flg22誘導時,可降低生長素信號通路中F-box生長素受體、和的表達,從而抑制丁香假單胞菌()的生長[12];miR167可以通過降解生長素響應因子和轉錄本抑制生長素信號,影響氣孔的開閉,調控對丁香假單胞菌的防御[13];miR160和miR398在水稻中過表達可增加過氧化氫含量和增強抗性反應基因的表達,抑制稻瘟病菌()的生長[14-15];番茄中過表達miR172a和miR172b可通過抑制轉錄因子增加對番茄晚疫病的抗性[16];楊樹中miR319a抑制的表達,解除TCP19-RGA復合物對的抑制作用,從而促進的表達,增加葉片毛狀體數量,增強楊樹抗蟲性[17];而抑制miR159的作用則提高了煙草對寄生疫霉()的抗性[18]。另外,還不斷發現新的miRNA分子參與植物對生物脅迫的應答過程[19-20]?!颈狙芯壳腥朦c】miR399是植物中一種保守的miRNA分子,通過降解靶基因泛素偶聯酶()參與磷的吸收、轉運和動態平衡[21-22],還參與花粉的雄性不育和果實品質的調控[23-25]。近期研究發現,miR399在植物抗生物脅迫中具有重要作用,過表達miR399可增強擬南芥對病原的抗性[26]。在多年生果樹中也發現miR399參與生物脅迫應答過程,如感染蘋果莖痘病毒(apple stem pitting virus,ASPV)[27]和柑橘黃龍病(Huanglongbing,HLB)[28]等果樹中miR399表達量顯著上升。然而miR399與柑橘潰瘍病抗性的相關研究尚未見報道?!緮M解決的關鍵問題】通過抗/感柑橘品種csi-miR399響應侵染的表達模式、csi-miR399靶基因篩選及病毒載體過表達csi-miR399植株的潰瘍病抗性評價等研究,明確csi-miR399與柑橘潰瘍病抗性的相關性,為柑橘潰瘍病抗性育種提供優良基因資源。
試驗于2020年9月至2022年3月在西南大學柑桔研究所完成。柑橘潰瘍病抗性品種四季橘()和感病品種紐荷爾臍橙()等植物材料保存于國家柑桔品種改良中心溫網室。
在28℃條件下于LB固體培養基中活化。挑選單克隆置于LB液體培養基中,28℃220 r/min過夜培養。第2天稀釋菌液至A600值為0.2,并繼續在28℃220 r/min條件下復搖至A600值介于0.5—0.7。隨后將菌液5 000 r/min離心10 min,棄掉上清液,用等量無菌水重懸。選取大小均勻的健康葉片分別注射重懸菌液,對照葉片注射無菌水。在處理1、3和5 d時收集葉片,液氮凍存。進行3次生物學重復。
采用北京艾德萊生物科技有限公司(Aidlab)的EASY spin植物RNA快速提取試劑盒,依照說明書方法提取葉片RNA,采用微量高精度核酸蛋白檢測儀測定RNA濃度。逆轉錄體系:2 μL 5×PrimeScript RT Master Mix(TaKaRa公司),0.5 μL miR399 RT-Primer(10 μmol·L-1)(表1),500 ng RNA,加RNase Free dH2O補足10 μL。反應條件:37℃30 min,85℃5 s。cDNA稀釋5倍后直接用于qPCR或保存于-20℃備用。

根據miRbase數據庫(https://www.mirbase.org/)中csi-miR399(miRbase收錄號:MI0016711)序列,于TaKaRa官網In-Fusion HD Cloning在線引物設計工具(https://www.takarabio.com/)設計csi-miR399擴增引物pLGN-MIR399-F/pLGN-MIR399-R和pCLBV202- MIR399-F/pCLBV202-MIR399-R(表2)。以紐荷爾臍橙葉片cDNA為模板進行PCR,膠回收擴增產物分別與線性化表達載體pLGN和病毒表達載體pCLBV202進行同源重組連接,同源重組體系:2 μL 5×In-Fusion Snap Assembly Master Mix(TaKaRa公司),2 μL線性化載體,6 μL插入片段。反應條件為50℃ 30 min。連接產物轉化大腸桿菌DH5,并篩選單克隆送擎科生物公司測序,構建成功的表達載體pLGN-MIR399和pCLBV202-MIR399分別轉化根癌農桿菌EHA105和GV3101。

表1 qPCR相關引物核苷酸序列
參考Li等[30-31]的離體葉片注射法,在錦橙()上開展pLGN-MIR399的瞬時表達,并以pLGN作為對照。注射后22℃暗培養6 d,取注射部位葉片樣品提RNA并反轉錄,通過qPCR分析csi-miR399及其靶基因的表達量。
參考張琦等[32]農桿菌介導的真空浸潤法,對尤力克檸檬()實生苗接種病毒表達載體pCLBV202-MIR399,空載體 pCLBV202為對照。接種植株25℃恒溫光照培養箱中16 h光照/8 h黑暗培養,8周齡時提取葉片RNA,以其反轉錄產物cDNA為模板,使用引物pClbv-s/r(表2)進行陽性植株篩選及csi-miR399的qPCR定量,作為內參對照。
潰瘍病抗性評價參考Peng等[8]的離體葉片針刺接種法并略做修改。挑選健康葉片用75%酒精消毒,無菌水清洗干凈后分裝至150 mm大培養皿中(3個生物學重復),葉柄處包裹充分濕潤的脫脂棉,對葉脈兩側區域進行針刺注射,每一邊針孔大小和數目相同,每個針孔均使用移液槍接種1 μL重懸菌液。使用石蠟帶封口培養皿,置于28℃恒溫光照培養箱(16 h光照/8 h黑暗)中培養。每日觀察葉片發病情況并進行記錄,接種7和10 d進行拍照,Image J軟件統計葉片潰瘍病斑面積(lesion area,LA,mm2)。病情分級標準總共7級,分別為0級(LA≤0.25 mm2),1級(0.25 mm2<LA≤0.5 mm2),2級(0.5 mm2<LA≤0.75 mm2),3級(0.75 mm2<LA≤1 mm2),4級(1 mm2<LA≤1.25 mm2),5級(1.25 mm2<LA ≤1.5 mm2),6級(1.5 mm2<LA≤1.75 mm2),7級(LA>1.75 mm2)。根據以下公式計算病情指數(disease index,DI):DI=100×Σ(各級病斑數×相應級數值)/(病斑總數×最大級數)。

表2 載體構建相關引物核苷酸序列
柑橘不同品種對潰瘍病的敏感性存在差異,四季橘是柑橘潰瘍病抗性品種,而紐荷爾臍橙屬于潰瘍病敏感品種。在接種1 d時,四季橘和紐荷爾臍橙csi-miR399的表達量與水處理對照組相比均出現下降,分別為對照的36.44%和86.91%。在接種3 d 時,四季橘葉片與對照組沒有觀測到區別,csi-miR399表達量為對照的81.09%;紐荷爾臍橙葉片出現水漬狀突起邊緣,csi-miR399表達下調為對照的15.95%。在接種5 d 時,四季橘葉片接種部位發生褐變,csi-miR399表達上調為對照組的4.64倍;而紐荷爾臍橙葉片水漬狀突起更為明顯,csi-miR399表達量為對照組的7.61%(圖1)。以上結果顯示,csi-miR399在四季橘和紐荷爾臍橙感病初期下調,但隨著感染時間延長,csi-miR399在四季橘中表達上調,而在紐荷爾臍橙中表達持續下調。表明csi-miR399在柑橘抗性品種和敏感品種中對的應答反應不同,可能與柑橘的潰瘍病抗性相關。
利用psRNATarget軟件預測到csi-miR399的13個候選靶基因,定量PCR檢測這些基因在經處理5 d 時葉片的表達情況(圖2)。結果發現,Cs7g03830(未知蛋白)在四季橘中下調表達,在紐荷爾臍橙中上調表達,與csi-miR399的表達趨勢相反,推測其可能是csi-miR399的作用靶標。Cs2g06030(泛素偶聯酶)和Cs8g18800(漆酶)在四季橘中下調表達,與csi-miR399的表達趨勢相反,在紐荷爾臍橙中無差異,推測其也可能是csi-miR399的作用靶標。其他10個預測靶基因Cs2g02870、Cs8g05410、Cs2g14510、orange1.1t02010、Cs3g09820、Cs7g08000、Cs7g22930、orange1.1g025013m、Cs4g04510和orange1.1t01536在四季橘和紐荷爾臍橙中或無表達差異、或表達趨勢均上調或均下調、或與csi-miR399的表達趨勢一致,不是csi-miR399的直接靶標。

A:接種潰瘍病菌5 d時柑橘葉片癥狀,NH5X和SJ5X分別為紐荷爾臍橙和四季橘Symptoms of citrus leaves inoculated with Xcc at 5 d, NH5X and SJ5X are C. sinensis and C. microcarpa, respectively;B:csi-miR399在紐荷爾臍橙和四季橘中的表達差異The differential expression of csi-miR399 in C. sinensis and C. microcarpa

1: csi-miR399; 2: Cs2g02870; 3: Cs2g06030; 4: Cs2g14510; 5: Cs3g09820; 6: Cs4g04510; 7: Cs7g03830; 8: Cs7g08000; 9: Cs7g22930; 10: Cs8g05410; 11: Cs8g18800; 12: orange1.1g025013m; 13: orange1.1t01536; 14: orange1.1t02010
為進一步驗證csi-miR399的候選靶基因,在柑橘葉片中利用根癌農桿菌瞬時轉化pLGN-MIR399,檢測csi-miR399及其候選靶基因Cs2g06030、Cs7g03830和Cs8g18800的表達量。結果顯示,與瞬時轉化pLGN空載的葉片相比,瞬時過表達csi-miR399的葉片中csi-miR399的表達量上調1.34倍,而Cs2g06030、Cs7g03830、Cs8g18800的表達量則分別下降了12.25%、16.84%和53.29%(圖3)。該結果進一步確定csi-miR399可調控候選靶基因Cs2g06030、Cs7g03830、Cs8g18800的表達,證實了csi-miR399與3個候選基因之間的靶向關系。
以柑橘cDNA為模板,pCLBV202-MIR399-F和pCLBV202-MIR399-R為引物擴增csi-miR399前體基因序列,電泳結果表明PCR產物符合預期,大小為130 bp(圖4-A)。回收擴增產物,與基于柑橘葉斑駁病毒(citrus leaf blotch virus,CLBV)的表達載體pCLBV202[32]連接,獲得重組植物病毒表達載體pCLBV202-MIR399(圖4-B)。

圖3 pLGN-MIR399瞬時過表達柑橘葉片中csi-miR399及其靶基因的相對表達量

A:csi-miR399的PCR擴增條帶Amplification of csi-miR399 by PCR;B:表達載體構建示意圖Schematic diagram of expression vectors of csi-miR399
利用根癌農桿菌介導的真空浸潤法[33]將pCLBV202-MIR399及空載體pCLBV202接種至尤力克檸檬,用引物對pClbv-s/r(表2)進行RT-PCR檢測。結果表明獲得pCLBV202-MIR399陽性植株3株(Y37、Y41和Y57),空載對照pCLBV202陽性植株一株(L35)(圖5-A)。對4個株系中csi-miR399的表達情況進行qPCR分析。結果表明,3個過表達株系csi-miR399表達量均有上調,其中Y37株系的csi-miR399表達量為對照的1.72倍(圖5-B)。
通過離體葉片針刺法接種,觀察過表達植株(Y37、Y41和Y57)及對照植株(L35)的葉片發病情況。結果發現,在接種1 d時,全部葉片除針孔損傷外無其他明顯病變特征;接種3 d時,全部葉片的針孔處損傷加重,且在針孔周圍出現淡黃色和白色暈圈,不同植株間程度輕重不一;接種5 d時,大部分植株的葉片潰瘍病癥狀加劇,在接種針孔部位開始出現明顯膿包,且呈擴增趨勢,但過表達植株病斑顯著小于對照植株;接種7 d時,過表達植株的菌斑面積已基本達到穩定狀態,與接種10 d時的病斑點面積無明顯差別,對照L35植株在10 d時的病斑面積則進一步顯著增加(圖6-A)。統計病斑面積計算病情指數,結果顯示過表達植株在7和10 d時的病情指數顯著低于對照植株(圖6-B)。上述結果說明過表達csi-miR399能夠提高植株的潰瘍病抗性,顯著減輕侵染的癥狀。

A:pCLBV202-MIR399接種尤力克檸檬植株的RT-PCR檢測RT-PCR detection of lemon plants inoculated with pCLBV202-MIR399;B:pCLBV202-MIR399接種檸檬植株內csi-miR399的相對表達量Relative expression of csi-miR399 in lemon plants inoculated with pCLBV202-MIR399

圖6 過表達csi-miR399檸檬葉片接種 Xcc的癥狀(A)及病情指數(B)
近期研究表明,miR399參與植物的生物脅迫反應。果樹受蘋果莖痘病毒和黃龍病菌感染后miR399表達上調[27-28]。本研究發現在感染5 d 時,抗性品種中csi-miR399表達量顯著增加,而敏感品種中則顯著下降(圖1)。利用病毒載體在柑橘中過表達csi-miR399可使潰瘍病病斑面積顯著減小,病情指數顯著降低(圖6),這表明csi-miR399與柑橘的潰瘍病抗性密切相關。不過,本研究未開展寄主csi-miR399前體的干擾試驗及干擾植株的潰瘍病抗性評價,有待于進一步完善。
擬南芥中過表達miR399可提高植物對真菌病原()和半活體寄生真菌()的抗性[26],但在水稻中miR399的過表達則會使得植株對稻瘟病菌的敏感性增強[34]。這種抗性的差異可能與轉基因植物體內磷含量的變化相關,但具體原因未知。miR399/PHO2是一組公認的miRNA-靶基因組合,在植物中PHO2負責編碼泛素偶聯酶,與磷穩態平衡有密切聯系[35-36]。在柑橘中miR399通過調控靶基因的翻譯,作用于轉錄因子和,影響花器官的發育[23];miR399-模塊同樣在冬小麥中作用于正調控植物的抗凍性[37]。在本試驗中,柑橘Cs2g06030()確認為潰瘍病脅迫下csi-miR399作用的靶基因(圖2、圖3),可能通過轉錄因子和抗性基因的泛素化過程參與csi-miR399對柑橘潰瘍病的抗性作用。
除外,有報道堿性/中性轉化酶基因[25,38]、轉錄因子和[39]也是miR399的靶基因。本研究發現漆酶(Cs8g18800)是csi-miR399潛在的靶基因。漆酶是參與木質素合成的多基因蛋白家族,在生物脅迫下,不同成員呈現上調或下調表達;過表達漆酶基因增強植物對生物脅迫的抗性,而干擾漆酶的表達也存在抗性增強現象[40]。miR399-漆酶模塊在柑橘潰瘍病抗性中的調控作用需要進行深入研究。
植物病毒載體已用于外源基因的表達,該方法不需轉化和再生,比傳統的根癌農桿菌轉化方法操作簡便、耗時短且可通過嫁接接種至多個寄主品種。柑橘葉斑駁病毒(CLBV)在多數柑橘品種中不顯示癥狀,且目前尚未發現傳播蟲媒,因此基于該病毒的載體具有較高的安全性,已成功用于開花基因和抗菌肽等已知功能基因的表達,可如同植物雙元表達載體一樣實現外源基因的過表達和發揮生物學功能[32,41]。本試驗在上述研究基礎上推進一步,利用基于CLBV的病毒表達載體實現csi-miR399在柑橘中的過表達,并證明該基因的過表達可提高柑橘對潰瘍病的抗性。并且,轉pCLBV202-MIR399的柑橘實生苗嫁接到枳砧,4年后仍可檢測到CLBV病毒和csi-miR399表達,顯示該病毒載體在柑橘體內具有較強的穩定性。因此,利用基于CLBV的病毒載體過表達miRNA為柑橘潰瘍病提供了一種新型防控技術。
csi-miR399與柑橘的潰瘍病抗性密切相關,過表達csi-miR399顯著提高柑橘對潰瘍病的抗性,可應用于柑橘抗潰瘍病的分子育種或病害防控。
致謝:西南大學宋震教授惠贈病毒表達載體pCLBV202,胡軍華副研究員惠贈柑橘潰瘍病菌。在此表示感謝!
[1] AL-SAADI A, REDDY J D, DUAN Y P, BRUNINGS A M, YUAN Q, GABRIEL D W. All five host-range variants ofcarry onehomolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Molecular Plant-Microbe Interactions,2007, 20(8): 934-943. doi: 10.1094/mpmi- 20-8-0934.
[2] PITINO M, ARMSTRONG C M, DUAN Y P. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses. Horticulture Research,2015, 2: 15042. doi: 10.1038/hortres.2015.42.
[3] 王曉宇, 彭埃天, 宋曉兵, 黃峰, 崔一平. 柑橘潰瘍病綜合防控技術研究進展. 中國農學通報,2021, 37(31): 106-111.
WANG X Y, PENG A T, SONG X B, HUANG F, CUI Y P. Comprehensive control technology of citrus bacterial canker disease: a review. Chinese Agricultural Science Bulletin, 2021, 37(31): 106-111. (in Chinese)
[4] ISLAM M N, ALI M S, CHOI S J, HYUN J W, BAEK K H. Biocontrol of citrus canker disease caused bysubsp.using an endophytic. Plant Pathology Journal,2019, 35(5): 486-497. doi: 10.5423/ppj.Oa.03.2019.0060.
[5] VILLAMIZAR S, FERRO J A, CAICEDO J C, ALVES L M C. Bactericidal effect of entomopathogenic bacteriumagainstreduces citrus canker disease severity. Frontiers in Microbiology,2020, 11: 1431. doi: 10.3389/ fmicb.2020.01431.
[6] CONTI G, XOCONOSTLE-CAZARES B, MARCELINO-PEREZ G, HOPP H E, REYES C A. Citrus genetic transformation: an overview of the current strategies and insights on the new emerging technologies. Frontiers in Plant Science,2021, 12: 768197. doi: 10.3389/fpls.2021.768197.
[7] 姚利曉, 范海芳, 張慶雯, 何永睿, 許蘭珍, 雷天剛, 彭愛紅, 李強, 鄒修平, 陳善春. 柑橘潰瘍病抗性相關轉錄因子CitMYB20的功能. 中國農業科學,2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578- 1752.2020.10.007.
YAO L X, FAN H F, ZHANG Q W, HE Y R, XU L Z, LEI T G, PENG A H, LI Q, ZOU X P, CHEN S C. Function of citrus bacterial canker resistance-related transcription factor CitMYB20. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578-1752.2020. 10.007. (in Chinese)
[8] PENG A H, CHEN S C, LEI T G, XU L Z, HE Y R, WU L, YAO L X, ZOU X P. Engineering canker-resistant plants through CRISPR/Cas9- targeted editing of the susceptibility genepromoter in citrus. Plant Biotechnology Journal,2017, 15(12): 1509-1519. doi: 10.1111/ pbi.12733.
[9] CHEN X M. Small RNAs and their roles in plant development. Annual Review of Cell and developmental Biology,2009, 25: 21-44. doi: 10.1146/annurev.cellbio.042308.113417.
[10] VAUCHERET H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & Development,2006, 20(7): 759-771. doi: 10.1101/gad.1410506.
[11] YANG X, ZHANG L, YANG Y, SCHMID M, WANG Y. miRNA mediated regulation and interaction between plants and pathogens. International Journal of Molecular Sciences,2021, 22(6): 2913. doi: 10.3390/ijms22062913.
[12] NAVARRO L, DUNOYER P, JAY F, ARNOLD B, DHARMASIRI N, ESTELLE M, VOINNET O, JONES J D. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science,2006, 312(5772): 436-439. doi: 10.1126/science.1126088.
[13] CARUANA J C, DHAR N, RAINA R. Overexpression ofinduces salicylic acid-dependent defense againstthrough the regulation of its targetsand. Plant Direct,2020, 4(9): e00270. doi: 10.1002/pld3.270.
[14] LI Y, LU Y G, SHI Y, WU L, XU Y J, HUANG F, GUO X Y, ZHANG Y, FAN J, ZHAO J Q,. Multiple rice microRNAs are involved in immunity against the blast fungus. Plant Physiology,2014, 164(2): 1077-1092. doi: 10.1104/pp.113.230052.
[15] LI Y, CAO X L, ZHU Y, YANG X M, ZHANG K N, XIAO Z Y, WANG H, ZHAO J H, ZHANG L L, LI G B,. Osa-miR398b boosts H2O2production and rice blast disease-resistance via multiple superoxide dismutases. New Phytologist,2019, 222(3): 1507-1522. doi: 10.1111/nph.15678.
[16] LUAN Y S, CUI J, LI J, JIANG N, LIU P, MENG J. Effective enhancement of resistance toby overexpression of miR172a and b in. Planta,2018, 247(1): 127-138. doi: 10.1007/s00425-017-2773-x.
[17] FAN D, RAN L Y, HU J, YE X, XU D, LI J Q, SU H L, WANG X Q, REN S, LUO K M. miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in. New Phytologist,2020, 227(3): 867-883. doi: 10.1111/nph.16585.
[18] ZHENG Z, WANG N, JALAJAKUMARI M, BLACKMAN L, SHEN E, VERMA S, WANG M B, MILLAR A A. miR159 represses a constitutive pathogen defense response in tobacco. Plant Physiology,2020, 182(4): 2182-2198. doi: 10.1104/pp.19.00786.
[19] MISHRA R, MOHANTY J N, CHAND S K, JOSHI R K. Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli against anthracnose pathogenL. Plant Science,2018, 267: 135-147. doi: 10.1016/j.plantsci.2017.12.001.
[20] XU Y, WANG R, MA P, CAO J, CAO Y, ZHOU Z, LI T, WU J, ZHANG H. A novel maize microRNA negatively regulates resistance to. Molecular Plant Pathology,2022, 23(10): 1446-1460. doi: 10.1111/mpp.13240.
[21] BARI R, PANT B D, STITT M, SCHEIBLE W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology,2006, 141(3): 988-999. doi: 10.1104/pp.106. 079707.
[22] PANT B D, BUHTZ A, KEHR J, SCHEIBLE W R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal,2008, 53(5): 731-738. doi: 10.1111/j. 1365-313X.2007.03363.x.
[23] WANG R, FANG Y N, WU X M, QING M, LI C C, XIE K D, DENG X X, GUO W W. The miR399-module regulates reproductive development and male fertility in citrus. Plant Physiology,2020, 183(4): 1681-1695. doi: 10.1104/pp.20.00129.
[24] WANG Y, ZHANG J, CUI W, GUAN C, MAO W, ZHANG Z. Improvement in fruit quality by overexpressing miR399a in woodland strawberry. Journal of Agricultural and Food Chemistry,2017, 65(34): 7361-7370. doi: 10.1021/acs.jafc.7b01687.
[25] HU Z, WANG F S, YU H, ZHANG M M, JIANG D, HUANG T J, XIANG J S, ZHU S P, ZHAO X C. Effects of scion-rootstock interaction on citrus fruit quality related to differentially expressed small RNAs. Scientia Horticulturae,2022, 298: 110974. doi: 10.1016/ j.scienta.2022.110974.
[26] VAL-TORREGROSA B, BUNDO M, MARTIN-CARDOSO H, BACH-PAGES M, CHIOU T J, FLORS V, SEGUNDO B S. Phosphate-induced resistance to pathogen infection in. The Plant Journal,2022, 110(2): 452-469. doi: 10.1111/tpj.15680.
[27] ZHANG Q, ZHANG Y, WANG S, HAO L, WANG S, XU C, JIANG F, LI T. Characterization of genome-wide microRNAs and their roles in development and biotic stress in pear. Planta,2019, 249(3): 693-707. doi: 10.1007/s00425-018-3027-2.
[28] ZHAO H W, SUN R B, ALBRECHT U, PADMANABHAN C, WANG A R, COFFEY M D, GIRKE T, WANG Z H, CLOSE T J, ROOSE M,. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus Huanglongbing disease. Molecular Plant,2013, 6(2): 301-310. doi: 10.1093/mp/sst002.
[29] DAI X, ZHUANG Z, ZHAO P X. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research,2018, 46(W1): W49-w54. doi: 10.1093/nar/gky316.
[30] LI F, DAI S, DENG Z, LI D, LONG G, LI N, LI Y, GENTILE A. Evaluation of parameters affecting-mediated transient expression in citrus. Journal of Integrative Agriculture,2017, 16(3): 572-579. doi: 10.1016/S2095-3119(16)61460-0.
[31] ACANDA Y, WELKER S, ORBOVI? V, LEVY A. A simple and efficient agroinfiltration method for transient gene expression in citrus. Plant Cell Reports,2021, 40(7): 1171-1179. doi: 10.1007/s00299-021- 02700-w.
[32] 張琦, 段玉, 蘇越, 蔣琪琪, 王春慶, 賓羽, 宋震. 基于柑橘葉斑駁病毒的表達載體構建及應用. 中國農業科學,2022, 55(22): 4398-4407. doi: 10.3864/j.issn.0578-1752.2022.22.006.
ZHANG Q, DUAN Y, SU Y, JIANG Q Q, WANG C Q, BIN Y, SONG Z. Construction and application of expression vector based on citrus leaf blotch virus. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407. doi: 10.3864/j.issn.0578-1752.2022.22.006. (in Chinese)
[33] SIMMONS C W, VANDERGHEYNST J S, UPADHYAYA S K. A model ofvacuum infiltration into harvested leaf tissue and subsequenttransgene transient expression. Biotechnology and Bioengineering,2009, 102(3): 965-970. doi: 10.1002/bit.22118.
[34] CAMPOS-SORIANO L, BUNDO M, BACH-PAGES M, CHIANG S F, CHIOU T J, SEGUNDO B S. Phosphate excess increases susceptibility to pathogen infection in rice. Molecular Plant Pathology,2020, 21(4): 555-570. doi: 10.1111/mpp.12916.
[35] PEGLER J L, NGUYEN D Q, OULTRAM J M J, GROF C P L, EAMENS A L. Molecular manipulation of the miR396 and miR399 expression modules alters the response ofto phosphate stress. Plants,2021, 10(12): 2570. doi: 10.3390/plants10122570.
[36] LIN S I, CHIANG S F, LIN W Y, CHEN J W, TSENG C Y, WU P C, CHIOU T J. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology,2008, 147(2): 732-746. doi: 10.1104/pp.108.116269.
[37] PENG K K, TIAN Y, SUN X Z, SONG C H, REN Z P, BAO Y Z, XING J P, LI Y S, XU Q H, YU J, ZHANG D, CANG J. tae-miR399-module enhances freezing tolerance in winter wheat via a CBF signaling pathway. Journal of Agricultural and Food Chemistry,2021, 69(45): 13398-13415. doi: 10.1021/acs.jafc.1c04316.
[38] ZHOU H, LI C, QIU X, LU S. Systematic analysis of alkaline/neutral invertase genes reveals the involvement of Smi-miR399 in regulation ofand. Plants,2019, 8(11): 490. doi: 10.3390/plants8110490.
[39] BAEK D, CHUN H J, KANG S, SHIN G, PARK S J, HONG H, KIM C, KIM D H, LEE S Y, KIM M C, YUN D J. A role formiR399f in salt, drought, and ABA signaling. Molecules and Cells,2016, 39(2): 111-118. doi: 10.14348/molcells.2016.2188.
[40] BAI Y, ALI S, LIU S, ZHOU J, TANG Y. Characterization of plant laccase genes and their functions. Gene,2023, 852: 147060. doi: 10.1016/j.gene.2022.147060.
[41] VELAZQUEZ K, AGUERO J, VIVES M C, ALEZA P, PINA J A, MORENO P, NAVARRO L, GUERRI J. Precocious flowering of juvenile citrus induced by a viral vector based oncitrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnology Journal,2016, 14(10): 1976-1985. doi: 10.1111/pbi.12555.
Expression pattern of csi-miR399 in response tosubsp.infection and its disease resistance analysis

Citrus Research Institute, Southwest University/National Citrus Engineering Technology Research Center/National Center for Citrus Varieties Improvement, Chongqing 400712
【Objective】The objective of this study is to identify the expression pattern of csi-miR399 in response to the infection of citrus canker bacteria (subsp.,), screen its target genes, analyze the correlation between csi-miR399 andresistance in host plants, and to lay a foundation for the creation of citrus canker resistant germplasms.【Method】In order to clarify the expression pattern of csi-miR399 in response toinfection,-resistantvariety Calamondin ()-sensitive variety Newhall Navel Orange () were used as materials, and changes in the relative expression of csi-miR399 were analyzed by stem-loop qPCR after their leaves were injected withat 1, 3 and 5 d. The online software psRNATarget was used to predict the target genes of csi-miR399, which were further confirmed by qPCR in citrus leaves infected withand transiently over-expressed with csi-miR399. The viral expression vector pCLBV202-MIR399 was constructed by in-fusion cloning through csi-miR399 precursor sequence being inserted into pCLBV202, and transferred into Eureka Lemon () by-mediated vacuum infiltration. The lemon over-expressed with csi-miR399 was evaluated for resistance againstthrough being stab-inoculated with the pathogen and investigated disease index.【Result】After inoculation with, the expression of csi-miR399 in Calamondin showed a downward trend and then an upward trend, while that in Newhall Navel Orange continued to decrease. At 5 d, the expression of csi-miR399 in Calamondin and Newhall Navel Orange was 4.64 times and 7.61% as its expression in healthy leaves, respectively, preliminary indicating that csi-miR399 was related to citrus canker resistance. Thirteen predicted target genes were screened from citrus genome. Three of them were confirmed because of the opposite expression trends with csi-miR399, which were Cs2g06030 (), Cs7g03830 (unknown protein), and Cs8g18800 (laccase). Three lemon strains (Y37, Y41 and Y57) with over-expressed csi-miR399 were obtained. Comparing with L35 (empty vector pCLBV202), csi-miR399 was significantly up-regulated in the Y37, Y41 and Y57 strains. The area of canker lesions in Y37, Y41 and Y57 was also significantly reduced, and the disease index was significantly decreased after inoculation with(<0.01). It indicated that overexpression of csi-miR399 significantly enhanced the resistance to citrus canker.【Conclusion】csi-miR399 is closely related to the resistance of citrus to canker disease. Overexpression of csi-miR399 significantly improves the resistance, which can be applied to the molecular breeding of citrus against canker disease.
csi-miR399; citrus canker; target gene; over-expression vector based on citrus virus; biotic stress
10.3864/j.issn.0578-1752.2023.08.005
2023-01-20;
2023-01-31
國家重點研發計劃(2021YFD1400800,2021YFD1600800)、國家現代農業(柑橘)產業技術體系(CARS-26)
王兆昊,E-mail:wangzh0614@163.com。通信作者姚利曉,E-mail:yaolixiao@cric.cn
(責任編輯 岳梅)