麥康鳳?李佳嬡?魏靖茹?陳潮金?李曉蕓
【摘要】目的 探索不同縫隙連接蛋白在肝移植術后早期急性腎損傷中與線粒體動力學失衡及線粒體損傷可能的關系。方法 將24只SPF級SD雄性健康大鼠隨機分為假手術組(sham組,n = 6),肝移植手術再灌注2 h、4 h、8 h組
(M2、M4、M8組,每組n = 6)。sham組只開腹進行血管分離,M組進行原位肝移植手術,各組檢測腎功能、腎病理及腎皮質縫隙連接蛋白32(Cx32)、縫隙連接蛋白43(Cx43)、線粒體動力相關蛋白1(Drp1)、線粒體融合蛋白1(Mfn1)、線粒體融合蛋白2(Mfn2)、融合相關蛋白視神經萎縮相關蛋白A1(Opa1)、內質網應激相關蛋白C/EBP 同源蛋白(CHOP)的表達,于電鏡下觀察線粒體形態變化。結果 與sham組相比,M2組腎組織損傷病理評分增高(P < 0.01),并隨時間增加趨勢增高,M8組達到高峰(P < 0.001),但血清肌酐(SCr)和血清尿素氮(BUN)僅M8組增高(P < 0.001,P < 0.05);與sham組相比,M2組大鼠Cx32表達增加(P < 0.01),M4組Cx43表達增加(P < 0.001),M8組均達到峰值(P < 0.001);與sham組比較,M2組線粒體動力學蛋白Drp1、Mfn1、Mfn2、OPA1表達均增加(P 0.001);電鏡下M2組即出現線粒體損傷,可見線粒體自噬和溶酶體自噬,粗面內質網輕度腫脹。線粒體損傷程度隨肝移植再灌注時間延長而增加,M2、M4、M8組均可見自噬線粒體及內質網-線粒體接觸位點。結論 SD大鼠經歷自體原位肝移植術后早期就出現腎病理及線粒體損傷,SCr及BUN診斷腎損傷具有延遲性;在肝移植術后早期腎皮質Cx32表達增高,線粒體分裂融合表現均活躍,提示Cx32傳遞傷害性信號與線粒體損傷及線粒體動力學失衡相關,可能為肝移植術后早期急性腎損傷的重要作用機制。
【關鍵詞】急性腎損傷;肝移植;縫隙連接蛋白;線粒體動力學
Changes of different connexins and mitochondrial dynamins in early acute kidney injury after liver transplantation Mai Kangfeng, Li Jiaai, Wei Jingru,Chen Chaojin, Li Xiaoyun. Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
Corresponding author, Li Xiaoyun, E-mail: lixyun@mail.sysu.edu.cn
【Abstract】Objective To explore the potential relationship between different connexins and mitochondrial dynamic imbalance and mitochondrial injury in early acute kidney injury after liver transplantation. Methods 24 healthy specific pathogen-free (SPF) SD male rats were randomly divided into the sham operation group (sham group, n = 6), and 2-, 4- and 8-h reperfusion liver transplantation groups (M2, M4 and M8 groups, n = 6 each). In the sham group, open surgery alone was performed for vessel separation. In the M2, M4 and M8 groups, orthotopic liver transplantation was conducted. Renal function and renal pathological examination were determined. The expression levels of connexin 32 (Cx32), Cx43, dynamin-related protein 1 (Drp1), mitofusin-1 (Mfn1), Mfn2, optic atrophy 1 (Opa1) and C/EBP homologous protein (CHOP), an endoplasmic reticulum stress-related protein, were detected in each group. The morphological changes of mitochondria were observed under electron microscope. Results Compared with the sham group, the pathological score of kidney tissue injury in the M2 group was increased (P < 0.01), and gradually increased over reperfusion time, and reached the peak in the M8 group (P < 0.001). However, serum creatinine (SCr) and blood urea nitrogen (BUN) levels were up-regulated only in the M8 group (P < 0.001, P < 0.05). Compared with the sham group, Cx32 level was increased in the M2 group (P < 0.01), Cx43 level was increased in the M4 group (P < 0.001), and reached the peak in the M8 group (both P < 0.001). Compared with the sham group, the expression levels of Drp1, Mfn1, Mfn2 and OPA1 were up-regulated in the M2 group (all P < 0.001). Under electron microscope, mitochondrial injury, mitochondrial autophagy, lysosomal autophagy and slightly swollen rough endoplasmic reticulum were observed in the M2 group. The degree of mitochondrial injury was aggravated over reperfusion time during liver transplantation. Mitochondrial autophagy and endoplasmic reticulum - mitochondria contact sites were observed in the M2, M4 and M8 groups. Conclusions Kidney pathological injury and mitochondrial injury occur early after autogenous orthotopic liver transplantation in SD rats. The diagnosis of kidney injury by SCr and BUN levels can be delayed. The expression level of Cx32 in the renal tissues is up-regulated early after liver transplantation. Active mitochondrial division and fusion can be seen, suggesting that the transmission of injury signals by Cx32 is associated with mitochondrial injury and mitochondrial dynamic imbalance, which may be an important mechanism of early acute kidney injury after liver transplantation.
【Key words】Acute kidney injury; Liver transplantation; Connexin; Mitochondrial dynamics
急性腎損傷(AKI) 是肝移植圍術期常見且嚴重的并發癥,發生率高達40.7%,AKI不僅是術后早期主要死亡原因之一,還是引發慢性腎衰竭及影響長期預后的獨立危險因素,且目前尚無特效藥,因此關注肝移植術后早期AKI是防止肝移植術后腎功能繼續惡化的關鍵[1]。線粒體動力學失衡所致腎小管細胞能量代謝紊亂和細胞損傷是早期AKI激活機制。腎小管細胞含有豐富的線粒體,由線粒體動力學維持的線粒體穩態對于正常的腎功能至關重要[2]??p隙連接(GJ)是細胞間直接通信的重要方式,由縫隙連接蛋白(Cx)組成。Cx32、Cx43等在腎臟中的表達豐富,本課題組的前期研究發現,Cx32及Cx43與腎小管上皮細胞損傷凋亡及肝移植術后AKI惡化有關[3-4]。
本研究將關注點提前至肝移植術后早期,觀察不同的Cx及線粒體動力學蛋白變化特點,探索Cx32、Cx43在肝移植術后早期AKI中與線粒體動力學失衡及線粒體損傷可能的關系,為肝移植術后早期腎保護策略的制定提供理論依據。
材料與方法
一、材 料
1.實驗動物
24只SPF級5~6周齡的雄性SD大鼠來源于湖南斯萊克景達實驗動物有限公司[SCXK(湘)2019-0004],體重200~220 g。動物建模及取材均在華南農業大學實驗動物中心內完成[SYXK(粵)2022-0136]。按照每籠3只群養,溫度約25℃,相對濕度約60%,晝夜間隔12 h,允許動物自由攝食飲水。本研究方案經華南農業大學實驗動物倫理委員會審查批準(倫理編號:2022D092)。
二、方 法
1. 建立大鼠自體原位肝移植模型
大鼠常規禁食不禁飲12 h,將其麻醉后消毒、開腹。阻斷肝門前在尾靜脈注射1 mL肝素生理鹽水(50 U/mL),分別結扎左膈上靜脈、脾胃底靜脈、右腎上腺靜脈;阻斷肝門后經門靜脈推注3 mL常溫肝素鹽水(25 U/mL)將肝內血驅回心臟;再經門靜脈冷灌注0~4℃肝素生理鹽水(12.5 U/mL)20 mL。待肝臟顏色均勻變為土黃色時結束無肝期(20±1)min,縫補靜脈血管穿刺點,給予48℃ 0.0002%腎上腺素和去甲腎上腺素混合沖洗腹腔以復溫,阻斷肝門后在尾靜脈注射1 mL魚精蛋白(1 mg/mL),然后縫合腹部切口并復蘇大鼠[5]。
2. 動物實驗分組及處理
采用隨機數表法將24只大鼠隨機分為4組,每組6只,分別為假手術組(sham組)以及肝移植模型M2組、M4組、M8組。sham組只開腹進行血管分離,肝移植模型M組則進行原位肝移植手術。在肝臟再灌注后2 h(M2組)、4 h(M4組)、8 h(M8組) 分別麻醉大鼠,處死大鼠后取其血及腎組織,采用生化儀檢測血清肌酐(SCr)、尿素氮(BUN)水平。以上各組分別隨機選取3只大鼠,采用蛋白質印跡法檢測其腎組織中Cx32、Cx43、線粒體動力相關蛋白1(Drp1)、線粒體融合蛋白1(Mfn1)、線粒體融合蛋白2(Mfn2)、融合相關蛋白視神經萎縮相關蛋白A1(Opa1)和內質網應激相關蛋白C/EBP同源蛋白(CHOP)的表達情況;用石蠟包埋腎切片,經HE染色在光鏡下觀察并進行病理評分,參照文獻[6]評分標準評估腎小管損傷情況,包含腎小管擴張、腎小管上皮損傷和管腔形成,采用4分法,0分:無變化;1分:影響<25%的視野;2分:影響25%~50%的視野;3分:影響51%~75%的視野;4分:影響>75%的視野;經4%戊二醛固定腎組織包埋切片,行2%醋酸鈾飽和乙醇溶液和枸櫞酸鉛染色后在透射電鏡下觀察線粒體內質網超微結構。
三、統計學處理
采用SPSS 25.0處理數據。多組間的比較用單因素方差分析,各組與對照組的多重比較采用 Dunnett-t檢驗,P < 0.05為差異有統計學意義。
結果
一、腎功能與腎病理改變
1. SCr與BUN水平的變化
與sham組比較,M8組SCr、BUN水平增高(Dunnett-t = 5.274, P < 0.001; Dunnett-t = 2.737, P =?0.033),見圖1A、B。
2. 腎組織損傷病理評分及病理改變特點
與sham組比較,M2、M4,M8組腎組織損傷病理評分均增高,高峰出現在M8組(Dunnett-t = 3.935, P = 0.002; Dunnett-t = 6.018, P < 0.001; Dunnett-t = 11.110, P < 0.001),見圖1C。sham組腎小管病理形態正常,無明顯腫脹;M2組可見輕度腎小管上皮細胞水腫,腎小管輕度擴張;M4組可見腎小管上皮細胞明顯水腫,腎小管明顯擴張;M8組可見部分腎小管上皮細胞細胞核固縮、變性、壞死、脫落,較多管型形成,見圖1D。
二、Cx、線粒體動力學蛋白及線粒體形態結構變化
1.肝移植術后再灌注不同時間點腎皮質組織Cx表達
與sham組比較, Cx43表達在M2組無變化(Dunnett-t = 0.930, P = 0.710),在M4、M8組增加(Dunnett-t = 8.493, P < 0.001; Dunnett-t = 57.502, P < 0.001);Cx32表達在M2、M4、M8組均增加(Dunnett-t = 6.187, P = 0.002; Dunnett-t = 18.481, P < 0.001; Dunnett-t = 129.028, P < 0.001),見圖2A~C。
2.肝移植術后再灌注不同時間點腎皮質線粒體動力學蛋白表達
與sham組相比,M2組Drp1、Mfn1、Mfn2、Opa1表達均增加(Dunnett-t = 11.742, P < 0.001; Dunnett-t = 7.580,P < 0.001; Dunnett-t = 13.949,P < 0.001; Dunnett-t = 34.298,P < 0.001),M4、M8組線粒體動力學蛋白表達與sham組比較差異無統計學意義,見圖2D~I。
3.肝移植術后再灌注不同時間點腎皮質組織線粒體形態結構
透射電鏡檢測大鼠腎皮質區線粒體結構情況,sham組大鼠腎皮質線粒體呈橢圓形,嵴結構緊密、清晰、排列整齊,M2組大鼠出現腎皮質線粒體腫脹、變形成圓點狀、內膜嵴丟失,結構紊亂,粗面內質網輕度腫脹;M4組線粒體嵴結構疏松、紊亂,可見自噬溶酶體,內質網中度腫脹,線粒體被吞噬消化;M8組線粒體腫脹、嵴結構疏松、紊亂,線粒體外膜破裂損傷,可見自噬溶酶體,內質網明顯腫脹;M2、M4、M8組均可見自噬線粒體及內質網-線粒體接觸位點,見圖3。
討論
盡管目前有多種治療策略和藥物減輕腎損傷,但肝移植術后部分AKI患者腎功能呈惡化趨勢,損傷不可逆。而目前臨床上診斷腎損傷的金標準仍然是腎病理,但由于倫理限制,在臨床實際操作中很難對所有患者進行創傷性腎穿刺,尤其是早期AKI患者。AKI的診斷仍然以SCr為標準,而影響SCr的因素眾多,具有滯后性及偏差性,并不適用于評估肝移植患者的腎功能,不利于AKI的早期發現及防治[7-8]。
本研究以動物模型模擬肝移植主要病理生理過程:夾閉血管后腸腔血液回流受阻至淤血缺血、開放血管后炎癥因子和內毒素大量釋放入血、循環劇烈波動,肝腎發生再灌注損傷等[9-10]。研究結果也證實了SCr、BUN的延后性,雖然腎病理顯示再灌注2 h已出現腎損傷,但再灌注8 h才顯示SCr、BUN較sham組明顯增高。本研究設立了再灌注2 h及4 h的組別,旨在探索AKI的早期作用機制,為早期AKI的潛在干預靶點提供參考依據。
研究表明Cx32的表達隨器官損傷加重而增加[11]。既往的研究顯示Cx32及Cx43表達在肝移植術后再灌注4 h已出現上調,再灌注后8 h達到峰值,抑制Cx32、Cx43功能可通過減少氧化應激和細胞凋亡來減輕肝移植術后AKI,但以上研究均未進行更早期的觀察[3-4, 12-13]。本研究結果與上述研究一致,同時證實更早期即再灌注2 h時不僅腎病理顯示腎損傷,電鏡結果亦顯示線粒體損傷明顯,而此時 Cx32表達增加、Cx43無變化,與此同時,線粒體動力學相關蛋白Drp1、Mfn1、Mfn2、OPA1表達均增加,線粒體分裂融合表現均活躍,提示線粒體損傷在肝移植術后早期已出現,可能與線粒體動力學失衡相關。
Chen等[14]發現由Cx32組成的GJ控制活性氧的生成和相鄰細胞之間的分布,Cx32缺乏可減輕腎缺血誘導的AKI,抑制核因子κB/腫瘤抑制基因p53/ p53上調凋亡因子(NF-κB/p53/PUMA)介導的線粒體凋亡途徑,表明在AKI中Cx32可能與線粒體損傷有關。而線粒體動力學是保持線粒體在生理和病理條件下內穩態的重要機制[15]。一項研究記錄了疊氮化物誘導的腎小管細胞損傷情況,在2 h
時線粒體迅速碎裂,但在12 h時才檢測到細胞凋亡,表明在AKI中,線粒體動力學失衡早于細胞凋亡等其他形式的表型出現[16]。本研究結果提示AKI早期即出現了線粒體動力學失衡,即線粒體分裂融合均增強及線粒體損傷,Cx32傳遞傷害性信號可能與AKI的早期作用機制相關。
研究顯示,在早期階段內質網內未折疊蛋白的積累可導致應激誘導的線粒體過度融合,內質網應激與腎缺血再灌注損傷早期發病機制有關[17-18]。本研究結果顯示肝移植術后早期線粒體融合蛋白Mfn2及內質網應激相關蛋白CHOP表達均增加,與此同時電鏡下觀察到肝移植術后早期即出現腫脹的粗面內質網,肝移植各組均存在內質網-線粒體接觸位點。本研究結果提示肝移植術巨大創傷引起的內質網應激可能使線粒體與內質網之間產生聯系,線粒體融合增強。本課題組的前期研究也證實Cx32可介導內質網凋亡信號通路激活,在AKI中起重要作用[19]。因此本研究結果證實Cx32傳遞傷害性信號時也可能參與調節內質網應激,并在肝移植術后早期AKI的過程中扮演重要的角色。
綜上所述,關注Cx32、線粒體動力學、內質網應激的變化對于肝移植術后早期AKI機制探索具有重要的意義,Cx32傳遞傷害性信號與線粒體損傷及線粒體動力學失衡相關,可能為肝移植術后早期AKI的重要作用機制,值得進一步的深入研究。
參 考 文 獻
[1] Thongprayoon C, Kaewput W, Thamcharoen N, et al. Incidence and impact of acute kidney injury after liver transplantation: a meta-analysis. J Clin Med, 2019, 8(3): 372.
[2] Cleveland K H, Brosius F C 3rd, Schnellmann R G. Regulation of mitochondrial dynamics and energetics in the diabetic renal proximal tubule by the β2-adrenergic receptor agonist formoterol. Am J Physiol Renal Physiol, 2020, 319(5): F773-F779.
[3] Luo C, Yuan D, Li X, et al. Propofol attenuated acute kidney injury after orthotopic liver transplantation via inhibiting gap junction composed of connexin 32. Anesthesiology, 2015, 122(1): 72-86.
[4] Yuan D, Su G, Liu Y, et al. Propofol attenuated liver transplantation-induced acute lung injury via connexin43 gap junction inhibition. J Transl Med, 2016, 14(1): 194.
[5] Meng Q, Wu W, Zhang W, et al. IL-18BP improves early graft function and survival in lewis-brown Norway rat orthotopic liver transplantation model. Biomolecules, 2022, 12(12): 1801.
[6] Wang Y, Tian J, Qiao X, et al. Intermedin protects against renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress. BMC Nephrol, 2015, 16(1): 169.
[7] Molinari L, Del Rio-Pertuz G, Smith A, et al. Utility of biomarkers for sepsis-associated acute kidney injury staging. JAMA Netw Open, 2022, 5(5): e2212709.
[8] Pan H C, Yang S Y, Chiou T T Y, et al. Comparative accuracy of biomarkers for the prediction of hospital-acquired acute kidney injury: a systematic review and meta-analysis. Crit Care, 2022, 26(1): 349.
[9] Nemeth N, Peto K, Magyar Z, et al. Hemorheological and microcirculatory factors in liver ischemia-reperfusion injury-an update on pathophysiology, molecular mechanisms and protective strategies. Int J Mol Sci, 2021, 22(4): 1864.
[10] 吳永東, 汪華林, 林蓉宇, 等. 腎胺酶預防大鼠缺血再灌注致急性腎損傷的機制研究. 新醫學, 2016, 47(1): 17-21.
[11] Chen Z Q, Sun X H, Li X J, et al. Polydatin attenuates renal fibrosis in diabetic mice through regulating the Cx32-Nox4 signaling pathway. Acta Pharmacol Sin, 2020, 41(12): 1587-1596.
[12] Yuan D, Li X, Luo C, et al. Inhibition of gap junction composed of Cx43 prevents against acute kidney injury following liver transplantation. Cell Death Dis, 2019, 10(10): 767.
[13] Wu S, Yao W, Chen C, et al. Connexin 32 deficiency protects the liver against ischemia/reperfusion injury. Eur J Pharmacol, 2020, 876: 173056.
[14] Chen C, Yao W, Wu S, et al. Crosstalk between connexin32 and mitochondrial apoptotic signaling pathway plays a pivotal role in renal ischemia reperfusion-induced acute kidney injury. Antioxid Redox Signal, 2019, 30(12): 1521-1538.
[15] Tang C, Cai J, Yin X M, et al. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol, 2021, 17(5): 299-318.
[16] Brooks C, Wei Q, Cho S G, et al. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest, 2009, 119(5): 1275-1285.
[17] Fan Y, Simmen T. Mechanistic connections between endoplasmic reticulum (ER) redox control and mitochondrial metabolism. Cells, 2019, 8(9): 1071.
[18] Almanza A, Carlesso A, Chintha C, et al. Endoplasmic reticulum stress signalling-from basic mechanisms to clinical applications. FEBS J, 2019, 286(2): 241-278.
[19] Gu Y, Huang F, Wang Y, et al. Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury. J Transl Med, 2018, 16(1): 1-13.
(收稿日期:2022-10-20)
(本文編輯:洪悅民)