張曦寧,董振華,趙震宇,彭娜姿,胡志希,李琳



〔摘要〕 目的 檢測真武湯對慢性心力衰竭大鼠腸道菌群的影響,探討真武湯治療慢性心力衰竭的作用機制。方法 24只大鼠分為空白組、模型組、真武湯組、美托洛爾組,每組6只,模型組、真武湯組及美托洛爾組采用腹腔注射阿霉素(3 mg/kg,每周1次,連續7周)的方法制備心力衰竭模型,造模成功后,真武湯組進行真武湯18 g/(kg·d)灌胃治療,美托洛爾組用美托洛爾溶液10 mg/(kg·d)灌胃治療,空白組和模型組進行蒸餾水10 mL/(kg·d)灌胃,每天1次,連續21 d。干預結束后采集黏膜刮片,進行Miseq高通量測序。結果 治療后,模型組左室射血分數(left ventricular ejection fraction, LVEF)和左心室短軸縮短率(left ventricular ejection fractional shortening, LVFS)均明顯低于空白組(P<0.01),真武湯組LVEF、LVFS均明顯高于模型組(P<0.01)。與空白組相比,模型組大鼠腸道菌群Chao、Shannon、ACE指數顯著升高(P<0.05,P<0.01),Simpson指數顯著下降(P<0.05);與模型組相比,真武湯組各項指標出現回調。與空白組相比,模型組變形菌顯著減少(P<0.01),脫硫桿菌顯著增加(P<0.01),擬桿菌門、疣微菌門、酸桿菌門、螺旋菌門增加(P<0.05);與模型組相比,真武湯組變形菌、脫硫桿菌、疣微菌、酸桿菌及蛭弧菌門出現回調(P<0.05)。與空白組比較,模型組大腸志賀菌屬、瘤胃球菌科顯著下降(P<0.05,P<0.01),未分類的絨毛桿菌屬、羅姆布茨菌屬、杜氏桿菌、狹義梭菌屬、顫螺旋菌科、雙歧桿菌屬、普雷沃菌屬顯著增加(P<0.05,P<0.01);與模型組比較,真武湯組大腸志賀菌屬、乳酸桿菌屬、杜氏桿菌呈顯著回調趨勢(P<0.05,P<0.01)。結論 真武湯可有效改善慢性心力衰竭大鼠腸道菌群多樣性及豐富度,調節腸黏膜細菌組成與結構,這或為真武湯治療慢性心力衰竭的潛在作用機制。
〔關鍵詞〕 心力衰竭;真武湯;腸黏膜細菌;中醫藥;16S rRNA;高通量測序;生物信息學
〔中圖分類號〕R285.5? ? ? ? 〔文獻標志碼〕A? ? ? ? ?〔文章編號〕doi:10.3969/j.issn.1674-070X.2023.08.005
Effects of Zhenwu Decoction on bacterial diversity of intestinal mucosa in rats with doxorubicin-induced chronic heart failure
ZHANG Xining1, DONG Zhenhua1, ZHAO Zhenyu1, PENG Nazi1, HU Zhixi1,2*, LI Lin1,2*
1. Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; 2. Institute of TCM Diagnostics,
Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
〔Abstract〕 Objective To investigate the effects of Zhenwu Decoction on the intestinal flora of rats with chronic heart failure (HF), and to explore the mechanism of action of Zhenwu Decoction in treating this disease. Methods Twenty-four rats were divided into blank group, model group, Zhenwu Decoction group, and metoprolol group, with six rats in each group, and HF models in model group, Zhenwu Decoction group, and metoprolol group were established by intraperitoneal injection of doxorubicin (3 mg/kg, once a week, for 7 consecutive weeks). After successful modeling, Zhenwu Decoction group was given Zhenwu Decoction 18 g/(kg·d) by gavage, metoprolol group metoprolol solution 10 mg/(kg·d), and blank group and model group distilled water 10 mL/(kg·d), once a day, for 21 consecutive days. After the intervention, the intestinal mucosal scrapings of the rats were collected for high-throughput sequencing of Miseq. Results After treatment, the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) of rats in model group were significantly lower than those in blank group (P<0.01); compared with model group, LVEF and LVFS of rats in Zhenwu Decoction group were significantly higher (P<0.01). Compared with blank group, the Chao, Shannon and ACE indexes of rat intestinal flora in model group were significantly higher (P<0.05, P<0.01), while Simpson index was significantly lower (P<0.05); compared with model group, those indexes in Zhenwu Decoction group showed a callback. Compared with blank group, the intestinal flora of rats in model group showed a significant decrease in the abundance of Proteobacteria (P<0.01), a significant increase in the abundance of Desulfobacterota (P<0.01), and an increase in the abundance of Bacteroidetes, Verrucomicr?鄄obia, Acidobacteria, and Spirochaetes (P<0.05); compared with model group, the abundance of Proteobacteria, Desulfobacterota, Verrucomicrobia, Acidobacteria, and Bdellovibrionota in Zhenwu Decoction group showed a callback (P<0.05). Compared with blank group, the intestinal flora of rats in model group showed a significant decrease in the abundance of Escherichia-Shigella and norank_f__Ruminococcaceae (P<0.05, P<0.01), and a significant increase in the abundance of norank_f__Muribaculaceae, Romboutsia, Dubosiella, Clostridium_sensu_stricto_1, norank_f__Oscillospiraceae, Bifidobacterium, and Prevotella (P<0.05, P<0.01); compared with model group, the abundance of Escherichia-Shigella, Lactobacillus, and Dubosiella showed a significant callback in Zhenwu Decoction group (P<0.05, P<0.01). Conclusion Zhenwu Decoction can effectively improve the diversity and abundance of intestinal flora in rats with chronic HF, and regulate the composition and structure of intestinal mucosal bacteria, which may be the potential mechanism of Zhenwu Decoction in treating chronic HF.
〔Keywords〕 heart failure; Zhenwu Decoction; intestinal mucosal bacteria; Chinese medicine; 16S rRNA; high-throughput sequencing; bioinformatics
心力衰竭(heart failure, HF)是一種復雜的臨床綜合征,常繼發于心臟結構或功能異常,其特征主要為心室功能受損和外周血供不足[1-2],臨床主要表現為呼吸困難、液體潴留等,嚴重威脅患者生命安全[3]。目前,HF患者的治療用藥多低于有效劑量,并且大部分患者未接受可改善HF預后的藥物治療,這或許是出于對不良反應的擔憂[4],HF的臨床治療仍具有局限性。中國傳統醫藥運用天然藥物治療疾病,其多種成分對多靶點發揮同時和/或協同治療作用,具有廣泛的有益作用及毒副作用小等特點[5]。有研究表明,中醫藥可以在HF患者中發揮對血管的保護作用及血管生成作用[6]。真武湯作為中醫藥經方之一,被證實可通過激活Nrf2信號減輕心臟內皮損傷[7],通過AGE-RAGE信號通路影響HF的進展[8]。
近年來,腸黏膜細菌及其代謝產物被證實在心血管疾病中起到重要作用[9]。同時,中醫藥通過胃腸達到對腸黏膜細菌的作用被發現[10],中藥復方對腸道菌群具有調節作用,改善人體疾病狀態。利用細菌基因測序、生物信息學分析等方法,研究疾病與治療中腸黏膜細菌變化,中醫藥對疾病治療作用將更加清楚地觀測。因此,本實驗基于16S rRNA高通量測序的方法,探討阿霉素誘導HF大鼠腸黏膜細菌變化及真武湯治療HF的作用機制。
1 實驗材料
1.1? 實驗動物
SPF級SD雄性大鼠24只,體質量(200±20) g,購自湖南斯萊克景達實驗動物有限公司(動物合格證號:ZS-202101160013)。本實驗經湖南中醫藥大學動物實驗中心動物實驗倫理委員會審批(審批號:LLBH-201912160001),并按照實驗動物倫理學標準執行。
1.2? 實驗材料
真武湯遵循原方由茯苓、白芍、生姜、白術、附子組成,比例為3∶3∶3∶2∶1。茯苓(批號:CX20091402)、白芍(批號:TH20080602)、白術(批號:NG20090401)均購自湖南中醫藥大學第一附屬醫院;附子(批號:DX200201)購自安徽亳藥千草中藥飲片有限公司。將藥材用紗布袋包好置于不銹鋼桶中,注水至淹沒藥材2~3 cm,大火燒開,小火慢煮,煎煮2次,合并藥液繼續煎煮至生藥含量1 g/mL。注射用鹽酸阿霉素(APExBIO公司,批號:A39662337769),以0.9%氯化鈉溶液配制為2 mg/mL濃度備用。美托洛爾(AstraZeneca公司,批號:0902066),以0.9%氯化鈉溶液配制為2 mg/mL濃度備用。戊巴比妥鈉(美國SIGMA公司,批號:P3761);4%多聚甲醛(長沙威舍生物科技有限公司,批號:WB03004A)。SonoScape-S2N超聲系統(深圳市開立科技有限公司);PCR儀(美國ABI公司,型號:ABI GeneAmp■ 9700 型);電泳儀(北京六一儀器廠,型號:DYY-6C)。
2 實驗方法
2.1? 動物分組及模型制備
24只大鼠分為8籠,每籠3只,飼養于湖南中醫藥大學動物實驗中心,室溫23~25 ℃,相對濕度40%~70%,適量給食,自由飲水。適應性培養1周,隨機分為空白組(6只)、造模組(18只)。根據前期研究復制慢性HF大鼠模型[11],進行腹腔注射阿霉素(2 mg/L,1.5 mL/kg),每周1次,連續7周。將造模成功后的大鼠隨機分為美托洛爾組、真武湯組、模型組,每組6只。
2.2? 給藥方法
模型制備后次日,給與實驗組藥物治療。真武湯組進行真武湯18 g/(kg·d)治療[12],美托洛爾組進行美托洛爾10 mg/(kg·d)治療,模型組和空白組均給予同體積蒸餾水10 mg/(kg·d),灌胃操作每天1次,連續3周。
2.3? 超聲心動圖檢測
使用戊巴比妥鈉致大鼠完全麻醉,并將其仰臥位置固定于鼠板上,予以胸部脫毛處理并均勻涂抹超聲耦合劑,使用SonoScape-S2N超聲系統進行超聲心動圖檢查,得到各組大鼠左室射血分數(left ventricular ejection fraction, LVEF)及左心室短軸縮短率(left ventricular ejection fractional shortening, LVFS)。
2.4? 樣本收集
各組大鼠禁食12 h,使用戊巴比妥鈉致大鼠完全麻醉后,用手術鑷剝離部分回腸部黏膜,放至凍存管,于-80 ℃冰箱中低溫保存備用。取部分心肌組織,于4%多聚甲醛溶液中固定保存,經乙醇脫水、二甲苯透明后,將其浸蠟、包埋、切片、烘干、染色,并置于光鏡下觀察心肌病理學改變。
2.5? PCR擴增和16s rRNA測序
擴增程序:(1)預變性95 ℃ 3 min;(2)27個循環(95 ℃變性 30 s,55 ℃退火 30 s,72 ℃延伸30 s);(3)穩定延伸72 ℃ 10 min;(4)在4 ℃進行保存。PCR產物經2%瓊脂糖凝膠電泳檢測,純化后的產品利用上海美吉生物醫藥科技有限公司Miseq PE300/NovaSeq PE250平臺進行測序。
2.6? 數據處理
使用fastp[13]軟件對原始測序序列進行質控,使用FLASH[14]軟件進行操作,過程包括過濾、拼接、拼接篩選、修正、分析。
2.7? 統計學分析
實驗數據均采用SPSS 25.0統計軟件進行處理,采用“x±s”表示:若數據滿足正態性和方差齊性,則兩組間比較采用t檢驗,多組間比較采用單因素方差分析;若不滿足,則采用秩和檢驗。均以P<0.05為差異有統計學意義。
3 結果
3.1? 真武湯對慢性HF大鼠心功能影響
治療后,與空白組相比,模型組大鼠LVEF、LVFS值下降,差異有統計學意義(P<0.05),提示HF造模成功;與模型組比較,真武湯組、美托洛爾組大鼠LVEF、LVFS值均上升(P<0.05)。詳見表1、圖1。
空白組大鼠心肌纖維排列整齊,結構完整,橫紋清晰,細胞形態大小正常,細胞質染色均勻清晰;模型組大鼠心肌纖維排列紊亂,橫紋不清晰,出現溶解、斷裂,心肌細胞形態不規整,走形紊亂,出現水腫、肥大,細胞質染色不均勻,炎性細胞浸潤明顯;與模型組大鼠相比,經過真武湯和美托洛爾治療后的大鼠心肌纖維排列、心肌細胞形態及炎性浸潤均出現改善。詳見圖2。
3.2? 真武湯對慢性HF大鼠腸道菌群多樣性的影響
每組選擇6只小鼠,共24個大鼠腸黏膜樣本,通過16S rRNA高通量測序分析,共獲得1 108 375條有效檢測序列。稀釋曲線可用來說明樣本的測序數據量是否合理,圖3曲線趨向平坦,說明測序數據量合理。
Alpha多樣性反映不同樣本中物種的豐富度和均勻度。與空白組相比,模型組Chao、Shannon指數升高(P<0.05),ACE指數顯著升高(P<0.01),Simpson指數下降(P<0.05);與模型組相比,美托洛爾組及真武湯組各值雖有改變,但變化差異無統計學意義(P>0.05)。與美托洛爾組相比,真武湯組各數值呈回調趨勢,與空白組水平接近。詳見表2。
3.3? 真武湯對慢性HF大鼠腸道菌群結構的影響
主坐標分析(principal co-ordinates analysis, PCoA)可用來研究樣本的相似性或差異性,樣品的群落組成越相似,在圖中距離越接近。基于bray_curtis距離算法,ANOSIM組間差異檢驗繪制圖4。橫坐標PC1對總體菌群代表性為24.11%,縱坐標PC2為10.81%。基于PC1軸可見,模型組與空白組點位差距較大。與模型組相比,美托洛爾組點位與模型組相近,而真武湯組點位與空白組相近,說明真武湯組與空白組大鼠腸道菌群結構更為相近,這提示HF可一定程度上影響大鼠腸道菌群結構,而真武湯可調整其結構接近正常。
3.4? 真武湯對慢性HF大鼠腸道菌群組成的影響
4組大鼠腸道微生物群落構成及其相對豐度的門水平分析中,所有樣本均包含10種菌門:厚壁菌門(Firmicutes)、變形菌門(Proteobacteria)、unclassified_k_norank_d_Bacteria、擬桿菌門(Bacteroidetes)、放線菌門(Actinobacteria)、脫硫桿菌門(Desulfob?鄄acterota)、疣微菌門(Verrucomicrobia)、彎曲桿菌門(Campilobacterota)、酸桿菌門(Acidobacteria)和其他。4組中占比最高的為厚壁菌門,與空白組相比,模型組中厚壁菌占比升高;與模型組相比,美托洛爾組厚壁菌占比進一步升高,而經真武湯治療后其占比下降。詳見圖5。
與模型組相比,厚壁菌/擬桿菌比值在經真武湯治療后出現回調(P<0.05),且回調趨勢較美托洛爾組更為顯著。詳見圖6。
與空白組比較,模型組變形菌顯著減少(P<0.01),脫硫桿菌顯著增加(P<0.01),擬桿菌門、疣微菌門、酸桿菌門、螺旋菌門(Spirochaetes)增加(P<0.05);與模型組比較,真武湯組大鼠腸道中變形菌、脫硫桿菌、疣微菌、酸桿菌及蛭弧菌門(Bdellovibrionota)數量出現回調(P<0.05);而美托洛爾治療后,未出現各菌群回調。詳見圖7—8。
屬水平上,空白組優勢菌群為大腸志賀菌屬(Escherichia-Shigella)40.27%、未分類的瘤胃球菌(norank_f__Ruminococcaceae)29.02%、羅爾斯通菌屬(Ralstonia)6.28%;模型組的優勢菌群為unclassified_
k__norank_d__Bacteria 21.77%、乳酸桿菌屬(Lacto?鄄bacillus)11.24%、未分類的絨毛桿菌屬(norank_f__
Muribaculaceae)6.66%;真武湯組優勢菌群為大腸志賀菌屬(Escherichia-Shigella)12.81%、嗜冷桿菌屬(Psychrobacter)8.04%、葡萄球菌屬(Staphylococcus)8.24%;美托洛爾組優勢菌群為乳酸桿菌屬(Lactobacillus)26.03%、未分類的絨毛桿菌屬(norank_f__
Muribaculaceae)7.55%、urkholderia-Caballeronia-Para?鄄
burkholderia 4.89%。與空白組比較,模型組大腸志賀氏桿菌屬(Escherichia-Shigella)、未分類的瘤胃球菌(norank_f__Ruminococcaceae)含量明顯降低(P<0.01,P<0.05),norank_f__Muribaculaceae、羅姆布茨菌屬(Romboutsia)、杜氏桿菌(Dubosiella)、狹義梭菌屬(Clostridium_sensu_stricto_1)、未分類的顫螺旋菌科(norank_f__Oscillospiraceae)、雙歧桿菌屬(Bifidobacterium)、普雷沃菌屬(Prevotella)含量增加顯著(P<0.01,P<0.05),同時乳酸桿菌屬(Lactobacillus)也出現了增長。與模型組比較,真武湯組大腸志賀菌屬(Escherichia-Shigella)、乳酸桿菌屬(Lactobacillus)、杜氏桿菌(Dubosiella)呈顯著回調趨勢(P<0.01,P<0.05),提示真武湯可調節HF大鼠腸道菌群趨近正常大鼠。詳見圖9—11。
選定LDA>4為標準,進行線性判別分析(linear discriminant analysis effect size, LefSe),檢驗各組菌群屬水平豐富度,可見各組顯著差異菌群。空白組以γ-變形菌(Gammaproteobacteria)、腸桿菌(Enterobacterales)、大腸志賀菌屬(Escherichia-Shigella)、變形菌(Proteobacteria)等為主;模型組以芽孢菌(Blastocatellaceae)、Peptostreptococcales-Tissierellales、普雷沃菌(Prevotellaceae)等有害菌或條件致病菌為主;真武湯組以莫拉氏菌(Moraxellaceae)、葡萄球菌、羅姆布茨菌(Romboutsia)、Blautia、UCG-005等為主;美托洛爾組以Bacilli、乳酸桿菌等為主。詳見圖12—13。
4 討論
胃腸黏膜負責營養吸收與廢物分泌[15],其作用是由定植在黏膜上的大量微生物實現的,這些微生物群被稱為腸道微生物群(gut microbiota, GM),具有消化食物、合成必需維生素、調節免疫系統、支持腸道功能等功能,在維持宿主代謝穩態和健康方面有著重要作用[16-17]。其中,腸道細菌被稱為腸道菌群,大部分被歸類為厚壁菌門和擬桿菌門。研究認為,腸道菌群與HF有密切的關系。HF患者因靜脈充血會出現腸壁水腫,導致腸道內細菌的過度生長[18]。
超聲心動圖結果表示,與空白組相比,模型組大鼠的LVEF、LVFS顯著下降(P<0.01);通過心肌組織HE染色可見,與空白組大鼠心肌組織相比,模型組大鼠心肌組織發生病理學異常改變,提示模型組大鼠心功能可能出現了損傷。經真武湯、美托洛爾治療后,大鼠LVEF、LVFS值均顯著升高(P<0.01),心肌組織心肌細胞形態及炎性浸潤均改善,提示真武湯、美托洛爾可恢復大鼠心肌組織及心臟功能,從而改善HF。本實驗采用16S rRNA高通量測序技術探究真武湯對慢性HF大鼠腸黏膜細菌多樣性的影響。Alpha多樣性中,Chao、ACE指數代表豐富度,其值越高代表豐富度越高;Shannon、Simpson指數代表多樣性,Shannon值越高、Simpson值越低代表多樣性越低。與空白組相比,模型組的大鼠Chao、Shannon值升高(P<0.05),ACE值顯著升高(P<0.01),Simpson值下降(P<0.05),提示與空白組相比較,模型組大鼠腸道菌群豐富度與多樣性升高。有害菌的過度生長也可以引起多樣性的升高,這與前人研究一致[19]。經真武湯治療后,Chao、Shannon、ACE值下降,Simpson值升高,盡管其變化差異無統計學意義,但結合β多樣性PCoA圖可見,與模型組相比,真武湯組點位更接近于空白組,而美托洛爾組更接近于模型組,說明經治療后的大鼠腸黏膜細菌豐富度及多樣性出現回調,相較于美托洛爾組,真武湯引起的回調更接近于空白組。
進一步研究發現,各組HF大鼠腸黏膜細菌組成發生變化。在門水平上,厚壁菌門、擬桿菌門占比最大[20],其余優勢菌門為變形菌門、放線菌門、梭桿菌門和疣狀桿菌門。本研究結果顯示,模型組大鼠腸黏膜細菌中出現了厚壁菌和擬桿菌數量的增加,但厚壁菌/擬桿菌比例出現了下降。厚壁菌/擬桿菌相對豐度的比例變化,成為決定健康與疾病的生物標記物[21]。其比例的下降可導致短鏈脂肪酸(short-chain fatty acid, SCFA)的減少,促進炎癥發展[22]。SCFA是代謝產物之一,在免疫與體循環方面有積極作用,被應用于壓力過載引起的心臟損傷,而HF患者中生產其能力降低[23-24]。厚壁菌的增加可見于酒精性脂肪肝大鼠體內[25],同時,擬桿菌中許多物種被認為是腸道外條件致病菌,其可激活激肽釋放酶-激肽系統,增加緩激肽的生成,從而導致血管滲漏[26]。除此以外,模型組大鼠腸黏膜中出現脫硫菌、放線菌的增加,脫硫弧菌被證實可以促進腸道炎癥[27],放線菌的增加可見于強直性脊柱炎,可能與體內炎癥狀態有關[28]。在屬水平上,各組大鼠腸黏膜菌群比例發生變化。與空白組相比,模型組中大腸志賀菌、瘤胃球菌減少,Muribaculaceae、羅姆布茨菌、杜氏桿菌、普雷沃菌及雙歧桿菌增加。大腸志賀菌屬豐度與血脂水平呈正相關[29],管腔內的長鏈脂肪酸(long-chain fatty acid, LCFA)或許與其有關。LCFA包括飽和脂肪酸與不飽和脂肪酸,其豐度與宿主飲食、微生物代謝、膽汁酸分泌等有關,其氧化過程是大多數心臟的能量來源[24, 30]。同時,瘤胃球菌是SCFA產生菌,在模型組大鼠中減少,這與前人研究結果相同[31],這種現象也與腸易激綜合征的發生發展相關聯[32]。雙歧桿菌可以抑制脂多糖(lipopolysaccharides, LPS)[33],LPS可以通過上調IL-1α、HIF-α等炎癥因子誘導炎癥發生[34]。乳酸桿菌可以產生乳酸改善腸道環境,阻止有害細菌的黏附[35],羅姆布茨菌可能通過調節脂肪酸合成、糾正脂質代謝紊亂和減少炎癥發生來發揮作用[36]。這些益生菌的升高或許是機體對炎癥反應的代償性反應,尤其是雙歧桿菌,其升高被認為與抗吲哚酚酸鹽相關[37]。Muribaculaceae的豐度與炎癥細胞因子水平呈負相關[38];杜氏桿菌被認為與飲食中高糖基化終產物有關,并最終導致炎癥[39];普雷沃菌被發現在黏膜部位的增加與疾病之間存在相關性,如代謝紊亂及全身低度炎癥等[40]。由LDA判別表可見,與空白組相比,模型組大鼠腸黏膜細菌仍主要以有害菌或條件致病菌為主,除普雷沃菌外,Peptostreptococcales-Tissierellales在牙周炎患者中數量增加[41]。經過真武湯治療后,HF大鼠腸黏膜優勢菌群發生顯著改變。有研究表明,莫拉氏菌在川崎病患者體內減少[42]。Blautia與體內IL-10水平呈正相關[43],而IL-10是公認的炎癥抑制因子。UCG-005是屬于瘤胃球菌的有益菌,是預防糖尿病的關鍵細菌[44]。由此推測,差異菌群可以通過誘導炎癥發生、促進氧化損傷、降低脂質代謝等促進HF的發生發展,而這些過程或許與腸道菌群對免疫細胞組成、遷移和功能的調控作用及腸道菌群的易位有關[45];在HF發生發展過程中,TNF-α、IL-6、血管緊張素Ⅱ等炎癥因子及TLR4/NF-κB等信號通路起到了重要作用[46],真武湯能夠恢復腸道菌群,被恢復的腸道菌群或許對以上炎癥因子及信號通路具有正向調節作用,從而實現真武湯對HF的治療作用。
綜上所述,真武湯對阿霉素誘導的HF大鼠腸黏膜細菌具有調節作用,使其組成與結構更接近于正常大鼠。同時,真武湯可以促使HF大鼠腸黏膜優勢菌發生改變,促進有益菌增長,使菌群重新恢復穩定,從而達到治療作用。通過16S rRNA測序技術,腸黏膜細菌與HF之間的相互作用被認識,同時也逐漸了解中醫藥對調節腸黏膜細菌、治療HF的作用原理,這對疾病的預防、診斷與治療以及中醫的進步發展都有著深遠的意義。隨著基因測序技術的完善與發展,越來越多的腸道微生物被發現與分類,但它們的作用尚待討論。同時,中醫藥對獨立菌群的影響被不斷證實,但仍然缺乏對腸黏膜整體作用的闡述。在未來,應進行更多驗證性實驗,以確定真武湯通過恢復腸黏膜菌群治療HF的具體作用機制。
參考文獻
[1] NHFA CSANZ HEART FAILURE GUIDELINES WORKING GROUP, ATHERTON J J, SINDONE A, et al. National heart foundation of Australia and cardiac society of Australia and New Zealand: Guidelines for the prevention, detection, and management of heart failure in Australia 2018[J]. Heart, Lung & Circulation, 2018, 27(10): 1123-1208.
[2] ABASSI Z, KHOURY E E, KARRAM T, et al. Edema formation in congestive heart failure and the underlying mechanisms[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 933215.
[3] GEDELA M, KHAN M, JONSSON O. Heart failure[J]. South Dakota Medicine, 2015, 68(9): 403-405, 407-409.
[4] ABDIN A, BAUERSACHS J, SOLTANI S, et al. A practical approach to the guideline-directed pharmacological treatment of heart failure with reduced ejection fraction[J]. ESC Heart Failure, 2023, 10(1): 24-31.
[5] MENG T W, LI X H, LI C J, et al. Natural products of traditional Chinese medicine treat atherosclerosis by regulating inflammatory and oxidative stress pathways[J]. Frontiers in Pharmacology, 2022, 13: 997598.
[6] WU C N, CHEN F, HUANG S, et al. Progress on the role of traditional Chinese medicine in therapeutic angiogenesis of heart failure[J]. Journal of Ethnopharmacology, 2023, 301: 115770.
[7] LIU X, LI Y, NI S H, et al. Zhen-Wu Decoction and lactiflorin, an ingredient predicted by in silico modelling, alleviate uremia induced cardiac endothelial injury via Nrf2 activation[J]. Journal of Ethnopharmacology, 2022, 298: 115579.
[8] MA C Y, MA Y Q, DENG M. Mechanism of Zhen Wu decoction in the treatment of heart failure based on network pharmacology and molecular docking[J]. Evidence-Based Complementary and Alternative Medicine, 2022, 2022: 4877920.
[9] HUANG Y, ZHANG H, FAN X, et al. The role of gut microbiota and trimethylamine N-oxide in cardiovascular diseases[J]. Journal of Cardiovascular Translational Research, 2023, 16(3): 581-589.
[10] LIN T L, LU C C, LAI W F, et al. Role of gut microbiota in identification of novel TCM-derived active metabolites[J]. Protein & Cell, 2021, 12(5): 394-410.
[11] 趙震宇, 胡炎芝, 董振華, 等. 參附注射液對阿霉素誘導的心力衰竭大鼠腸道細菌多樣性的影響[J]. 中成藥, 2022, 44(7): 2334-2340.
[12] 劉中勇, 李? 林, 方? 家. 真武湯對心力衰竭模型大鼠心室重構及心肌細胞凋亡、纖維化的影響[J]. 中醫雜志, 2017, 58(14): 1218-1223.
[13] CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890.
[14] MAGO■ T, SALZBERG S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
[15] SODERHOLM A T, PEDICORD V A. Intestinal epithelial cells: At the interface of the microbiota and mucosal immunity[J]. Immunology, 2019, 158(4): 267-280.
[16] FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nature Reviews Microbiology, 2021, 19(1): 55-71.
[17] LONG D, MAO C H, ZHANG X Y, et al. Coronary heart disease and gut microbiota: A bibliometric and visual analysis from 2002 to 2022[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 949859.
[18] FP P, DVOROKOV?M, VACHALCOV?譧 M, et al. Gut microbiome in heart failure and aortic stenosis[J]. Vnitrni Lekarstvi, 2022, 68(E-2): 4-10.
[19] ZHAO Z Y, LIU J H, HU Y Z, et al. Bacterial diversity in the intestinal mucosa of heart failure rats treated with Sini Decoction[J]. BMC Complementary Medicine and Therapies, 2022, 22(1): 93.
[20] HUTTENHOWER C, GEVERS D, KNIGHT R, et al. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402): 207-214.
[21] VAISERMAN A, ROMANENKO M, PIVEN L, et al. Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population[J]. BMC Microbiology, 2020, 20(1): 221.
[22] CAI X S, DENG L, MA X G, et al. Altered diversity and composition of gut microbiota in Wilson's disease[J]. Scientific Reports, 2020, 10: 21825.
[23] PAKHOMOV N, BAUGH J A. The role of diet-derived short-chain fatty acids in regulating cardiac pressure overload[J]. American Journal of Physiology Heart and Circulatory Physiology, 2021, 320(2): H475-H486.
[24] PALM C L, NIJHOLT K T, BAKKER B M, et al. Short-chain fatty acids in the metabolism of heart failure-rethinking the fat stigma[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 915102.
[25] LIU J Y, KONG L Z, SHAO M T, et al. Seabuckthorn polysaccharide combined with astragalus polysaccharide ameliorate alcoholic fatty liver by regulating intestinal flora[J]. Frontiers in Endocrinology, 2022, 13: 1018557.
[26] WANG X, CAO Y, ZHI Y X. Throat microbiota alterations in patients with hereditary angioedema[J]. The World Allergy Organization Journal, 2022, 15(10): 100694.
[27] ZHANG Y W, CHEN L Y, HU M J, et al. Dietary type 2 resistant starch improves systemic inflammation and intestinal permeability by modulating microbiota and metabolites in aged mice on high-fat diet[J]. Aging, 2020, 12(10): 9173-9187.
[28] LIU B, DING Z H, XIONG J H, et al. Gut microbiota and inflam?鄄
matory cytokine changes in patients with ankylosing spondylitis[J]. BioMed Research International, 2022, 2022: 1005111.
[29] VAVRECKOVA M, GALANOVA N, KOSTOVCIK M, et al. Specific gut bacterial and fungal microbiota pattern in the first half of pregnancy is linked to the development of gestational diabetes mellitus in the cohort including obese women[J]. Frontiers in Endocrinology, 2022, 13: 970825.
[30] MITCHELL M K, ELLERMANN M. Long chain fatty acids and virulence repression in intestinal bacterial pathogens[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 928503.
[31] SUN W J, DU D B, FU T Z, et al. Alterations of the gut microbiota in patients with severe chronic heart failure[J]. Frontiers in Microbiology, 2021, 12: 813289.
[32] BLAD C C, TANG C, OFFERMANNS S. G protein-coupled receptors for energy metabolites as new therapeutic targets[J]. Nature Reviews Drug Discovery, 2012, 11(8): 603-619.
[33] HORWAT P, KOPE■ S, GARCZYK A, et al. Influence of enteral nutrition on gut microbiota composition in patients with Crohn's disease: A systematic review[J]. Nutrients, 2020, 12(9): 2551.
[34] WEI Y Z, WANG K, ZHANG Y F, et al. Potent anti-inflammatory responses: Role of hydrogen in IL-1α dominated early phase systemic inflammation[J]. Frontiers in Pharmacology, 2023, 14: 1138762.
[35] HUI H Y, WU Y, ZHENG T, et al. Bacterial characteristics in intestinal contents of antibiotic-associated diarrhea mice treated with qiweibaizhu powder[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2020, 26: e921771.
[36] ZHANG F Q, WU J S, RUAN H N, et al. ZeXie Decoction alleviates non-alcoholic fatty liver disease in rats: The study of genes, lipids, and gut microbiotas[J]. Biochemical and Biophysical Research Communications, 2022, 632: 129-138.
[37] SHENG Y, ZHENG S J, MA T S, et al. Mulberry leaf alleviates streptozotocin-induced diabetic rats by attenuating NEFA signaling and modulating intestinal microflora[J]. Scientific Reports, 2017, 7: 12041.
[38] WANG K, LI W C, WANG K, et al. Litchi thaumatin-like protein induced the liver inflammation and altered the gut microbiota community structure in mice[J]. Food Research International, 2022, 161: 111868.
[39] VAN DONGEN K C W, LINKENS A M A, WETZELS S M W, et al. Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility[J]. Food Research International, 2021, 147: 110547.
[40] LARSEN J M. The immune response to Prevotella bacteria in chronic inflammatory disease[J]. Immunology, 2017, 151(4): 363-374.
[41] KAWAMOTO D, BORGES R, RIBEIRO R A, et al. Oral dysbiosis in severe forms of periodontitis is associated with gut dysbiosis and correlated with salivary inflammatory mediators: A preliminary study[J]. Frontiers in Oral Health, 2021, 2: 722495.
[42] S?魣NCHEZ-MANUBENS J, HENARES D, MU?譙OZ-ALMAGRO C, et al. Characterization of the nasopharyngeal microbiome in patients with Kawasaki disease[J]. Anales De Pediatria, 2022, 97(5): 300-309.
[43] CHEN Q X, YIN Q L, XIE Q G, et al. 2'-fucosyllactose promotes the production of short-chain fatty acids and improves immune function in human-microbiota-associated mice by regulating gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2022, 70(42): 13615-13625.
[44] LI Q Q, HU J L, NIE Q X, et al. Hypoglycemic mechanism of polysaccharide from Cyclocarya paliurus leaves in type 2 diabetic rats by gut microbiota and host metabolism alteration[J]. Science China Life Sciences, 2021, 64(1): 117-132.
[45] ZHAO J X, ZHANG Q, CHENG W, et al. Heart-gut microbiota communication determines the severity of cardiac injury after myocardial ischaemia/reperfusion[J]. Cardiovascular Research, 2023, 119(6): 1390-1402.
[46] ZHANG Z, CHEN F, WAN J J, et al. Potential traditional Chinese medicines with anti-inflammation in the prevention of heart failure following myocardial infarction[J]. Chinese Medicine, 2023, 18(1): 28.
(本文編輯? 匡靜之)