999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The relationship between extra connectivity and t/k-diagnosability under the PMC model①

2023-09-12 07:30:02XIAOZhifang肖志芳ZHONGGuoxuanCHENJianqiGUOChenPENGShuo
High Technology Letters 2023年3期

XIAO Zhifang(肖志芳), ZHONG Guoxuan, CHEN Jianqi, GUO Chen②, PENG Shuo

(?School of Electronic and Information Engineering, Jinggangshan University, Ji'an 343009, P.R.China)

(??Jiangxi Engineering Laboratory of IoT Technologies for Crop Growth, Ji'an 343009, P.R.China)

Abstract It is well-known that connectivity is closely related to diagnosability.If the relationships between them can be established, many kinds of diagnosability will be determined directly.So far,some notable relationships between connectivity and diagnosability had been revealed.This paper intends to find out the relationship between extra connectivity and t/k-diagnosability under the PMC(Preparata, Metze, and Chien) model.Then, applying this relationship, the t/k-diagnosability of bijective connection (BC) networks are determined conveniently.

Key words: extra connectivity, t/k-diagnosability, the PMC model

0 Introduction

Connectivity and diagnosability are generally considered as two important indicators that are used to evaluate the reliability of multiprocessor computer systems.They are also considered as two closely related parameters.So far, some important results had been achieved in the study of connectivity and diagnosability.But there are still some outstanding diagnosability measurement problems, especially for interconnection networks with insufficient regularity and symmetry.

Research shows that the various diagnosability of the interconnection network will increase with the improvement of the relevant connectivity, and show an obvious linear relationship.If it can be found out the relationship between diagnosability and related connectivity, it can be greatly simplified the measurement process of diagnosabilities and quickly calculate various diagnosabilites of a series of interconnection networks.Therefore, it is a very important and valuable scientific issue to study the relationship between connectivity and diagnosability.

1 Preliminaries

In general, a multiprocessor system can be modeled byG(V,E),whereV(G) andE(G) are the node set and the edge set, respectively.Letx∈V(G) andA,B?V(G),N(x) is the set of all the neighbors ofx,N(A)= ∪a∈A N(a)-AandNB(A)=N(A) ∩B.

The connectivityk(G) ofGis an important measure for fault tolerance ofG.However, connectivity underestimates the resilience of large networks[1].To compensate for this shortcoming,many kinds of connectivity are introduced,such as conditional connectivity[2],restricted connectivity[3], super connectivity[4], extra connectivity[5], et al.Among them, g-extra connectivity ofG,written askg(G),is the minimum size over all the g-extra cuts ofG.Any subsetF?V(G)is a g-extra cut ofGifG-Fis disconnected and each component ofG-Fhas size at leastg+1.Clearly,k0(G)=k(G).

In the operation of multiprocessor systems, identifying faulty processors is an important problem.In the process of identifying faulty processors, a fault diagnosis model and a diagnosis strategy are indispensible.At present, one of the widely adopted fault diagnosis model is PMC (Preparata, Metze, and Chien) model[6].Under the PMC model,each pair of adjacent nodes can be allowed to test each other.If the tester is fault-free(faulty), its outcomes are correct(unreliable, respectively).For any edge(u,v) ∈E(G),u→0v(u→1v)represents the outcome of testu→vis fault-free (faulty, respectively).In addition,u?00vrepresentsu→0vandv→0u.A collection of all the test results is called a syndromeσ.Ref.[7] introduced thet/k-diagnosis strategy, which requires that when the number of fault nodes does not exceedt,all fault nodes can be isolated in a set of node and at mostknodes might be misdiagnosed.Thet/k-diagnosability ofG,is the maximum oftsuch thatGist/k-diagnosable[7].Thet/k-diagnosability of a series of regular networks under PMC model is determined[8-15].It is well-known that the constraints oft/k-diagnosability and k-extra connectivity are basically the same.Therefore, Refs[11] and [12] believe that it is an interesting direction to analyze the relationship between extra connectivity andt/k-diagnosability.In this paper, the relationship between g-extra connectivity andt/k-diagnosability under the PMC model are revealed.

2 σ-0-test subgraph

Under the PMC model, given a graphGand a syndromeσ, each connected subgraphs or isolated points is called aσ-0 -test subgraph ofGby removing all those edges whose outcomes are ‘1’[16].The set of all theσ-0-test subgraph ofGis denoted byTσ(G).Then,V(Tσ(G))=V(G) andE(Tσ(G))= {(u,v)∈E(G),u?00v} (see Fig.1).

Given a syndromeσ, for anyσ-0-test subgraphS∈Tσ(G), all the nodes inShave the same status(fault-free or faulty).Then, under the PMC model,the following properties are shown as follows.

Property 1Given a syndromeσ, letFbe a fault set ofG.Then any componentCofG-Fis aσ-0-test subgraph ofGand each node inCis fault-free.

Property 2Given a syndromeσ, letFbe a fault set ofG.ThenFwill be divided into one or severalσ-0-test subgraphs ofG.

3 The relationship between extra connectivity and t/k-diagnosability under the PMC model

LetXnbe ann-dimensional interconnection network andXncan be divided into to copies ofXn-1,written asLandR.Then, the following four conditions will be used in the rest of this paper.

(1) LetS?V(R) (orS?V(L) ) with|S|=g≥1,|NR(S)|+|NL(S)|≥kg-1(Xn) forn≥8 and 1 ≤g≤n-4.

(2) For any positive integersg,g0andg1withg,g0,g1≥1.Ifg=g0+g1, thenkg0-1(Xn-1)+kg1-1(Xn-1) ≥kg-1(Xn) forn≥8 and 1 ≤g≤n-4.

(3) The functionf(g)=kg(Xn) increases with increasinggforn≥8 and 1 ≤g≤n-4.

(4)kg+1(Xn)≥kg(Xn)+n-g-4 forn≥8 and 1 ≤g≤n-5.

Theorem 1LetS?V(Xn) with|S|=g.IfXnsatisfies the conditions (1) and (2),|N(S)|≥kg-1(Xn) forn≥8 and 1 ≤g≤n-4.

ProofThe proof is by induction on g.Ifg= 1,|S|= 1.Then|N(S)|≥k(Xn)=k0(Xn).Hence, the theorem is true forg= 1.Assume that|N(S)| ≥kh-1(Xn)with|S|=hand 2 ≤h≤g-1.

DecomposeXninto two copies ofXn-1,denoted byLandR.LetS0=S∩V(L) andS1=S∩V(R).Let|S0|=g0and|S1|=g1.Theng0+g1=g.Without loss of generality, let|S0|≤|S1|.

Case 1|S0|= 0.

Since|S0|= 0,|S1|=gand|N(S)|≥|NR(S1)|+|NL(S1)|.By condition (1),|NR(S)|+|NL(S)| ≥kg-1(Xn).So,|N(S)|≥kg-1(Xn).

Case 2|S0|≥1.

Since|S0|≥1,|N(S)|≥|NL(S0)|+|NR(S1)| such thatNL(S0)=N(S0) ∩V(L) andNR(S1)=N(S1)∩V(R).By the induction hypothesis,|NL(S0)|≥kg0-1(Xn-1) and|NR(S1)|≥kg1-1(Xn-1).By condition (2),|NL(S0)|+|NR(S1)| ≥kg0-1(Xn-1)+kg1-1(Xn-1)≥kg-1(Xn).So,|N(S)|≥kg-1(Xn).

The theorem holds.

Theorem 2IfXn(n≥8) satisfies the conditions(1) -(3), letS?V(Xn) and 2 ≤g+1 ≤|S|≤n-4.Then|N(S)|≥kg(Xn).

ProofLet|S|=h.By Theorem 1,|N(S)|≥kh-1(Xn).By condition (3),kh-1(Xn) ≥kg(Xn).Hence,|N(S)|≥kg(Xn).

Theorem 3IfXn(n≥8) satisfies the conditions(1) -(4) and|V(Xn)|> 2kg(Xn)+g-1,letF?V(Xn) with|F|≤kg(Xn)-1 and 1 ≤g≤n/2-3.IfXn-Fis disconnected,Xn-Fhas a largest componentC1(|C1|≥g+1) and the union of the remaining components has at mostgnodes.

ProofLet all the components ofXn-FbeC1,C2,…,Cmwith|C1|≥|C2|≥…≥|Cm|.Suppose that|C1|,|C2|,…,|Cr-1|≥g+ 1 and|Cr|,|Cr+1|,…,|Cm|≤gforr≥1.

Thus,|F|≥|N(Cr∪Cr+1∪…∪Cm)|.Suppose thatg+1 ≤|Cr|+|Cr+1|+…+|Cm|≤n-4.By Theorem 2,|F|≥|N(Cr∪Cr+1∪… ∪Cm)|≥kg(Xn),which contradicts|F|≤kg(Xn)-1.Therefore, either|Cr|+|Cr+1|+ …+|Cm|≥n- 3 or|Cr|+|Cr+1|+ …+|Cm|≤g.Suppose that|Cr|+|Cr+1|+…+|Cm|≥n-3.Since|Cr|,|C2|,…,|Cr-1|≤g≤n/2-3, (n-4)- (g+1)=n-g-5 ≥(2g+6)-g-5>g.Therefore, there exists a unionHof some components ofCr,Cr+1,…,Cm,such thatn-4 ≥|H|≥g+1(see Fig.2).By Theorem 2,|N(H)|≥kg(Xn),which contradicts|F|≤kg(Xn)-1.Therefore,|Cr|+|Cr+1|+…+|Cm|≤g.

Fig.2 The illustration of| H|

Since|Cr|+|Cr+1|+…+|Cm|≤gand|F|≤kg(Xn)-1 and|V(Xn)|> 2kg(Xn)+g-1,|C1|+|C2|+ …+|Cr-1|=|V(Xn)|-|F|- (|Cr|+|Cr+1|+…+|Cm|)> 2kg(Xn)+g-1-(kg(Xn)-1)-g>kg(Xn)> 0.Therefore, there exists at least a componentC1ofXn-Fsuch that|C1|≥g+1 nodes.

which contradicts|F|≤kg(Xn)-1.So,Xn-Fhas exactly one component which have at leastg+1 nodes.

Theorem 4IfXn(n≥8) satisfies the conditions(1) -(4) with|V(Xn)|> 2kg(Xn)+g-1 and 1 ≤g≤n/2-3,letFbe a fault set with|F|≤kg(Xn)-1.Then, under any syndromeδproduced byF, the maximalσ-0-test subgraph ofXnis fault-free.

ProofIfXn-Fis connected,|V(Xn)-F|=|V(Xn)|-|F|≥2kg(Xn)+g-1-(kg(Xn)-1)=kg(Xn)+g.Since|F|≤kg(Xn)-1,|Xn-F|>|F|.By Property 1,Xn-Fis a the maximalσ-0-test subgraph ofXnand each node ofXn-Fis faultfree.IfXn-Fis disconnected, by Theorem 3,Xn-Fhas a largest componentC(|C|≥g+ 1) and the union of the remaining components has at mostgnodes.By Property 1,Cis aσ-0-test subgraph.Since

Theorem 5IfXn(n≥8) satisfies the conditions(1) -(4) with|V(Xn)|> 2kg(Xn)+g-1,thenXniskg(Xn)-1/g-diagnosable for 1 ≤g≤n/2-3.

ProofLetFbe a fault set ofXnwith|F|≤kg(Xn)-1.By Theorem 3,Xn-Fhas a largest componentC(|C|≥g+1) and the union of the remaining components has at mostgnodes.By Theorem 4,Cis the maximalσ-0-test subgraph and every node inCis fault-free.Therefore, there are|F|+gnodes undiagnosed.Then, all the faulty nodes can be isolated to within a set of at most|F|+gnodes.

There are at mostgnodes might be misdiagnosed.Therefore,Xniskg(Xn)-1/g-diagnosable.

4 Application to BC networks

Ann-dimensional bijective connection (BC) network is denoted byBnwith|V(Bn)|= 2n.Bncan be divided into two copies ofBn-1, written asLandR,and there exists a perfect matching betweenLandR(see Fig.3).ThenBnhas the following lemmas.

Fig.3 The topology of B3

5 Conclusion

In the design and operation of large-scale multiprocessor systems, reliability is a key issue to be considered.It is well-known that connectivity and diagnosability are two crucial subjects for reliability and fault tolerability and they are closely related to each other.This paper establishes a relationship between extra connectivity andt/k-diagnosability under the PMC model.Then, using this relationship, it is proved thatBnis(kg(Bn) -1)/g-diagnosable.

主站蜘蛛池模板: 四虎成人精品| 亚洲中文无码h在线观看| 久久久久夜色精品波多野结衣| 午夜视频在线观看区二区| 强奷白丝美女在线观看| 最新加勒比隔壁人妻| 亚洲欧美日韩天堂| 成人在线观看不卡| 国产精品美女网站| 国产综合无码一区二区色蜜蜜| 欧美啪啪一区| 成人综合网址| 色综合日本| 久久综合婷婷| 亚洲 欧美 偷自乱 图片| 久久a级片| 久久青草免费91观看| 中文字幕在线播放不卡| 欧美黑人欧美精品刺激| 国产成人午夜福利免费无码r| 无码aaa视频| 久久精品嫩草研究院| 一区二区三区四区在线| 综合天天色| 亚洲天堂视频在线免费观看| 亚洲αv毛片| 精品视频免费在线| 欧美精品1区2区| 美女内射视频WWW网站午夜 | 精品三级在线| 久久久久国色AV免费观看性色| 亚洲女同欧美在线| 久久成人免费| 国产第一福利影院| 日本高清免费一本在线观看| 久一在线视频| 日韩最新中文字幕| 手机永久AV在线播放| 午夜精品区| 九色视频最新网址| 亚洲人成网站在线播放2019| 91九色国产porny| 97免费在线观看视频| 日韩毛片视频| 国产簧片免费在线播放| 国产成人综合久久精品下载| 成人日韩视频| 国产一区二区三区免费观看| 国产一区二区精品福利| 91精品综合| 91无码人妻精品一区二区蜜桃| 亚洲综合中文字幕国产精品欧美| 久久综合伊人77777| 久久91精品牛牛| 日本五区在线不卡精品| 欧美日韩v| 午夜天堂视频| 国产精品jizz在线观看软件| 精品福利网| 中文精品久久久久国产网址 | 欧美天堂在线| 三级欧美在线| 国产喷水视频| 亚洲bt欧美bt精品| 久草视频精品| 国产成人亚洲精品蜜芽影院| 亚洲午夜久久久精品电影院| 少妇露出福利视频| 丝袜亚洲综合| 综合网久久| 国产成人一区在线播放| 天天操精品| 日日噜噜夜夜狠狠视频| 欧美国产日韩在线| Jizz国产色系免费| 亚洲综合中文字幕国产精品欧美| 爽爽影院十八禁在线观看| 黄色在线不卡| 亚洲无码精彩视频在线观看 | 精品国产免费观看| 亚洲天堂视频在线播放| 欧美日韩午夜|