999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The relationship between extra connectivity and t/k-diagnosability under the PMC model①

2023-09-12 07:30:02XIAOZhifang肖志芳ZHONGGuoxuanCHENJianqiGUOChenPENGShuo
High Technology Letters 2023年3期

XIAO Zhifang(肖志芳), ZHONG Guoxuan, CHEN Jianqi, GUO Chen②, PENG Shuo

(?School of Electronic and Information Engineering, Jinggangshan University, Ji'an 343009, P.R.China)

(??Jiangxi Engineering Laboratory of IoT Technologies for Crop Growth, Ji'an 343009, P.R.China)

Abstract It is well-known that connectivity is closely related to diagnosability.If the relationships between them can be established, many kinds of diagnosability will be determined directly.So far,some notable relationships between connectivity and diagnosability had been revealed.This paper intends to find out the relationship between extra connectivity and t/k-diagnosability under the PMC(Preparata, Metze, and Chien) model.Then, applying this relationship, the t/k-diagnosability of bijective connection (BC) networks are determined conveniently.

Key words: extra connectivity, t/k-diagnosability, the PMC model

0 Introduction

Connectivity and diagnosability are generally considered as two important indicators that are used to evaluate the reliability of multiprocessor computer systems.They are also considered as two closely related parameters.So far, some important results had been achieved in the study of connectivity and diagnosability.But there are still some outstanding diagnosability measurement problems, especially for interconnection networks with insufficient regularity and symmetry.

Research shows that the various diagnosability of the interconnection network will increase with the improvement of the relevant connectivity, and show an obvious linear relationship.If it can be found out the relationship between diagnosability and related connectivity, it can be greatly simplified the measurement process of diagnosabilities and quickly calculate various diagnosabilites of a series of interconnection networks.Therefore, it is a very important and valuable scientific issue to study the relationship between connectivity and diagnosability.

1 Preliminaries

In general, a multiprocessor system can be modeled byG(V,E),whereV(G) andE(G) are the node set and the edge set, respectively.Letx∈V(G) andA,B?V(G),N(x) is the set of all the neighbors ofx,N(A)= ∪a∈A N(a)-AandNB(A)=N(A) ∩B.

The connectivityk(G) ofGis an important measure for fault tolerance ofG.However, connectivity underestimates the resilience of large networks[1].To compensate for this shortcoming,many kinds of connectivity are introduced,such as conditional connectivity[2],restricted connectivity[3], super connectivity[4], extra connectivity[5], et al.Among them, g-extra connectivity ofG,written askg(G),is the minimum size over all the g-extra cuts ofG.Any subsetF?V(G)is a g-extra cut ofGifG-Fis disconnected and each component ofG-Fhas size at leastg+1.Clearly,k0(G)=k(G).

In the operation of multiprocessor systems, identifying faulty processors is an important problem.In the process of identifying faulty processors, a fault diagnosis model and a diagnosis strategy are indispensible.At present, one of the widely adopted fault diagnosis model is PMC (Preparata, Metze, and Chien) model[6].Under the PMC model,each pair of adjacent nodes can be allowed to test each other.If the tester is fault-free(faulty), its outcomes are correct(unreliable, respectively).For any edge(u,v) ∈E(G),u→0v(u→1v)represents the outcome of testu→vis fault-free (faulty, respectively).In addition,u?00vrepresentsu→0vandv→0u.A collection of all the test results is called a syndromeσ.Ref.[7] introduced thet/k-diagnosis strategy, which requires that when the number of fault nodes does not exceedt,all fault nodes can be isolated in a set of node and at mostknodes might be misdiagnosed.Thet/k-diagnosability ofG,is the maximum oftsuch thatGist/k-diagnosable[7].Thet/k-diagnosability of a series of regular networks under PMC model is determined[8-15].It is well-known that the constraints oft/k-diagnosability and k-extra connectivity are basically the same.Therefore, Refs[11] and [12] believe that it is an interesting direction to analyze the relationship between extra connectivity andt/k-diagnosability.In this paper, the relationship between g-extra connectivity andt/k-diagnosability under the PMC model are revealed.

2 σ-0-test subgraph

Under the PMC model, given a graphGand a syndromeσ, each connected subgraphs or isolated points is called aσ-0 -test subgraph ofGby removing all those edges whose outcomes are ‘1’[16].The set of all theσ-0-test subgraph ofGis denoted byTσ(G).Then,V(Tσ(G))=V(G) andE(Tσ(G))= {(u,v)∈E(G),u?00v} (see Fig.1).

Given a syndromeσ, for anyσ-0-test subgraphS∈Tσ(G), all the nodes inShave the same status(fault-free or faulty).Then, under the PMC model,the following properties are shown as follows.

Property 1Given a syndromeσ, letFbe a fault set ofG.Then any componentCofG-Fis aσ-0-test subgraph ofGand each node inCis fault-free.

Property 2Given a syndromeσ, letFbe a fault set ofG.ThenFwill be divided into one or severalσ-0-test subgraphs ofG.

3 The relationship between extra connectivity and t/k-diagnosability under the PMC model

LetXnbe ann-dimensional interconnection network andXncan be divided into to copies ofXn-1,written asLandR.Then, the following four conditions will be used in the rest of this paper.

(1) LetS?V(R) (orS?V(L) ) with|S|=g≥1,|NR(S)|+|NL(S)|≥kg-1(Xn) forn≥8 and 1 ≤g≤n-4.

(2) For any positive integersg,g0andg1withg,g0,g1≥1.Ifg=g0+g1, thenkg0-1(Xn-1)+kg1-1(Xn-1) ≥kg-1(Xn) forn≥8 and 1 ≤g≤n-4.

(3) The functionf(g)=kg(Xn) increases with increasinggforn≥8 and 1 ≤g≤n-4.

(4)kg+1(Xn)≥kg(Xn)+n-g-4 forn≥8 and 1 ≤g≤n-5.

Theorem 1LetS?V(Xn) with|S|=g.IfXnsatisfies the conditions (1) and (2),|N(S)|≥kg-1(Xn) forn≥8 and 1 ≤g≤n-4.

ProofThe proof is by induction on g.Ifg= 1,|S|= 1.Then|N(S)|≥k(Xn)=k0(Xn).Hence, the theorem is true forg= 1.Assume that|N(S)| ≥kh-1(Xn)with|S|=hand 2 ≤h≤g-1.

DecomposeXninto two copies ofXn-1,denoted byLandR.LetS0=S∩V(L) andS1=S∩V(R).Let|S0|=g0and|S1|=g1.Theng0+g1=g.Without loss of generality, let|S0|≤|S1|.

Case 1|S0|= 0.

Since|S0|= 0,|S1|=gand|N(S)|≥|NR(S1)|+|NL(S1)|.By condition (1),|NR(S)|+|NL(S)| ≥kg-1(Xn).So,|N(S)|≥kg-1(Xn).

Case 2|S0|≥1.

Since|S0|≥1,|N(S)|≥|NL(S0)|+|NR(S1)| such thatNL(S0)=N(S0) ∩V(L) andNR(S1)=N(S1)∩V(R).By the induction hypothesis,|NL(S0)|≥kg0-1(Xn-1) and|NR(S1)|≥kg1-1(Xn-1).By condition (2),|NL(S0)|+|NR(S1)| ≥kg0-1(Xn-1)+kg1-1(Xn-1)≥kg-1(Xn).So,|N(S)|≥kg-1(Xn).

The theorem holds.

Theorem 2IfXn(n≥8) satisfies the conditions(1) -(3), letS?V(Xn) and 2 ≤g+1 ≤|S|≤n-4.Then|N(S)|≥kg(Xn).

ProofLet|S|=h.By Theorem 1,|N(S)|≥kh-1(Xn).By condition (3),kh-1(Xn) ≥kg(Xn).Hence,|N(S)|≥kg(Xn).

Theorem 3IfXn(n≥8) satisfies the conditions(1) -(4) and|V(Xn)|> 2kg(Xn)+g-1,letF?V(Xn) with|F|≤kg(Xn)-1 and 1 ≤g≤n/2-3.IfXn-Fis disconnected,Xn-Fhas a largest componentC1(|C1|≥g+1) and the union of the remaining components has at mostgnodes.

ProofLet all the components ofXn-FbeC1,C2,…,Cmwith|C1|≥|C2|≥…≥|Cm|.Suppose that|C1|,|C2|,…,|Cr-1|≥g+ 1 and|Cr|,|Cr+1|,…,|Cm|≤gforr≥1.

Thus,|F|≥|N(Cr∪Cr+1∪…∪Cm)|.Suppose thatg+1 ≤|Cr|+|Cr+1|+…+|Cm|≤n-4.By Theorem 2,|F|≥|N(Cr∪Cr+1∪… ∪Cm)|≥kg(Xn),which contradicts|F|≤kg(Xn)-1.Therefore, either|Cr|+|Cr+1|+ …+|Cm|≥n- 3 or|Cr|+|Cr+1|+ …+|Cm|≤g.Suppose that|Cr|+|Cr+1|+…+|Cm|≥n-3.Since|Cr|,|C2|,…,|Cr-1|≤g≤n/2-3, (n-4)- (g+1)=n-g-5 ≥(2g+6)-g-5>g.Therefore, there exists a unionHof some components ofCr,Cr+1,…,Cm,such thatn-4 ≥|H|≥g+1(see Fig.2).By Theorem 2,|N(H)|≥kg(Xn),which contradicts|F|≤kg(Xn)-1.Therefore,|Cr|+|Cr+1|+…+|Cm|≤g.

Fig.2 The illustration of| H|

Since|Cr|+|Cr+1|+…+|Cm|≤gand|F|≤kg(Xn)-1 and|V(Xn)|> 2kg(Xn)+g-1,|C1|+|C2|+ …+|Cr-1|=|V(Xn)|-|F|- (|Cr|+|Cr+1|+…+|Cm|)> 2kg(Xn)+g-1-(kg(Xn)-1)-g>kg(Xn)> 0.Therefore, there exists at least a componentC1ofXn-Fsuch that|C1|≥g+1 nodes.

which contradicts|F|≤kg(Xn)-1.So,Xn-Fhas exactly one component which have at leastg+1 nodes.

Theorem 4IfXn(n≥8) satisfies the conditions(1) -(4) with|V(Xn)|> 2kg(Xn)+g-1 and 1 ≤g≤n/2-3,letFbe a fault set with|F|≤kg(Xn)-1.Then, under any syndromeδproduced byF, the maximalσ-0-test subgraph ofXnis fault-free.

ProofIfXn-Fis connected,|V(Xn)-F|=|V(Xn)|-|F|≥2kg(Xn)+g-1-(kg(Xn)-1)=kg(Xn)+g.Since|F|≤kg(Xn)-1,|Xn-F|>|F|.By Property 1,Xn-Fis a the maximalσ-0-test subgraph ofXnand each node ofXn-Fis faultfree.IfXn-Fis disconnected, by Theorem 3,Xn-Fhas a largest componentC(|C|≥g+ 1) and the union of the remaining components has at mostgnodes.By Property 1,Cis aσ-0-test subgraph.Since

Theorem 5IfXn(n≥8) satisfies the conditions(1) -(4) with|V(Xn)|> 2kg(Xn)+g-1,thenXniskg(Xn)-1/g-diagnosable for 1 ≤g≤n/2-3.

ProofLetFbe a fault set ofXnwith|F|≤kg(Xn)-1.By Theorem 3,Xn-Fhas a largest componentC(|C|≥g+1) and the union of the remaining components has at mostgnodes.By Theorem 4,Cis the maximalσ-0-test subgraph and every node inCis fault-free.Therefore, there are|F|+gnodes undiagnosed.Then, all the faulty nodes can be isolated to within a set of at most|F|+gnodes.

There are at mostgnodes might be misdiagnosed.Therefore,Xniskg(Xn)-1/g-diagnosable.

4 Application to BC networks

Ann-dimensional bijective connection (BC) network is denoted byBnwith|V(Bn)|= 2n.Bncan be divided into two copies ofBn-1, written asLandR,and there exists a perfect matching betweenLandR(see Fig.3).ThenBnhas the following lemmas.

Fig.3 The topology of B3

5 Conclusion

In the design and operation of large-scale multiprocessor systems, reliability is a key issue to be considered.It is well-known that connectivity and diagnosability are two crucial subjects for reliability and fault tolerability and they are closely related to each other.This paper establishes a relationship between extra connectivity andt/k-diagnosability under the PMC model.Then, using this relationship, it is proved thatBnis(kg(Bn) -1)/g-diagnosable.

主站蜘蛛池模板: 高清乱码精品福利在线视频| 亚洲精品无码久久久久苍井空| 欧美日韩高清| 国产精品无码一二三视频| 亚洲欧美另类日本| 午夜国产理论| 欧美午夜网| 亚洲AV无码久久精品色欲| 国产精品无码一二三视频| 国产欧美视频在线观看| 性网站在线观看| 毛片国产精品完整版| 亚洲无线视频| 在线观看无码a∨| 国产成人三级| 亚洲无码37.| 亚洲区欧美区| 青青草原偷拍视频| 九九热免费在线视频| 久久国产精品电影| 丁香亚洲综合五月天婷婷| 亚洲一区毛片| 四虎成人精品| 国产一区二区三区在线精品专区| 中文字幕无码制服中字| 四虎影视永久在线精品| 91福利在线观看视频| 青青国产成人免费精品视频| 国产原创演绎剧情有字幕的| 欧美日本视频在线观看| 色妺妺在线视频喷水| 原味小视频在线www国产| 欧美另类图片视频无弹跳第一页| 91精品国产91久久久久久三级| 国模私拍一区二区三区| 亚洲欧美日韩成人高清在线一区| 久久国产精品嫖妓| 99人妻碰碰碰久久久久禁片| 全部免费毛片免费播放| 91蜜芽尤物福利在线观看| 国产在线观看一区精品| 日韩欧美国产区| 日本国产在线| 国产伦精品一区二区三区视频优播| 日韩国产另类| 午夜精品区| 丁香六月综合网| 97影院午夜在线观看视频| 操国产美女| 一本大道在线一本久道| 日韩黄色在线| 丁香婷婷久久| 国产精品专区第1页| 久久久91人妻无码精品蜜桃HD| 午夜无码一区二区三区| 伊人久久福利中文字幕| 天天操精品| 亚洲视频三级| 亚洲第一成网站| 亚洲第一中文字幕| 在线观看热码亚洲av每日更新| 成人亚洲天堂| 精品自拍视频在线观看| 老司机久久精品视频| 一级高清毛片免费a级高清毛片| 四虎精品黑人视频| 婷婷激情亚洲| 亚洲视频免费播放| 国产精品2| a毛片免费观看| 亚洲精品成人7777在线观看| 亚洲欧美日韩久久精品| 久久毛片免费基地| 99在线视频免费| 亚洲天堂网2014| av性天堂网| 18禁不卡免费网站| 91探花在线观看国产最新| 欧美亚洲国产精品第一页| 国产亚洲欧美在线中文bt天堂| 免费a级毛片视频| 91在线国内在线播放老师 |