羅鳳娥,白越鷹,陳陽怡
(中國民用航空飛行學院空中交通管理學院,廣漢 618307)
定義1:在航班簽派放行過程中以天氣狀況、機場信息、飛機狀態等為決策依據的有限域X={x1,x2,…,xi,…,xn};Z稱作X有限論域上的直覺模糊集,A={(xi,u(xi),r(xi)|xi∈X,i=1,2,…,n},其中,u(xi)表示在放行過程中,xi對放行決策結果的隸屬度,r(xi)表示xi對放行決策結果的非隸屬度,取值區間:(u(xi)+r(xi) )∈[0,1],其中u(xi)∈[0,1]、r(xi)∈[0,1];令(λ(xi)= 1 -u(xi)-r(xi) )∈[0,1],表示對某次放行決策選擇的不確定程度,稱為猶豫度。
定義2:設f1(x)是有限論域X上主觀因素的隸屬度函數,f2(x)是有限論域X上客觀因素的隸屬度函數,xi對應的放行決策結果的隸屬度是u(xi)= min{f1(xi),f2(xi)} ,非隸屬度是r(xi)=1-λ(xi)-u(xi),猶豫度是λ(xi)= |f1(xi)-f2(xi)|。
通過問卷調查并咨詢業內專家,從而確定各影響放行因素的權重[6]。
定義3:用ki表示決策信息xi的權重,由于放行決策信息有限論域X={x1,x2,…,xi,…,xn},則k={k1,k2,…,ki,…,kn}。
在簽派放行決策過程中,根據證據理論[7],所有可能結論的集合內各種元素之間相互排斥,因此利用歐氏空間的矢量化方法有利于解決證據之間的去正交化和集成問題。而猶豫度需要再度分配,因此本文選用投影法來分配猶豫度,以解決簽派放行決策過程中的不確定問題[8]。
定義4:在簽派放行決策過程中存在三種結果,令Z1表示放行、Z2表示不放行、Z3表示猶豫,根據證據論中的TOPSIS 理論,將Z3進行分配,需滿足:
步驟一:識別放行決策的有限論域。影響簽派放行的因素較多,設定決策集合X={x1,x2,x3,x4},經咨詢專家和前人文獻研究的影響放行因子權重,該4個決策因子分別表示影響簽派放行的重要因素:天氣狀況、機場條件、航行通告、飛機狀態。
步驟二:建立隸屬度函數和非隸屬度函數。按照人們在實際情況中的認知以及在認知過程中的主客觀判定,建立直覺模糊集形式的決策函數。根據定義2,記其主、客觀的模糊隸屬度函數分別為f1(x)和f2(x),可表征為:隸屬度u(xi)= min{f1(xi),f2(xi) },非隸屬度r(xi)= 1 -λ(xi)-u(xi),猶豫度λ(xi)= |f1(xi)-f2(xi) |。
借鑒某種理論體系從事學術研究,有“省力”的辦法,也有“費力”的辦法,而且不可否認,在某種意義上,這兩種辦法均能實現特定的研究目標,獲得一些預期的成果。所謂“省力”的辦法,就是借助某種理論搭建研究框架,運用該理論體系提供的術語和方法剖析研究對象,最后在其劃定的疆域內得出結論。所謂“費力”的辦法,就是借鑒、吸收某一理論體系的觀點、術語和方法,但不滿足于此,而是帶著反思的眼光加以運用,力求有所拓展和創新。《〈聊齋志異〉敘事藝術研究》的相關內容顯示,著者選擇了“費力”的辦法,基本實現了研究創新的目的。
步驟三:決策信息的權重的確定。根據定義3,可表征為k =(k1,k2,k3,k4)。
步驟四:確定決策結果與直覺模糊函數的關系。由定義2、4 可以判定出,決策結果“放行”對應直覺模糊集的隸屬度,即:Z1i=min{f1(xi),f2(xi) }“;不放行”對應直覺模糊集的非隸屬度,即:Z2i=1-λ(xi)-u(xi);“猶豫”對應直覺模糊集的猶豫度,即:Z3i= |f1(xi)-f2(xi) |。
步驟五:根據投影法對猶豫度進行正交化。在決策結果中并不存在“猶豫”這一選項,因此需要對猶豫度Z3i進行分配,為了使結果便于理解,對分配后的猶豫度進行歸一化處理,從而得到Z1inew、Z2inew。
步驟六:輸出放行決策結果。對Z1inew、Z2inew進行加權求和,比較兩者大小,即可得到簽派放行決策的最終決策結果。
根據本文的判別方法,對某一次簽派放行決策評估過程進行推演。
步驟一:識別放行決策的有限論域。決策信息排列記為X={x1,x2,x3,x4},分別表示天氣狀況、機場條件、航行通告、飛機狀態。
步驟二:建立隸屬度函數和非隸屬度函數。直覺模糊集最大的特點就是它同時考慮支持、反對和棄權,更符合人認知的方式,而柯西分布能夠更好地描繪出人在實際情況的認知和理解的過程,因而本文選用柯西分布來建立雙隸屬度函數f(x),一般形式為f(x) =其中取值區間為(0, 1),a、b表示極限分布參數,即0-1 分布。a表示個人主觀經驗信息,b表示機場、飛機信息,若a或b=0,則表示不進行簽派放行;a或b=1 表示簽派放行。而參數c、d的選擇決定決策結果,采用模糊聚類方法[9]得到隸屬度函數。天氣狀況用機場能見度s表征,單位為m,主、客觀隸屬度函數分別如下:
機場條件用機場云底高大于最低標準高度h表征,單位為m,主、客觀隸屬度函數分別如下:
航行通告信息用跑道側風風速v表征,單位為m/s,主、客觀隸屬度函數分別如下:
飛機狀態用著陸剩油時間t表征,單位為min,主、客觀隸屬度函數分別如下:
步驟三:決策信息的權重的確定。前期已開展調查問卷工作,問卷回收率95%,有效率90%,采用中位數法得各決策信息權重為k=(0.18,0.14,0.32,0.36)。
步驟四:確定決策結果與直覺模糊函數的關系。在傳回的信息中機場能見度為1800 m,機場云底高大于最低標準高度為500 m,跑道側風風速為18 m/s,著陸剩油時間為90 min。代入步驟二中,計算信息得到以下數值:
天氣狀況信息的直覺模糊集數值為Zs={0.667,0,0.333} ;機場條件信息的直覺模糊集數值為Zh={ 0.8,0,0.2} ;航行通告信息的直覺模糊集數值為Zv={ 0.9,0.05,0.05} ;飛機狀態信息的直覺模糊集數值為Zt={ 0.333,0,0.667} 。
步驟五:對猶豫度進行正交化。按照投影法對猶豫度正交化,為了方便結果的計算,再進行歸一化處理。得到新的直覺模糊集數值為Zsnew={ 0.753,0.247,0} ,Zhnew={ 0.817,0.183,0 },Zvnew={ 0.947,0.053,0} ,Ztnew={ 0.662,0.338,0}
步驟六:輸出放行決策結果。根據步驟三和步驟五的結果,對新的直覺模糊集數值進行加權處理,得到結果Z={ 0.791,0.209,0} ,可得結果為放行,符合實際過程中的決策結果。
本文提出的直覺模糊決策模型,通過引用雙隸屬度函數來描述放行決策過程中的主客觀決策。非隸屬度函數的構造方法易于理解,更符合現實情況,體現出了主、客觀思想的決策結果,為簽派員的放行決策提供定性轉為定量的數值參考。在現實情況中,應總結多次簽派放行的結果,從而提升信息決策準確率。
然而,本文的研究中,選擇簽派放行的有限論域有限,今后將進一步研究不同影響因素對放行決策的影響,改善直覺模糊決策模型。