李 輝,何之煜,頡洪睿
(1. 中國鐵道科學(xué)研究院集團(tuán)有限公司通信信號(hào)研究所,北京 100081;2. 北京郵電大學(xué)信息與通信工程學(xué)院,北京100876)
地面軌道電路和車載機(jī)車信號(hào)作為重要的鐵路通信設(shè)備,在我國列控運(yùn)行控制系統(tǒng)(CTCS-0到CTCS-3)中應(yīng)用廣泛。近年來,隨著我國鐵路事業(yè)的迅猛發(fā)展,由于列車運(yùn)行速度高、路網(wǎng)分布復(fù)雜等因素,為了保障列車的運(yùn)行安全,車載機(jī)車信號(hào)也由原先的輔助信號(hào)轉(zhuǎn)為主體信號(hào),為司機(jī)提供前方線路的行車信號(hào)等重要信息,在提高鐵路運(yùn)輸效率和改善乘務(wù)員勞動(dòng)強(qiáng)度上具有重要意義[1]。
在機(jī)車信號(hào)對(duì)軌道電路的解碼算法上,眾多專家、學(xué)者進(jìn)行了大量的研究工作。目前,在實(shí)際應(yīng)用中主要采用頻譜分析法。這種方法首先對(duì)采樣信號(hào)進(jìn)行快速傅里葉變換(Fast Fourier Transform, FFT)得到軌道電路的中心載頻,然后通過ZFFT提高中心在載頻的分辨率,得到移頻信號(hào)中的低頻信息,從而完成信號(hào)的解調(diào),具有解調(diào)精度高、抗干擾能力強(qiáng)、解調(diào)速度較快等特點(diǎn)[2,3],但是在實(shí)際的應(yīng)用場景中,由于軌道電路工作環(huán)境復(fù)雜、電氣特性多變,會(huì)受到強(qiáng)烈的不平衡電流干擾或者鄰線干擾[4-6],附加非正周期采樣會(huì)導(dǎo)致傅里葉變換中的頻譜泄露,另外FFT無法計(jì)算信號(hào)的邊頻信息,因此,會(huì)導(dǎo)致信號(hào)頻譜發(fā)生畸變,也會(huì)給解調(diào)增加難度。
為了解決上述傳統(tǒng)傅里葉變換的問題,基于短時(shí)傅里葉變換(Short-time Fourier Transform,STFT)和小波變換(Wavelet Transform,WT)的解調(diào)算法也被提了出來。短時(shí)傅里葉變換使用的是固定的窗函數(shù),無法根據(jù)軌道電路信號(hào)特征進(jìn)行相應(yīng)變化,同時(shí)受海森伯格測(cè)不準(zhǔn)原理限制,該算法的頻率分辨率和時(shí)間分辨率無法同時(shí)達(dá)到最佳;而小波變換則存在小波基函數(shù)的選擇較為困難的問題,為了獲得優(yōu)異的分解結(jié)果,往往要嘗試很多基函數(shù),甚至自行設(shè)計(jì)基函數(shù),此外,小波變換分解時(shí)需要提前設(shè)置分解層數(shù),這樣進(jìn)一步弱化了小波變換的自適應(yīng)性。
在時(shí)頻分析方法的發(fā)展歷程中,希爾伯特-黃變換(Hilbert-Huang Transform, HHT)是發(fā)展最快也最有效的方法之一,廣泛應(yīng)用于電力分析、環(huán)境監(jiān)測(cè)、無損檢測(cè)等領(lǐng)域[7-9],應(yīng)用成果顯著。針對(duì)上述傳統(tǒng)傅里葉變換、短時(shí)傅里葉變換和小波變換三種解調(diào)算法的缺點(diǎn),綜合考慮機(jī)車信號(hào)解調(diào)過程中復(fù)雜的電氣環(huán)境等實(shí)際應(yīng)用場景,本文提出了一種基于希爾伯特-黃變換的機(jī)車信號(hào)解碼算法,通過經(jīng)驗(yàn)?zāi)B(tài)分解法(EMD)和希爾伯特變換,得到機(jī)車信號(hào)的瞬時(shí)頻率,計(jì)算所求信號(hào)的時(shí)頻分布,從而提升機(jī)車信號(hào)的解調(diào)性能。
機(jī)車信號(hào)系統(tǒng)反映列車運(yùn)行前方地面信號(hào)機(jī)的狀態(tài)和運(yùn)行條件,指示列車運(yùn)行,并與列控系統(tǒng)結(jié)合,確保列車的安全,實(shí)現(xiàn)速度控制、超速防護(hù)等功能[10]。
機(jī)車信號(hào)系統(tǒng)結(jié)構(gòu)如圖1所示,其中接收線圈通過電磁感應(yīng)方式感應(yīng)鋼軌中軌道電路系統(tǒng)發(fā)送的電流信號(hào),實(shí)現(xiàn)從軌道電路電流到機(jī)車信號(hào)電壓的轉(zhuǎn)換。

圖1 機(jī)車信號(hào)結(jié)構(gòu)圖
軌道電路以鋼軌作為傳輸介質(zhì),由于牽引電流大等原因,導(dǎo)致信號(hào)在傳輸過程中會(huì)疊加各種外部干擾,對(duì)機(jī)車信號(hào)的解調(diào)造成影響。
以下對(duì)幾種主要的干擾進(jìn)行分析。
1)鋼軌中不平衡電流干擾
在電氣化軌道,最嚴(yán)重的干擾是電力牽引電流不平衡回流造成的干擾。鋼軌中除了軌道電路的電流,還有電力機(jī)車牽引電流。理想狀態(tài)下,兩根鋼軌上的牽引電流大小相同方向相同,電磁感應(yīng)產(chǎn)生的電壓能夠相互抵消。但在實(shí)際線路中,外部環(huán)境較為復(fù)雜,鋼軌對(duì)地的泄漏電阻不同,導(dǎo)致兩根鋼軌中牽引電流大小不同,從而產(chǎn)生了干擾電壓。
2)鄰線干擾
在雙線區(qū)段,理想狀態(tài)下只接收本路的信號(hào)。但實(shí)際上雙線之間也存在相互干擾的問題,主要原因有鋼軌間的互感、大地和空氣泄露。鄰線干擾可能導(dǎo)致錯(cuò)誤地接收相鄰軌道電路的信息,從而使機(jī)車信號(hào)顯示錯(cuò)誤的指令信息,造成事故隱患。
3)鄰區(qū)間干擾
鄰區(qū)間干擾主要是因?yàn)榻^緣節(jié)損壞造成的。絕緣節(jié)在惡劣環(huán)境下被腐蝕破壞,機(jī)車輪的撞擊等,造成了絕緣功能失效,使得相鄰閉塞區(qū)間的信息相互干擾。嚴(yán)重時(shí)造成信號(hào)錯(cuò)誤顯示,威脅到了行車安全。
希爾伯特-黃變換是由N. E. Huang等人于1998年提出的一種針對(duì)非線性、非平穩(wěn)信號(hào)的分析方法,具有自適應(yīng)性、適合處理突變信號(hào)等優(yōu)勢(shì)[11,12],可以從頻域和時(shí)域兩方面對(duì)信號(hào)進(jìn)行分析,能夠得到信號(hào)的瞬時(shí)頻率等信息,下面從希爾伯特變換、經(jīng)驗(yàn)?zāi)B(tài)分解和希爾伯特譜三個(gè)方面對(duì)HHT算法性詳細(xì)分析。
希爾伯特變換具體定義如下

(1)

由傅里葉變換的理論可知,該濾波器的傳遞函數(shù)為

(2)
記H(jω)=|H(jω)|ejφ(ω),則有|H(jω)|=1

(3)
即希爾伯特變換對(duì)信號(hào)的正頻率滯后90度,對(duì)負(fù)頻率超前90度。由此可以定義x(t)的解析信號(hào)為

(4)

由此可以得到信號(hào)的瞬時(shí)頻率

(5)
在非線性非穩(wěn)定信號(hào)處理中,瞬時(shí)頻率是信號(hào)最直觀的現(xiàn)象。為了得到具有實(shí)際物理意義的瞬時(shí)頻率,對(duì)信號(hào)有一定的制約條件。這些制約條件也提供了一種分解信號(hào)的依據(jù),經(jīng)驗(yàn)?zāi)B(tài)分解便是其中之一。
經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)是希爾伯特黃變換的第一步,它是分析非線性非平穩(wěn)信號(hào)的有力工具[13-15]。N.E Huang等人提出了固有模態(tài)函數(shù)(IMF)的概念,認(rèn)為任何信號(hào)都可以由IMF組成。EMD分解的主要思想是把信號(hào)分解為滿足一定條件的有限個(gè)數(shù)的IMF,這一過程是HHT變換的核心。EMD分解具體流程如下:
1)對(duì)原始信號(hào)x(t),找出所有極大值點(diǎn)和極小值點(diǎn),分別用三次樣條插值法擬合極大值點(diǎn)和極小值點(diǎn),得到上下包絡(luò)線。
2)計(jì)算上下包絡(luò)線的均值,記為m1(t),令h1(t)=x(t)-m1(t)。
3)若h1(t)滿足IMF條件,得到c1(t)=h1(t);若不滿足條件,則把h1(t)作為新信號(hào),重復(fù)步驟1),2),將上下包絡(luò)的均值記為m11(t),得到h11(t)=h1(t)-m11(t),繼續(xù)判斷h11(t)是否滿足的條件,如果仍不滿足,則繼續(xù)重復(fù)步驟1),2),直到篩選到第k次,得到滿足條件或者滿足終止條件的h1k(t)為止,得到c1(t)=h1k(t)。
4)基于第一個(gè)IMF分量c1(t),得到剩余分量r1(t)=x(t)-c1(t)。將r1(t)作為新信號(hào),重復(fù)以上步驟,得到一系列IMF分量和剩余分量,當(dāng)rn(t)滿足停止條件時(shí),分解結(jié)束,此時(shí)信號(hào)分解出n個(gè)IMF分量和1個(gè)rn(t)余項(xiàng)。
通過EMD分解,原始信號(hào) 可以表示為

(6)
分析EMD分解的過程,可以看出EMD分解屬于純數(shù)據(jù)驅(qū)動(dòng)的算法,不像傅里葉變換指定了三角函數(shù),也不像小波變換需要提前設(shè)置基函數(shù)。在分解過程中,IMF函數(shù)是直接從數(shù)據(jù)中得到的,因此HHT算法具有很強(qiáng)的自適應(yīng)性。
信號(hào)經(jīng)經(jīng)驗(yàn)?zāi)B(tài)分解而得到的IMF分量具有局部均值為零,零點(diǎn)和極值點(diǎn)的數(shù)目相等或相差1,可以得到有實(shí)際物理意義的瞬時(shí)頻率。對(duì)每個(gè)IMF分量進(jìn)行希爾伯特變換,這里舍去了余項(xiàng),因?yàn)樗且粋€(gè)常量或單調(diào)函數(shù),代表長周期的特性。因此,原始信號(hào)x(t)可以表示為
(7)
可以看到,通過HHT變換,可以直觀的看到瞬時(shí)頻率以及幅值的變化,克服了傅里葉變換的缺陷,適合處理非線性、非平穩(wěn)信號(hào)。
為了驗(yàn)證HHT算法在機(jī)車信號(hào)解調(diào)應(yīng)用中的有效性,分別對(duì)理想狀態(tài)下的機(jī)車信號(hào)和加噪機(jī)車信號(hào)的解調(diào)性能進(jìn)行仿真分析,并與ZFFT和小波變換兩種解調(diào)算法進(jìn)行對(duì)比。
首先生成待測(cè)的模擬機(jī)車信號(hào),以16384Hz的頻率對(duì)信號(hào)進(jìn)行采樣,隨后對(duì)信號(hào)進(jìn)行EMD分解。如圖2所示,給出了原始信號(hào)和EMD分解后信號(hào)的曲線圖。

圖2 模擬機(jī)車信號(hào)與EMD分解結(jié)果圖
從EMD分解結(jié)果中可以看到,基本上IMF1分量包含了原始信號(hào)的所有信息,只需要對(duì)IMF1分量求瞬時(shí)頻率。如圖3所示,給出了IMF1的瞬時(shí)頻率曲線圖,可以看出IMF1具有較為明顯的上下邊頻,但是仍有不少毛刺。為了準(zhǔn)確獲得信號(hào)的頻率信息,采取如下措施:

圖3 IMF1瞬時(shí)頻率圖
1)計(jì)算瞬時(shí)頻率的均值,統(tǒng)計(jì)在均值一定的范圍內(nèi)的瞬時(shí)頻率,計(jì)算上下邊頻。
2)由上下邊頻得到中心載頻的精確頻率,以中心載頻為門限,對(duì)瞬時(shí)頻率進(jìn)行歸一化操作。大于中心載頻的置1,小于中心載頻的置0,得到一個(gè)方波,如圖4所示。

圖4 理想條件下三種算法解調(diào)性能對(duì)比
3)計(jì)算方波中相鄰兩個(gè)跳變點(diǎn)間的平均長度,根據(jù)采樣點(diǎn)的時(shí)間間隔,計(jì)算得到低頻信號(hào)的頻率。
以ZPW2000A型軌道電路的2000Hz載頻的信號(hào)為例,解調(diào)得到的結(jié)果如表1所示,可以看出,基于HHT變換的解調(diào)算法在理想無噪聲情況下,無論是中心載頻、調(diào)制頻率還是FSK信號(hào)的上下變頻均能準(zhǔn)確檢出,說明HHT對(duì)機(jī)車信號(hào)的解調(diào)具有較高的精確度。

表1 希爾伯特-黃變換算法解調(diào)結(jié)果表
接下來,將對(duì)基于HHT的解調(diào)算法與基于ZFFT的解調(diào)算法、基于小波變換的解調(diào)算法的性能進(jìn)行對(duì)比,其中采樣頻率為16384Hz,載頻為2001.4Hz,依次測(cè)試18中低頻。如圖4所示,給出了三種解調(diào)算法在調(diào)制頻率上的性能對(duì)比,可以看出三種算法在理想條件下均具有較高的解調(diào)精度,其中ZFFT算法平均調(diào)制頻率誤差為0.053Hz,小波算法平均調(diào)制誤差為0.021Hz,HHT算法平均調(diào)制頻率誤差小于0.01Hz,具有更高的解調(diào)性能。
這里選取高斯白噪聲作為機(jī)車信號(hào)的噪聲源,根據(jù)文獻(xiàn)[15]對(duì)幾種基于EMD的去噪算法的對(duì)比,本節(jié)選取EMD-soft算法,在此基礎(chǔ)上進(jìn)行優(yōu)化后,濾除高斯白噪聲。但是該算法對(duì)所有的IMF分量采用相同的方法計(jì)算噪聲閾值,會(huì)導(dǎo)致有用信號(hào)被過度濾除。因此需要對(duì)算法進(jìn)行優(yōu)化,將IMF分量根據(jù)瞬時(shí)頻率是否在頻帶內(nèi)分為信號(hào)主導(dǎo)分量和噪聲主導(dǎo)分量,通過不同閾值對(duì)IMF進(jìn)行截?cái)?最后通過截?cái)嗪蟮腎MF分量進(jìn)行重構(gòu)信號(hào),完成對(duì)信號(hào)的降噪。
首先生成待測(cè)的模擬機(jī)車信號(hào),在載頻2001.4Hz,低頻信號(hào)頻率固定在20.2Hz條件下,原始信號(hào)中加入不同信噪比的高斯白噪聲,信噪比從1dB增加到70dB,同時(shí)對(duì)HHT算法、ZFFT算法和小波算法的解調(diào)性能進(jìn)行對(duì)比分析,如圖5所示??梢钥闯?在原始信號(hào)中加入高斯白噪聲,隨著信噪比的增加,三種算法的調(diào)制頻率誤差呈減小趨勢(shì),并且HHT算法相較于其它兩種算法在噪聲條件下解調(diào)性能更優(yōu)。

圖5 加噪條件下三種算法解調(diào)性能對(duì)比
軌道電路和機(jī)車信號(hào)是我國列控系統(tǒng)中重要的通信設(shè)備,對(duì)機(jī)車信號(hào)的解調(diào)關(guān)系到列車的運(yùn)行安全。本文從機(jī)車信號(hào)系統(tǒng)的組成入手,分析了在實(shí)際運(yùn)營場景下軌道電路可能受到的干擾源,采用希爾伯特-黃變換算法作為對(duì)機(jī)車信號(hào)的解調(diào)算法,并針對(duì)機(jī)車信號(hào)的特點(diǎn)對(duì)算法進(jìn)行了改進(jìn)。然后通過計(jì)算機(jī)仿真對(duì)理想條件下和加噪條件下的HHT解調(diào)算法進(jìn)行分析,并與ZFFT算法和小波變換算法的解調(diào)性能進(jìn)行對(duì)比,證明HHT算法具有更優(yōu)的解調(diào)性能,適用于對(duì)機(jī)車信號(hào)的解調(diào)工作。