劉敏, 賴敏, 曾云, 祝珊珊, 尤梅桂, 高暢
蛋白激酶CβII通過調控翻譯起始介導上皮-間充質轉化促進肝細胞癌轉移*
劉敏1△, 賴敏1, 曾云1, 祝珊珊2, 尤梅桂1, 高暢3
(1廈門醫學院基礎醫學部,福建 廈門 361023;2廈門醫學院藥學系,福建 廈門 361023;3廈門大學附屬翔安醫院肝膽外科,福建 廈門 361023)
研究蛋白激酶C β II(protein kinase C β II, PKCβII)上調Snail和Twist蛋白表達介導上皮-間充質轉化的分子機制。采用[35S]-甲硫氨酸摻入實驗和核糖體分離實驗觀察PKCβII對Snail和Twist mRNA翻譯的影響。敲減真核翻譯起始因子4E(eukaryotic translation initiation factor 4E,)通過核糖體分離實驗、Western blot及RT-qPCR觀察對PKCβII調控Snail和Twist表達的影響。利用Western blot觀察PKCβII對調控eIF4E活性的相關信號通路的影響。利用Western blot觀察應用絲裂原活化蛋白激酶相互作用激酶1(mitogen-activated protein kinase-interacting kinase 1, MNK1)抑制劑或雷帕霉素對PKCβII調控Snail和Twist蛋白表達的影響。利用Transwell實驗觀察敲減對PKCβII調控肝癌細胞侵襲的影響。[35S]-甲硫氨酸摻入實驗和核糖體分離實驗表明,相比β-actin,PKCβII顯著上調Snail和Twist mRNA的翻譯(<0.01)。敲減抑制PKCβII介導的Snail和Twist mRNA翻譯和蛋白表達的上調(<0.01),但對Snail和Twist的轉錄沒有影響。高表達PKCβII激活細胞外信號調節激酶(extracellular signal-regulated kinase, ERK)/MNK1及蛋白激酶B(protein kinase B, PKB/AKT)/哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)/eIF4E結合蛋白1(eIF4E-binding protein 1, 4E-BP1)通路上調eIF4E的活性(<0.01)。應用MNK1抑制劑或雷帕霉素可抑制PKCβII介導的Snail和Twist蛋白表達上調(<0.01)。敲減抑制PKCβII介導的肝癌細胞侵襲能力的增強(<0.01)。PKCβII通過激活ERK/MNK1通路和AKT/mTOR/4E-BP1通路上調eIF4E的活性,優先促進Snail和Twist mRNA的翻譯,介導上皮-間充質轉化,從而促進肝細胞癌的轉移。這提示PKCβII作為肝細胞癌治療靶點的潛力。
肝細胞癌;蛋白激酶C β II;翻譯起始;上皮-間充質轉化;轉移
肝細胞癌(hepatocellular carcinoma, HCC)是臨床上最常見的肝癌類型,是世界范圍內第三大腫瘤致死原因,也是最具侵襲性的實體瘤之一[1]。目前HCC的治療以手術切除、肝移植、放化療和靶向治療為主,然而較高的復發和轉移是影響肝癌患者生存期的重要因素[2]。深入研究HCC轉移的分子機制,探尋更加有效的治療靶點,對于提高治療效果、延長患者生存時間具有重要的意義。
在胚胎發育、細胞分化及應激等過程中,蛋白質翻譯都被精密地調控。翻譯失調參與腫瘤的發生發展,與增殖、血管生成、免疫反應改變和能量代謝有關[3-4]。翻譯起始是翻譯的限速步驟,翻譯起始的改變在腫瘤的發展中具有重要作用[5],多種因子調控翻譯起始,如真核翻譯起始因子2(eukaryotic translation initiation factor 2, eIF2)、eIF6、eIF4E等,eIF4E可以與mRNA的5'帽結合,是帽依賴翻譯的限速因子,在翻譯起始中發揮關鍵性的作用。提高的eIF4E的表達或活性與腫瘤發展和預后密切相關[6-7],抑制eIF4E磷酸化[8]、抑制eIF4E/eIF4G結合[9]都被證實可以抑制腫瘤的進展。
蛋白激酶C β II(protein kinase C β II, PKCβII)屬于絲/蘇氨酸蛋白激酶C家族,作為細胞信號轉導的主要組成部分,參與增殖、凋亡、遷移及分化等過程。研究表明,PKCβII參與多種腫瘤的發展如白血病[10]、乳腺癌[11]和黑素瘤[12]等,其高表達與復發、低存活率密切關聯[13]。我們前期的研究結果表明,PKCβII通過轉錄水平下調上皮標志物E-cadherin及上調間充質標志物N-cadherin的表達,上調Snail和Twist的蛋白表達,從而誘導上皮-間充質轉化,促進肝癌轉移,然而RT-qPCR和放線菌酮追蹤實驗顯示PKCβII對Snail和Twist的轉錄及穩定性均無影響[14]。本研究在前期研究的基礎上,進一步探究PKCβII上調Snail和Twist蛋白表達的分子機制,以期為深入研究肝癌轉移的機制及尋找新的藥物靶點提供理論依據。
人HCC細胞株Huh7和Hep3B購自中國科學院典型培養物保藏委員會細胞庫/中國科學院上海生命科學研究院細胞資源中心。
[35S]-methionine購自Perkin Elmer;Protein-G Agarose購自Roche;蔗糖購自Amresco;兔源性eIF4E結合蛋白1(eIF4E-binding protein 1, 4E-BP1)、p-4E-BP1、eIF4E、p-eIF4E、絲裂原活化蛋白激酶相互作用激酶1(mitogen-activated protein kinase-interacting kinase 1, MNK1)、p-MNK1、Snail、細胞外信號調節激酶(extracellular signal-regulated kinase, ERK)、p-ERK、p38絲裂原活化蛋白激酶(mitogen activated protein kinase, MAPK)、p-p38 MAPK、蛋白激酶B(protein kinase B, PKB/AKT)、phospho-AKT、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)、p-JNK、哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)和p-mTOR抗體購自Cell Signaling Technology;CGP57380和放線菌酮購自Sigma;Twist抗體、siRNA、GAPDH抗體、辣根過氧化物酶(horseradish peroxidase, HRP)標記的羊抗鼠Ⅱ抗和HRP標記的羊抗兔Ⅱ抗購自Santa Cruz;雷帕霉素(rapamycin)購自Merck;Costar?Transwell小室(8 μm)購自Corning;基質膠購自BD。
3.1[35S]-甲硫氨酸摻入實驗細胞用無甲硫氨酸培養基孵育30 min,每皿加入10 μL的35S(劑量為50 μCi/mL)混勻,37 ℃、5% CO2培養箱孵育60 min。預冷PBS沖洗細胞2次,加入1 mL IP裂解液刮下細胞4 ℃輪轉3 h,細胞裂解液4 ℃、12 000×離心3 min,取上清與處理后的Protein-G珠子4 ℃輪轉過夜。4 ℃、2 000×離心3 min,取上清與2 μg抗體4 ℃輪轉2 h,裂解液-抗體混合物與處理后的Protein-G珠子,4 ℃輪轉2 h,4 ℃、2 000×離心3 min,棄掉上清,加入30 μL 2× Loading Buffer,煮沸10 min,4 ℃、12 000×離心3 min,蛋白電泳。每組上樣量均為20 μL,電泳完畢切去積層膠,留下分離膠,室溫置于固定液緩搖30 min,之后轉入soak液緩搖15 min,玻璃紙包好放于溫箱內40 ℃干燥過夜,去磁,壓片,磷屏掃描。
3.2核糖體分離實驗(polysome profiling)處理完畢的各組細胞,用含放線菌酮(濃度為100 mg/L)的培養基37 ℃、5% CO2孵育30 min,將細胞刮下4 ℃、300×離心3 min。加入細胞裂解液,4 ℃輪轉2 h,4 ℃、16 000×離心5 min,細胞裂解液置于冰上,4 ℃保存備用。先加10%蔗糖,再加45%蔗糖密度梯度制備儀獲得等密度梯度,將細胞裂解液加于其上,4 ℃、36 000 r/min離心3 h,使用密度梯度分析儀收集不同蔗糖梯度組分。核糖體組分加入200 μg的Proteinase K,37 ℃烘箱1 h,加入1 mL Trizol,酸性酚-氯仿-異戊醇抽提,按照提取RNA的步驟進行操作,RT-qPCR檢測各基因表達。
3.3Western blot實驗細胞用冷PBS洗3次,加入SDS細胞裂解液提取總蛋白,BCA法測定蛋白濃度,進行SDS-PAGE。以濕式轉膜法將蛋白轉到PVDF膜上,5%脫脂奶粉室溫緩搖2 h,加入抗eIF4E、Snail、Twist、p-ERK/ERK、p-p38/p38、p-JNK/JNK、p-MNK1/MNK1、p-eIF4E/eIF4E、p-AKT/AKT、p-4E-BP1/4E-BP1和p-mTOR/mTOR抗體4 ℃孵育過夜,TBST洗3次,HRP標記的羊抗鼠IgG、羊抗兔IgG室溫孵育1 h,TBST洗3次,ECL發光液顯影。
3.4RT-qPCR實驗細胞處理后提取各組RNA,用TaKaRa RNA PCR Kit進行逆轉錄,熒光定量PCR采用StepOne Plus 熒光定量PCR儀。Snail的正向引物序列為5'-TCTGAGGCCAAGGATCTCCA-3',反向引物序列為5'-TGGCTTCGGATGTGCATCTT-3';Twist的正向引物序列為5'-TCTACCAGGTCCTCCAGAGC-3',反向引物序列為5'-CTCCATCCTCCAGACCGAGA-3';β-actin的正向引物序列為5'-ACCGAGCGCGGCTACAG-3',反向引物序列為5'-CTTAATGTCACGCACGATTTCC-3'。反應程序:預孵育95 ℃ 600 s;95 ℃ 10 s,56 ℃ 20 s,72 ℃ 10 s,共45個循環;溶解95 ℃ 10 s,65 ℃ 60 s,97 ℃ 1 s。
3.5Transwell實驗基質膠按1∶4~1∶6比例用無血清培養基稀釋,充分混勻。上室加入60 μL基質膠,培養箱過夜使基質膠凝固。細胞處理完畢,無血清培養基配成細胞懸液,計數,細胞密度在1×109/L左右,上室加入50 μL細胞懸液(約5×104個細胞),下室加入600 μL完全培養基,37 ℃、5% CO2培養箱孵育24 h。取出上室,PBS洗2 min×3次,4%多聚甲醛固定30 min,PBS洗2 min×3次,結晶紫染色室溫30 min,PBS洗2 min×3次,棉球擦去上室細胞,顯微鏡下觀察拍照。
采用SPSS 19.0統計軟件進行分析。數據均采用均數±標準差(mean±SD)表示。多組間比較采用單因素方差分析,兩組間比較采用檢驗。以<0.05為差異有統計學意義。
前期研究結果發現PKCβII上調Snail和Twist的蛋白表達,然而RT-qPCR和放線菌酮追蹤實驗顯示PKCβII對Snail和Twist的轉錄及蛋白穩定性均無影響[14],我們猜測PKCβII上調Snail和Twist的蛋白表達是通過影響基因的翻譯實現的。為了驗證這一猜想,我們通過[35S]-甲硫氨酸摻入實驗和免疫沉淀檢測PKCβII對Snail和Twist翻譯的影響,結果顯示,與蛋白表達水平一致,在穩定高表達PKCβII的肝癌細胞株Huh7和Hep3B中,PKCβII上調Snail和Twist的從頭蛋白質合成,見圖1A、B?;蚍g活性依賴于核糖體大小亞基的聚合及mRNA上多聚核糖體(polysomes)的結合。我們在PKCβII穩轉細胞株Huh7中以核糖體分離實驗觀察Snail、Twist及β-actin的mRNA在多聚核糖體組分中的分布,結果顯示,PKCβII使得Snail、Twist及β-actin的mRNA出現從light polysomes到heavy polysomes的右移,相比β-actin的mRNA,PKCβII所導致的核糖體組分右移在Snail和Twist的mRNA更加顯著,見圖1C。上述結果表明,除了影響整體翻譯,PKCβII優先促進Snail和Twist mRNA的翻譯。

Figure 1. PKCβII preferentially promoted the translation of Snail and Twist. A and B: the effect of PKCβII on de novo protein synthesis of Snail and Twist in Huh7 (A) and Hep3B (B) cells (after [35S]-methionine labeling, stable PKCβII-overexpressing cell extracts with equal counts per million were subjected to immunoprecipitation); C: the effect of PKCβII on the distribution of Snail and Twist mRNAs in the polysomes (stable PKCβII-overexpressing Huh7 cell lysates were applied to polysome profiling, followed by RT-qPCR analysis; SP: a pool of subpolysome fractions containing 40S, 60S, and 80S ribosomes). Mean±SD. n=3. *P<0.05,**P<0.01 vs vector group.
真核細胞mRNA的翻譯絕大部分是帽依賴的,eIF4E是帽翻譯起始的限速分子,控制翻譯進程。接著我們觀察eIF4E是否參與PKCβII對Snail和Twist mRNA翻譯的調控。在PKCβII穩轉細胞株Huh7中應用si-eIF4E特異性敲減,利用核糖體分離實驗觀察敲減對PKCβII調控Snail和Twist翻譯的影響,結果發現,敲減阻斷了PKCβII介導的Snail和Twist mRNA的右移,而對β-actin mRNA在核糖體組分中的分布影響甚微,見圖2A;Western blot檢測也發現敲減不單抑制了對照組Snail和Twist的表達,同時也阻斷了PKCβII介導的Snail和Twist表達的上調(<0.01),見圖2B;進一步應用RT-qPCR檢測對Snail和Twist轉錄的影響,結果發現,PKCβII對Snail和Twist轉錄沒有影響,敲減對PKCβII調控的Snail和Twist轉錄亦沒有影響,見圖2C。上述結果表明,PKCβII通過eIF4E依賴的方式調控Snail和Twist mRNA的翻譯。

Figure 2. PKCβII promoted the translation of Snail and Twist in a eIF4E-dependent manner. A: stable PKCβII-overexpressing Huh7 cells were treated with si-eIF4E for 72 h and were applied to polysome profiling, followed by RT-qPCR analysis; B: stable PKCβII-overexpressing Huh7 cells were treated as in A and then cell lysates were applied to Western blot; C: stable PKCβII-overexpressing Huh7 cells were treated as in A and B, and RT-qPCR was used to detect the mRNA levels of Snail and Twist. Mean±SD. n=3. **P<0.01 vs vector group;##P<0.01 vs PKCβII group.
eIF4E的活性受到MAPK信號通路和磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/AKT/mTOR信號通路的調控[15],為了研究PKCβII對eIF4E的表達或活性的影響,我們檢測相關信號通路的變化。結果發現,PKCβII可以磷酸化ERK,進而通過磷酸化MNK1介導eIF4E的磷酸化;PKCβII還可以激活PI3K/Akt/mTOR通路促進AKT、mTOR及4E-BP1的磷酸化,同時高表達PKCβII并沒有上調eIF4E的蛋白表達,見圖3。上述結果表明,PKCβII通過ERK/MNK1通路和PI3K/AKT/mTOR通路上調eIF4E的活性參與對Snail和Twist的翻譯調控。

Figure 3. PKCβII activated ERK/MNK1 and AKT/mTOR/4E-BP1 pathways to up-regulate eIF4E activity. Stable PKCβII-overexpressing Huh7 cell lysates were applied to Western blot. Mean±SD. n=3. *P<0.05,**P<0.01 vs vector group.
在PKCβII穩轉株Huh7中應用MNK1抑制劑CGP57380抑制eIF4E的磷酸化,結果發現CGP57380可以抑制PKCβII介導的Snail和Twist蛋白表達的上調,見圖4A;我們又在Huh7和Hep3B穩轉株中加入哺乳動物雷帕霉素靶蛋白復合物1(mammalian target of rapamycin complex 1, mTORC1)抑制劑雷帕霉素,得到了類似的結果,見圖4B、C。上述結果進一步證實PKCβII通過提高eIF4E的活性介導Snail和Twist蛋白表達的上調。

Figure 4. The application of MNK1 inhibitor (CGP57380) or rapamycin blocked PKCβII-induced up-regulation of Snail and Twist. A: stable PKCβII-overexpressing Huh7 cells were treated with CGP57380 (10 μmol/L) for 24 h, and then cell lysates were applied to Western blot; B and C: stable PKCβII-overexpressing Huh7 (B) and Hep3B (C) cells were treated with rapamycin (10 nmol/L) for 48 h, and then cell lysates were applied to Western blot. Mean±SD. n=3. *P<0.05,**P<0.01 vs vector group;##P<0.01 vs PKCβII group.
我們前期的研究表明,PKCβII可以提高肝癌細胞的侵襲能力[14]。接下來我們在Huh7和Hep3B穩轉株中轉染eIF4E的小干擾RNA敲減的表達,通過Transwell實驗觀察對肝癌細胞侵襲的影響。結果發現,敲減可以抑制PKCβII介導的肝癌細胞侵襲能力的增強,見圖5。

Figure 5. Knockdown of eIF4E(si-eIF4E) blocked PKCβII-induced increased invasive ability of hepatocellular carcinoma cells. Stable PKCβII-overexpressing Huh7 (A) and Hep3B (B) cells were treated with si-eIF4E for 72 h, and then the cells were subjected to Transwell assay (scale bar=100 μm). Mean±SD. n=3. *P<0.05,**P<0.01 vs vector group;##P<0.01 vs PKCβII group.
肝細胞癌是腫瘤相關性死亡的主要原因,HCC的肝內外轉移多提示病人預后不良。轉錄因子Snail和Twist是調控上皮-間充質轉化的主要因子,通過抑制上皮標志物如E-cadherin和claudins等的轉錄,促進間充質標志物N-cadherin和vimentin等的轉錄介導上皮-間充質轉化的發生[16],賦予腫瘤細胞運動、侵襲[17]和藥物抵抗[18]的特性。本研究在前期研究的基礎上深入探討PKCβII上調Snail和Twist蛋白表達的分子機制,為深入了解HCC轉移機制及尋找潛在藥物靶點提供實驗基礎。
蛋白質翻譯的失調是腫瘤發生發展中重要的驅動因素,通過上調整體蛋白質合成或選擇性的提高某些mRNA的翻譯促進腫瘤的惡性進展[19]。本研究通過[35S]-甲硫氨酸摻入實驗和核糖體分離實驗發現在肝癌細胞中PKCβII可以促進轉錄因子Snail和Twist mRNA的翻譯。翻譯起始是蛋白質合成的限速步驟,eIF4E是翻譯起始的限速因子,我們利用核糖體分離、Western blot及RT-qPCR等實驗證實了PKCβII調控Snail和Twist的翻譯和表達是eIF4E依賴性的。翻譯起始因子(如eIF4E、eIF4A和IF2α)活性或表達水平的改變參與腫瘤的進展[20],接下來我們觀察PKCβII對eIF4E活性或蛋白表達的影響,結果顯示PKCβII通過ERK/MNK1通路促進eIF4E的磷酸化。研究表明eIF4E的磷酸化對于正常發育不是必需的,但是對于細胞的惡變卻是必不可少的條件,eIF4E的磷酸化在Myc和壓力驅動下的腫瘤發生中扮演重要的角色[21]。在肺癌、胃癌和直腸癌中p-eIF4E水平都明顯升高,并且與病人縮短的生存期密切相關[6]。本研究還發現PKCβII可以激活AKT/mTORC1/4E-BP1通路,促進4E-BP1磷酸化以及與eIF4E的解離,自由的eIF4E與eIF4G、eIF4A結合組成eIF4F翻譯起始復合物,識別mRNA的5'端帽結構,啟動包括癌基因在內的翻譯。由于eIF4E不與MNK1直接結合,eIF4G作為一個停泊點分別與eIF4E、MNK1結合,使得MNK1與其底物eIF4E相互靠近進而磷酸化eIF4E,因此PKCβII促進eIF4E的磷酸化是依賴于AKT/mTORC1/4E-BP1通路激活的。本研究還發現PKCβII并沒有上調eIF4E的蛋白表達,因此PKCβII通過ERK/MNK1和AKT/mTORC1/4E-BP1通路提高eIF4E的活性,優先上調轉錄因子Snail和Twist的翻譯,進而通過在轉錄水平調控E-cadherin和N-cadherin等的表達介導上皮-間充質轉化的發生。MNK1抑制劑CGP57380被證實可以抑制腫瘤的進展以及提高對放、化療的敏感性[22-23]。我們的研究也發現CGP57380可以抑制PKCβII介導的Snail和Twist蛋白表達的上調。mTOR抑制劑如rapamycin或其類似物是有效的抗腫瘤藥物[24]。同樣在本研究中也發現應用rapamycin可以抑制PKCβII介導的Snail和Twist蛋白表達的上調。由于rapamycin可以提高eIF4E的磷酸化使得在初次使用之后便出現藥物抵抗,因此mTOR抑制劑與靶向MNK的藥物聯用表現出協同作用,克服了藥物抵抗,表現出良好的抗腫瘤作用[25]。本研究沒有觀察rapamycin處理是否影響肝癌細胞中eIF4E的磷酸化水平,是不足之處。由于PKCβII可以同時促進MNK1的磷酸化以及激活mTOR通路,因此靶向PKCβII可以同時抑制MNK以及mTOR的活性,提示PKCβII可能成為有潛力的藥物靶點。
本研究通過進一步探討PKCβII調控Snail和Twist蛋白表達的分子機制,為深入了解肝癌中翻譯調控的復雜網絡提供參考,還提示靶向PKCβII作為一個輔助治療手段與常規藥物聯用可能是腫瘤治療的又一有效策略。
[1] Freddie B, Jacques F, Isabelle S, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
[2] Zhou SL, Zhou ZJ, Hu ZQ, et al. Genomic sequencing identifies WNK2 as a driver in hepatocellular carcinoma and a risk factor for early recurrence[J]. J Hepatol, 2019, 71(6):1152-1163.
[3] Morgan LT, Davide R. New frontiers in translational control of the cancer genome[J]. Nat Rev Cancer, 2016, 16(5):288-304.
[4] Huang DD, Sun WJ, Zhou YW, et al. Mutations of key driver genes in colorectal cancer progression and metastasis[J]. Cancer Metastasis Rev, 2018, 37(1):173-187.
[5] Andrea MA, Brenda CV, Victor GG. Translation initiation and its relationship with metabolic mechanisms in cancer development, progression and chemoresistance[J]. Adv Protein Chem Struct Biol, 2022, 132(8):111-141.
[6] Tang YX, Luo JD, Yang Y, et al. Overexpression of p-4EBP1 associates with p-eIF4E and predicts poor prognosis for non-small cell lung cancer patients with resection[J]. PLoS One, 2022, 17(6):e265465.
[7] Lu JM, Zang HJ, Zheng HM, et al. Overexpression of p-Akt, p-mTOR and p-eIF4E proteins associates with metastasis and unfavorable prognosis in non-small cell lung cancer[J]. PLoS One, 2020, 15(2):e227768.
[8] Xu YC, Mauro P, Hyun YJ, et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting[J]. Nat Med, 2019, 25(2):301-311.
[9] Chao F, Xie HS, Zhao J, et al. eIF4E-eIF4G complex inhibition synergistically enhances the effect of sorafenib in hepatocellular carcinoma[J]. Anticancer Drugs, 2021, 32(8):822-828.
[10] Jodie H, Anuradha T, Ailsa KH, et al. PKCβ facilitates leukemogenesis in chronic lymphocytic leukaemia by promoting constitutive BCR-mediated signalling[J]. Cancers (Basel), 2022, 14(23):6006-6024.
[11] Julie AW, Jason RP, Nandini S, et al. Protein kinase C Beta in the tumor microenvironment promotes mammary tumorigenesis[J]. Front Oncol, 2014, 4:87.
[12] Mariana T, Fabiana H MM, Aline H, et al. Timp1 promotes cell survival by activating the PDK1 signaling pathway in melanoma[J]. Cancers (Basel), 2017, 9(4):37.
[13] Ann RH, Mads HH, ?sa K?, et al. Protein kinase C isozymes associated with relapse free survival in non-small cell lung cancer patients[J]. Front Oncol, 2020, 10:590755.
[14] 劉敏,曾云,祝珊珊,等. 蛋白激酶CβⅡ誘導上皮-間質轉化及血管新生促進肝癌發展[J]. 解剖學報, 2020, 51(6):912-918.
Liu M, Zeng Y, Zhu SS, et al. Protein kinase CβⅡ promoting the development of hepatocellular carcinoma via inducing epithelial-mesenchymal transition and angiogenesis[J]. Acta Anat Sin, 2020, 51(6):912-918.
[15] Amit JS, Trever GB. Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology[J]. Trends Mol Med, 2019, 25(3):185-197.
[16] Samy L, Xu J, Rik D. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3):178-196.
[17] Yang J, Robert AW. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis[J]. Dev Cell, 2008, 14(6):818-829.
[18] 羅楊,童冰杰,趙賓,等. 除痰解毒方通過EMT途徑逆轉肺癌吉非替尼耐藥[J]. 中國病理生理雜志, 2019, 35(1):34-40.
Luo Y, Tong BJ, Zhao B, et al. Chutan-Jiedu decoction reverses resistance of lung cancer to gefitinib by processing EMT[J]. Chin J Pathophysiol, 2019, 35(1):34-40.
[19] Michael J, Laura L, Matthew L, et al. Translational control of breast cancer plasticity[J]. Nat Commun, 2020,11(1):2498.
[20] Hao PQ, Yu JJ, Richard W, et al. Eukaryotic translation initiation factors as promising targets in cancer therapy[J]. Cell Commun Signal, 2020, 18(1):175.
[21] Ruan H, Li XY, Xu X, et al. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis[J]. Elife, 2020, 9(11):60151-60176.
[22] Michal G, Jan S, Daniel H, et al. Inhibition of MNK pathways enhances cancer cell response to chemotherapy with temozolomide and targeted radionuclide therapy[J]. Cell Signal, 2016, 28(9):1412-1421.
[23] Wang WY, Wen QY, Luo JD, et al. Suppression of β- catenin nuclear translocation by CGP57380 decelerates poor progression and potentiates radiation-induced apoptosis in nasopharyngeal carcinoma[J]. Theranostics, 2017, 7(7):2134-2149.
[24] Blagosklonny MV. Cancer prevention with rapamycin[J]. Oncotarget, 2023, 14:342-350.
[25] Dorota G, Marta Z, Joanna P, et al. Dual targeting of melanoma translation by MNK/eIF4E and PI3K/mTOR inhibitors[J]. Cell Signal, 2023, 109:110742.
Protein kinase C β II mediates epithelial-mesenchymal transition and hepatocellular carcinoma metastasis by modulating translation initiation
LIU Min1△, LAI Min1, ZENG Yun1, ZHU Shanshan2, YOU Meigui1, GAO Chang3
(1,,361023,;2,,361023,;3,,361023,)
To investigate the molecular mechanism of protein kinase C β II (PKCβII) mediating epithelial-mesenchymal transition by up-regulation of Snail and Twist expression.[35S]-methionine incorporation assay and polysome profiling were performed to observe the effect of PKCβII on the translation of Snail and Twist mRNA. The impact of eukaryotic translation initiation factor 4E () knockdown on the expression of Snail and Twist regulated by PKCβII was examined by polysome profiling, Western blot and RT-qPCR. Western blot was used to observe the effect of PKCβII on signaling pathways modulating the eIF4E activity. Western blot was used to observe the effect of a mitogen-activated protein kinase-interacting kinase 1 (MNK1) inhibitor or rapamycin on PKCβII-regulated expression of Snail and Twist. Transwell assay was used to observe the impact ofknockdown on PKCβII-regulated invasion of hepatocellular carcinoma cells.[35S]-methionine incorporation assay and polysome profiling showed that PKCβII significantly promoted the translation of Snail and Twist compared with that of β-actin (<0.01). Knockdown ofinhibited PKCβII-mediated up-regulation of Snail and Twist mRNA translation and protein expression (<0.01). However, it caused no statistically significant changes in Snail and Twist mRNA levels. Overexpression of PKCβII activated extracellular signal-regulated kinase (ERK)/MNK1 and protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR)/eIF4E-binding protein 1 (4E-BP1) pathways to up-regulate the eIF4E activity (<0.01). The application of MNK1 inhibitor or rapamycin blocked PKCβII-induced up-regulation of Snail and Twist protein expression (<0.01). Knockdown ofinhibited the increased invasive ability of hepatocellular carcinoma cells induced by PKCβII (P<0.01).PKCβII up-regulates the activity of eIF4E through ERK/MNK1 and AKT/mTOR/4E-BP1 pathways, leading to preferential translation of Snail and Twist mRNA to mediate epithelial-mesenchymal transition and promote hepatocellular carcinoma metastasis. These findings suggest that PKCβII has potential as a therapeutic target for hepatocellular carcinoma.
hepatocellular carcinoma; protein kinase C β II; translation initiation; epithelial-mesenchymal transition; metastasis
R735.7; R363
A
10.3969/j.issn.1000-4718.2023.09.002
1000-4718(2023)09-1547-08
2023-06-20
2023-08-04
廈門市自然科學基金資助項目(No. 3502Z20227229);福建省自然科學基金面上項目(No. 2022J011403);福建省大學生創新訓練計劃項目(No. S202212631001)
Tel: 13779925194; E-mail: 654289363@qq.com
(責任編輯:宋延君,李淑媛)