999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation

2023-11-03 09:03:20JieWangGuigaoLiuQinbaiYunXichenZhouXiaozhiLiuYeChenHongfeiChengYiyaoGeJingtaoHuangZhaoningHuBoChenZhanxiFanLinGuHuaZhang
物理化學學報 2023年10期

Jie Wang ,Guigao Liu ,Qinbai Yun ,Xichen Zhou ,Xiaozhi Liu ,Ye Chen ,Hongfei Cheng ,Yiyao Ge ,Jingtao Huang ,Zhaoning Hu ,Bo Chen ,Zhanxi Fan ,4,5,Lin Gu ,Hua Zhang ,4,5,*

1 Key Laboratory of Fluid and Power Machinery of Ministry of Education,School of Materials Science and Engineering,Xihua University,Chengdu 610039,China.

2 Center for Programmable Materials,School of Materials Science and Engineering,Nanyang Technological University,Singapore 639798,Singapore.

3 Department of Chemistry,City University of Hong Kong,Hong Kong,China.

4 Hong Kong Branch of National Precious Metals Material Engineering Research Center(NPMM),City University of Hong Kong,Hong Kong,China.

5 Shenzhen Research Institute,City University of Hong Kong,Shenzhen 518057,Guangdong Province,China.

6 Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China.

7 National Special Superfine Powder Engineering Research Center,School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China.

8 Department of Chemistry,The Chinese University of Hong Kong,Hong Kong,China.

9 Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials,Department of Materials Science and Engineering,Tsinghua University,Beijing 100084,China.

Abstract: Direct methanol fuel cells(DMFCs)hold great promise as clean energy conversion devices in the future.Noble metal nanocatalysts,renowned for their exceptional catalytic activity and stability,play a crucial role in DMFCs.Among these catalysts,Pt- and Pd-based nanocatalysts are widely recognized as the most effective catalysts for the electrochemical methanol oxidation reaction(MOR),which is the key half-cell reaction in DMFCs.However,due to the high cost of Pt- and Pd-based materials,there is a strong desire to further enhance their catalytic performance.One of the most promising approaches for it is to develop noble metal-based alloy nanocatalysts,which have shown great potential in improving electrocatalytic activity.Notably,advancements in phase engineering of nanomaterials(PEN)have revealed that noble metal-based nanomaterials with unconventional phases exhibit superior catalytic properties in various catalytic reactions compared to their counterparts with conventional phases.To obtain noble metal-based nanocatalysts with unconventional crystal phases,wet-chemical epitaxial growth has been employed as a facile and effective method,utilizing unconventionalphase noble metal nanocrystals as templates.Nevertheless,epitaxially growing bimetallic alloy nanostructures with unconventional crystal phases remains a challenge,impeding further exploration of their catalytic performance in electrochemical reactions such as MOR.In this study,we utilize 4H hexagonal phase Au(4H-Au)nanoribbons as templates for the epitaxial growth of unconventional 4H hexagonal PdFe,PdIr,and PdRu,resulting in the formation of 4H-Au@PdM(M=Fe,Ir,and Ru)core-shell nanoribbons.As a proof-of-concept application,we investigate the electrocatalytic activity of the synthesized 4H-Au@PdFe nanoribbons towards MOR,which exhibit a mass activity of 3.69 A·mgPd-1,i.e.,10.5 and 2.4 times that of Pd black and Pt/C,respectively,placing it among the best Pd- and Pt-based MOR electrocatalysts.Our strategy opens up an avenue for the rational construction of unconventional-phase multimetallic nanostructures to explore their phase-dependent properties in various applications.

Key Words: Phase engineering of nanomaterials;Crystal phase;4H phase;Pd-based alloy;Methanol oxidation reaction

1 Introduction

Noble metal nanocatalysts have drawn broad attention thanks to their promising applications1-9.In order to maximize their catalytic activities,various structural features,including size10,facet11,dimension12,architecture13,morphology14and composition15,have been extensively investigated.Recently,phase engineering of nanomaterials(PEN)16-18,as an emerging hot research topic,has demonstrated the significant role of phases on the properties of noble metal nanocatalysts in various kinds of applications19-39.For instance,4H hexagonal Au(4HAu;4H:hexagonal close-packed(hcp)with a stacking sequence of “ABCB”)nanoribbon shows quite different optical response from face-centered cubic(fcc)Au according to the observed and simulated electron energy loss spectroscopy spectra26.Similarly,the catalytic performance of unconventional fcc-Ru nanoparticles for the CO oxidation is better than that of the hcp counterparts when their size is above 3 nm35.

Normally,in order to obtain unconventional-crystal-phase noble metal nanocatalysts,harsh experimental conditions,for example,high pressure40and high temperature41,are used.In comparison,wet-chemical synthesis is much more facile because it can be carried out under mild conditions.Particularly,by using unconventional-phase noble metal nanocrystals as the templates,wet-chemical epitaxial growth is very effective for the growth of materials with the same unconventional crystal phase21,26-30.For example,when 4H-Au nanoribbons are used as the templates,a series of noble metals(e.g.,Ir,Pt,Ru,Pd,Ag,Rh)with 4H phase can be prepared26,27.Furthermore,according to the earlier studies42,43,noble metal-based alloys present superior catalytic activities compared to monometallic noble metals.Therefore,it is highly desired to use the epitaxial growth method to prepare unconventional-crystal-phase noble metalbased alloy nanocatalysts.However,compared with monometallic nanostructures,it is challenging to epitaxially grow bimetallic alloy nanostructures while maintaining the unconventional crystal phase because of the different reduction potentials of two kinds of metals.

Here,by utilizing 4H-Au nanoribbons as templates,a range of Pd-based alloy nanostructures with 4H phase,including PdFe,PdIr,and PdRu,are obtainedviaepitaxial growth.Furthermore,the electrocatalytic methanol oxidation reaction(MOR)properties of the as-obtained 4H-Au@PdFe core-shell nanoribbons are investigated under alkaline conditions.Impressively,4H-Au@PdFe nanoribbons exhibit a mass activity of 3.69 A·mgPd-1,which is 10.5 and 2.4 times that of the Pd black and Pt/C,respectively,placing it among the best MOR electrocatalysts to date.

2 Results and discussion

4H-Au nanoribbons are firstly prepared by using our recently reported strategy with slight modifications26.The 4H crystal phase and ribbon-like shape of the as-obtained Au nanoribbons are confirmed by transmission electron microscopy(TEM,Fig.S1a-c,Supporting Information)and X-ray diffraction(XRD,Fig.S1d).The as-prepared 4H-Au nanoribbons are then utilized as templates for the growth of PdFe alloy to generate 4HAu@PdFe core-shell nanostructures.

Fig.1a and b present the TEM images of the 4H-Au@PdFe nanoribbons.The selected area electron diffraction(SAED)result(Fig.1c)of a representative 4H-Au@PdFe nanoribbon(Fig.1b)shows a characteristic diffraction pattern of 4H phase along the[110]4Horientation.The aberration-corrected highangle annular dark field scanning TEM(HAADF-STEM)image of a representative 4H-Au@PdFe nanoribbon(Fig.1d)shows continuous crystal lattice from the Au core to the PdFe shell,demonstrating the epitaxial deposition of PdFe shell.The interplane distances of 0.23 and 0.24 nm can be ascribed to the(004)4Hplanes of PdFe and Au,respectively(Fig.1d).In addition,the high-resolution HAADF-STEM images acquired from both the core(Fig.1e)and shell(Fig.1f)areas of the nanoribbon in Fig.1d,marked with yellow and green dashed squares,respectively,exhibit the characteristic close-packing mode of 4H phase,namely “ABCB” along the[001]4Horientation,which is manifested by the corresponding fast Fourier transform(FFT)patterns(Fig.1g and h).The HAADFSTEM image and the corresponding energy-dispersive X-ray spectroscopy(EDS)elemental mappings(Fig.1i)of a typical 4H-Au@PdFe nanoribbon show homogeneous covering of Pd and Fe atoms on the Au core,which could be also evidenced by the STEM-EDS line scan profile(Fig.S2).Based on the EDS spectrum(Fig.S3),the atomic ratio of Pd/Fe in 4H-Au@PdFe nanoribbons is ~2,matching well with the ratio(~2.1,as shown in Table S1,Supporting Information)obtained by inductive coupled plasma-optical emission spectroscopy(ICP-OES).

Fig.1 (a)Low-magnification TEM image of 4H-Au@PdFe nanoribbons.(b)High-magnification TEM image,(c)the corresponding SAED pattern,and(d)aberration-corrected high-resolution HAADF-STEM image of a representative 4H-Au@PdFe nanoribbon.(e,f)High-resolution HAADF-STEM images of the regions marked with green and yellow dashed squares in(d),respectively,and(g,h)the corresponding FFT patterns of(e)and(f),respectively.(i)HAADF-STEM image,and the corresponding STEM-EDS elemental mappings of a representative 4H-Au@PdFe nanoribbon.

Furthermore,by using the similar strategy mentioned above,PdIr and PdRu alloy nanostructures with the unconventional 4H phase can also be prepared(Fig.2).TEM images(Fig.2a,b)display the ribbon-like morphology of 4H-Au@PdIr core-shell nanoribbons.The SAED pattern(Fig.2c)of a 4H-Au@PdIr nanoribbon(Fig.2b)can be referred to the typical diffraction pattern of 4H phase along the[110]4Horientation.HRTEM image collected at the edge area of a representative 4H-Au@PdIr nanoribbon(Fig.2d)shows that the 4H crystal lattice retains continuous from the Au core to the PdIr shell,suggesting the epitaxial deposition of PdIr shell.Moreover,the inter-plane distances of 0.23 and 0.24 nm can be ascribed to the(004)4Hplanes of PdIr and Au,respectively(Fig.2d).Moreover,the asgrown PdIr alloy at the edge area features the characteristic close-packing mode of 4H phase,that is,“ABCB” along the[001]4Horientation(Fig.2d1),evidenced by the corresponding

Fig.2 (a,f)Low-magnification TEM images of 4H-Au@PdIr(a)and 4H-Au@PdRu(f)core-shell nanoribbons.(b,g)High-magnification TEM images,(c,h)the corresponding SAED patterns,and(d,i)HRTEM images of a representative 4H-Au@PdIr(b,c,d)and a typical 4H-Au@PdRu(g,h,i)core-shell nanoribbon.(d1,i1)Enlarged HRTEM images from the selected dashed square regions in(d,i).(d2,i2)The corresponding selected-region FFT patterns of(d1,i1).(e,j)DF-STEM images,and the corresponding STEM-EDS elemental mappings of a representative 4H-Au@PdIr(e)and a typical 4H-Au@PdRu(j)nanoribbon.

FFT pattern(Fig.2d2)as well.The DF-STEM and the corresponding EDS elemental mapping images(Fig.2e)display the homogeneous deposition of the Pd and Ir atoms on 4H-Au core.Similarly,Fig.2f presents a typical TEM image of 4HAu@PdRu nanoribbons.The SAED pattern(Fig.2h)of the 4HAu@PdRu nanoribbon shown in Fig.2g,which should be ascribed to the diffraction pattern of 4H phase along the[110]4Horientation,confirms the 4H crystal structure of the core-shell nanoribbon.According to the HRTEM image(Fig.2i),the 4H crystal lattice keeps continuous from the Au core to the PdRu shell,demonstrating that the PdRu shell is epitaxially grown on 4H-Au surface.Moreover,the inter-plane distances of 0.23 and 0.24 nm are ascribed to the(004)4Hplanes of PdRu and Au,respectively(Fig.2i).Furthermore,the PdRu shell characterizes a typical stacking sequence of “ABCB” along the[001]4Horientation(Fig.2i1),suggesting its 4H structure,as also evidenced by the corresponding FFT pattern(Fig.2i2).The Au nanoribbon is uniformly covered by PdRu shell,as confirmed by the DF-STEM image as well as the corresponding EDS elemental mappings(Fig.2j).

Previous literature has revealed that Pd-based alloy nanostructures are excellent MOR electrocatalysts because of their relatively high catalytic activity and better resistance to CO poisoning in alkaline media44-47.Here,we evaluate the electrocatalytic MOR activity of 4H-Au@PdFe nanoribbons at room temperature under alkaline conditions by using commercial Pd black and Pt/C(20 wt%)as benchmark catalysts.To evaluate their electrochemically active surface areas(ECSAs),the cyclic voltammetry(CV)curves are firstly measured in N2-saturated 1.0 mol·L-1KOH.As shown in Fig.3a,the cathodic peaks from 0.9 to 0.5 V(vs.reversible hydrogen electrode(RHE))in the CV curves of 4H-Au@PdFe nanoribbons and Pd black arise from the reduction of PdO to Pd48.Based on the previously published method48,the ECSA of electrocatalyst can be evaluated from the integrated charge(Q(mC))with respect to the cathodic peak according to the equation of ECSA=Q/(0.405×mPd),in whichmPdis the mass of loaded Pd(g).Therefore,the ECSA of 4H-Au@PdFe nanoribbon is calculated to be 15.6 m2·g-1and that of Pd black is calculated to be 27.3 m2·g-1.In addition,the ECSA of Pt/C is measured through the underpotential hydrogen adsorption/desorption method49based on the corresponding CV curve(inset of Fig.3a).The obtained ECSA value of Pt/C is 23.9 m2·g-1.Fig.3b exhibits the CV curves of various electrocatalysts measured in N2-saturated aqueous solution comprising 1.0 mol·L-1KOH and 1.0 mol·L-1methanol using a scan rate of 50 mV·s-1,and the current is normalized by the mass of Pd or Pt loaded.Manifestly,4HAu@PdFe nanoribbons possess superior performance to those of the Pd black and Pt/C electrocatalysts.For comparison,the mass activities(Jm)of these catalysts taken from their peak current densities in the forward scans are shown in Fig.3c.Specifically,4H-Au@PdFe nanoribbons exhibit the highestJmof 3.69 A·mgPd-1,which is 10.5 times that of Pd black(0.35 A·mgPd-1)and 2.4 times that of Pt/C(1.56 A·mgPt-1),comparable to the best among the published catalysts towards MOR(Table S2).In addition,the specific activity(Js)is evaluated by normalizing the corresponding currents to their ECSAs(Fig.3c).The specific activity of 4H-Au@PdFe nanoribbons is 23.6 mA·cm-2,which is about 18.2 and 3.6 times that of Pd black and Pt/C,respectively.The durability of these three catalysts,as another important indicator of electrocatalytic MOR performance,is also studiedviathe chronoamperometry test at 0.85 V(vs.RHE)for 6000 s.4H-Au@PdFe nanoribbons exhibit more retarded current decay over time by contrast with the Pd black and Pt/C catalysts,revealing their better stability towards MOR(Fig.3d).Moreover,the crystal phase and the morphology of 4HAu@PdFe nanoribbons after the chromoamperometric measurement are analyzed by scanning electronic microscopy(SEM)and TEM characterizations,both of which are well maintained(Fig.S4).Overall,the as-synthesized 4H-Au@PdFe nanoribbons could be exploited as a particularly competitive and durable electrocatalyst towards the electrochemical MOR.

Fig.3 (a)CV curves of 4H-Au@PdFe nanoribbons and Pd black.Inset:the CV curve of Pt/C.(b)Pd mass-normalized CV curves,and(c)histograms of mass and specific activities of 4H-Au@PdFe nanoribbons,Pd black and Pt/C electrocatalysts in aqueous solution comprising 1.0 mol·L-1 KOH and 1.0 mol·L-1 methanol with N2 saturated using a scan rate of 50 mV·s-1.Mass activities were normalized to the amounts of Pd(or Pt)loaded and specific activities were normalized to the ECSAs.(d)Chronoamperometric results towards MOR at 0.85 V(vs. RHE)over 4H-Au@PdFe nanoribbons,Pt/C and Pd black in N2-saturated aqueous solution comprising 1.0 mol·L-1 KOH and 1.0 mol·L-1 methanol.

3 Conclusions

To summarize,we have developed a general epitaxial growth strategy to prepare Pd-based alloy nanostructures with unconventional 4H phase by utilizing 4H-Au nanoribbons as the templates.Notably,4H-Au@PdFe nanoribbons exhibit an outstanding mass activity of 3.69 A·mgPd-1for electrocatalytic MOR,which is 10.5 and 2.4 times that of Pd black and Pt/C electrocatalysts,respectively,placing it among the best of previously published MOR catalysts.Our results reveal that the wet-chemical epitaxial preparation of new metal nanocatalysts possessing unconventional crystal phases offers a general and robust strategy towards the crystal-phase-manipulated growth of a wide range of multimetallic alloys,which is highly favorable to explore their phase-determined properties in various kinds of applications.

Author Contributions:Conceptualization,Methodology,Measurement,Investigation,Verification,Writing - Original Draft,Wang,J.and Liu,G.G.;Analyze data,Review &Editing,Yun,Q.B.,Zhou,X.C.,Chen,Y.,Cheng,H.F.and Ge,Y.Y.;Analyze data,Measurement,Liu,X.Z.,Huang,J.T.,Hu,Z.N.,Chen,B.,Fan,Z.X.and Gu,L.;Conceptualization,Methodology,Measurement,Investigation,Writing - Review &Editing,Supervision,Project Administration,Funding Acquisition,Zhang,H.

Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

主站蜘蛛池模板: 51国产偷自视频区视频手机观看| 波多野结衣无码视频在线观看| 午夜毛片免费观看视频 | 99re精彩视频| 亚洲经典在线中文字幕| 99热线精品大全在线观看| 免费看av在线网站网址| 亚洲欧美激情小说另类| 欧美国产综合视频| 国产麻豆福利av在线播放 | 国产成人精品2021欧美日韩| 91免费精品国偷自产在线在线| 免费国产高清精品一区在线| 99视频全部免费| 久久人搡人人玩人妻精品| 啊嗯不日本网站| 国产精品永久免费嫩草研究院| 超碰色了色| 精品三级网站| 久久人午夜亚洲精品无码区| 国产成人精品一区二区秒拍1o| a亚洲视频| 在线看片免费人成视久网下载| 天堂成人在线视频| 中国一级毛片免费观看| 国产欧美视频在线| 欧美亚洲另类在线观看| 尤物在线观看乱码| 黄色网站在线观看无码| 欧美精品一区二区三区中文字幕| 成人中文字幕在线| 香蕉伊思人视频| 日韩欧美中文| 亚洲成AV人手机在线观看网站| 永久毛片在线播| 国产人妖视频一区在线观看| 国产精品美女在线| 啪啪国产视频| 欧美国产成人在线| 男女性午夜福利网站| 青青青视频蜜桃一区二区| 午夜精品久久久久久久99热下载| 中文字幕日韩丝袜一区| 久久精品人妻中文系列| 久久综合色天堂av| 蜜臀AVWWW国产天堂| 在线亚洲精品福利网址导航| 伊人久久大香线蕉影院| 尤物亚洲最大AV无码网站| 一级毛片a女人刺激视频免费| 蜜桃臀无码内射一区二区三区| 亚洲欧美一区在线| 国内精品视频| 日本在线亚洲| 呦系列视频一区二区三区| 制服丝袜在线视频香蕉| 国产成人精品视频一区二区电影| 中文字幕永久在线观看| 四虎成人精品| 亚洲色图欧美激情| 欧美精品xx| 亚洲日本在线免费观看| 免费A级毛片无码免费视频| www亚洲精品| 亚洲第一极品精品无码| 色爽网免费视频| 欧美成人看片一区二区三区| 亚洲中字无码AV电影在线观看| 中文字幕在线观| 国产伦精品一区二区三区视频优播| 麻豆精品在线视频| 免费高清a毛片| 中文字幕欧美日韩高清| 91麻豆国产在线| 成人免费午夜视频| 成人欧美日韩| 日韩毛片免费视频| 最新痴汉在线无码AV| 国产亚洲一区二区三区在线| 中文字幕1区2区| 欧美日韩国产在线播放| 国产簧片免费在线播放|