王超慧,孫喜,王強剛,劉芮兵,李妮,楊小軍,劉艷利
地塞米松誘導肉雞脂肪肝模型的構建及效果分析
王超慧,孫喜,王強剛,劉芮兵,李妮,楊小軍,劉艷利
西北農林科技大學動物科技學院,陜西楊凌 712100
【背景】腹脂沉積過多和脂肪肝綜合征是家禽養殖中面臨的重要脂代謝紊亂產業問題,肝臟是家禽體內從頭合成脂肪酸的主要部位,也在物質代謝、膽汁生成、解毒等的調節中發揮重要作用。因此解析脂代謝紊亂機理將為家禽產業的健康發展提供參考依據,但畜禽動物發病機理的探究往往需要模型為前提。【目的】通過試驗評價地塞米松誘導肉雞脂肪肝的效果,為家禽脂代謝紊亂相關模型的構建提供參考。【方法】選用體重相近的35日齡AA肉雞16只,隨機分為對照組和地塞米松組,每組8個重復,地塞米松組連續7 d頸部皮下注射地塞米松磷酸鈉溶液(4.5 mg·kg-1體重),對照組注射同體積的生理鹽水,7 d后觀測肉雞肝臟病理性變化并對其進行油紅O染色,同時檢測血清生化與機體抗氧化指標,采用實時熒光定量PCR方法檢測肝臟中與脂質代謝和炎癥反應相關的基因表達。【結果】與對照組相比,地塞米松組肉雞肝臟指數顯著提高(<0.05),油紅O切片顯示肉雞肝組織有大量紅色脂滴出現,且肝臟中TG和TC含量均高于對照組(<0.05)。血清生化結果顯示地塞米松組谷草轉氨酶(AST)、總膽紅素(TBIL)、尿酸(UA)、總蛋白(TP)、高密度脂蛋白膽固醇(HDL-c)、低密度脂蛋白膽固醇(LDL-c)、總膽固醇(TC)和甘油三酯(TG)水平顯著高于對照組(<0.05),但谷丙轉氨酶(ALT)、葡萄糖(GLU)含量無顯著變化(>0.05)。地塞米松注射顯著提高了肉雞肝臟ACC、FAS、SCD1、PPARγ、ChREBP、SREBP-1c、IGF2、GR等脂質合成相關基因的表達(<0.05),但ELOVL6基因的表達量無顯著變化(>0.05);降低了脂質分解代謝相關基因CPT1、LPL、PPARα的mRNA豐度(<0.05);但地塞米松組與脂質水解相關的ATGL基因以及與脂質轉運相關CETP、MTTP基因表達量顯著高于對照組(<0.05);除此之外,地塞米松注射顯著提高了肉雞肝臟MyD88、NFκB、IL-6、TNF-α等與炎癥發生相關的基因表達(<0.05)。另一方面,抗氧化的檢測結果顯示肉雞肝臟和血清的總抗氧化能力無顯著變化(>0.05),但地塞米松組血清中的丙二醛含量顯著高于對照組(<0.05)。【結論】頸部皮下注射地塞米松可以誘導肉雞產生脂代謝紊亂,并引發機體氧化應激和肝臟炎癥反應,與脂肪肝疾病特征相似,可用來較快速地建立肉雞脂肪肝模型。
地塞米松;肉雞;脂肪肝綜合征
【研究意義】脂肪肝綜合征(FLS)是籠養雞非感染性疾病死亡的主要原因[1],普遍發生于籠養蛋雞,其次是過肥的肉種雞。該病的發生與雞的品種、日糧組成、環境、內分泌等多種因素有關,以致機體內脂質代謝功能紊亂,過量的脂質蓄積在肝臟,引起肝脂沉積,導致肝臟腫大,并伴有出血等癥狀[2]。除此之外,患脂肪肝的蛋雞產蛋率達到85%左右便下降,且雞蛋的重量和受精率以及種蛋的孵化率也會降低,給我國家禽養殖帶來一定的經濟損失[3-4]。另一方面,腹脂沉積過多也是肉雞養殖中常見的現象,影響飼糧的高效利用。肝臟是家禽進行脂質代謝的主要場所,在家禽快速生長過程中,肝臟易合成大量游離脂肪酸,使肝細胞的通透性改變,導致過多的脂質在肝臟中沉積并發生過氧化,產生大量自由基,損傷肝細胞的生物膜完整性,引起細胞炎癥壞死,也容易誘發脂肪肝[5-7]。因此,探究脂肪肝的發病機理是應對家禽脂代謝紊亂并尋找合適的預防措施的重要內容,而脂肪肝模型構建是探究機理和評價營養調控效果的前提。【前人研究進展】ZHANG等[8]采用連續6周飼喂蛋雞高脂日糧的方法誘導蛋雞脂肪肝模型,病理切片結果顯示,肝組織有大量脂滴聚集。YAO等[9]采用連續11周對蛋雞飼喂高能低蛋白日糧的方法構建脂肪肝模型,結果顯示肝指數以及炎癥反應相關因子顯著升高。LI等[10]通過敲除FXR基因的方法構建小鼠非酒精性脂肪肝模型,發現肝組織中FXR、PPAR-α的mRNA的表達顯著下降,PPAR-γ、PPAR-β的mRNA的表達量顯著升高。HU等[11]研究發現連續72 h皮下注射2 mg·kg-1地塞米松,可以顯著提高血清甘油三酯和膽固醇的含量,以及肝臟中脂肪酸轉運蛋白和糖皮質激素受體的表達。前人也曾報道地塞米松可在鼠和雞上用來誘導動物糖脂代謝紊亂和氧化應激模型,不同的動物品種以及不同的周齡注射劑量一般在1—4 mg·kg-1,誘導的周期在7—28 d,注射方式主要為腹腔注射或皮下注射[12-15]。【本研究切入點】前人研究采用的日糧、基因編輯等誘導方法構建的脂肪肝模型,耗時較長且成本較高。地塞米松是一種人工合成的糖皮質激素,可通過糖皮質激素受體通路促進脂質合成,同時也具有抗炎、免疫抑制和抗內毒素等作用。因此,選用地塞米松誘導肉雞脂肪肝模型不僅可以排除蛋雞產蛋時肝臟高強度脂質合成對機體脂代謝變化帶來的內源干擾,還具有能縮短誘導周期的優勢,更為便捷。現有報道多只是圍繞血清生化、脂代謝相關基因表達等某個層面研究地塞米松對動物脂代謝的影響,但脂肪肝的發生往往伴隨著機體炎癥、氧化應激等多方面的代謝反應變化,目前缺乏地塞米松對肉雞脂肪肝模型構建的系統性評價。【擬解決的關鍵問題】本研究采用頸部皮下注射地塞米松的方法誘導肉雞發生脂肪肝模型,通過肝臟形態學和病理性觀察,血清生化指標,肝臟中脂質代謝和炎癥反應相關的基因表達,以及機體抗氧化性能等方面系統性評價地塞米松誘導肉雞脂肪肝的效果,為家禽脂代謝紊亂相關模型的構建提供參考。
本試驗于2022年7—8月在西北農林科技大學養殖基地進行。預飼期5 d,正式試驗周期為7 d。
35日齡AA肉雞,來源于西北農林科技大學養殖基地。
地塞米松磷酸鈉注射液(5 mg·mL-1),購自辰欣藥業股份有限公司;Trizol、RNA反轉錄試劑盒和SYBR試劑盒購自TaKaRa公司;實時熒光定量PCR儀(iQ 5),購自Bio-Rad公司;核酸定量分析儀型號為Nanodrop ND-1000。
試劑盒:丙二醛(MDA)測定試劑盒(A003-1-2)、總抗氧化能力(T-AOC)檢測試劑盒(A015-1-2)、總膽固醇(TC)測定試劑盒(A111-1-1)、甘油三酯(TG)測定試劑盒(A110-1-1)均購自南京建成生物工程有限公司。
選取35日齡AA肉雞16只,隨機分為對照組和地塞米松組,兩組均飼喂相同日糧,自由飲水。地塞米松組按4.5 mg·kg-1頸部皮下注射地塞米松磷酸鈉溶液,對照組注射等體積生理鹽水。肉雞采用多層籠養,24 h光照,試驗期為7 d。
各組肉雞采樣前禁食12 h,稱重量后翅靜脈采血于無抗凝劑的真空采血管中,置于37 ℃水浴鍋中,待血清完全析出后,3 500 r/min離心10 min后獲得血清,保存于-80 ℃冰箱。頸靜脈放血后立即解剖,分離出肝臟并稱重,在左側取約1 cm3肝組織置于4%甲醛固定液中,并在同側取約2 g肝臟組織放入凍存管中,隨后置于液氮中速凍,后保存于-80 ℃冰箱。
1.6.1 肝組織病理學觀察 將固定的肝臟委派武漢塞維爾生物公司進行油紅O染色。隨后置于顯微鏡下觀察肝臟組織內脂滴形成情況。
肝臟指數=肝臟濕重/活體重×100%
1.6.2 血清生化指標檢測 血清中谷丙轉氨酶(ALT)、谷草轉氨酶(AST)、總膽紅素(TBIL)、尿酸(UA)、血清總蛋白(TP)、血清葡萄糖(GLU)、高密度脂蛋白膽固醇(HDL-c)、低密度脂蛋白膽固醇(LDL-c)、總膽固醇(TC)、甘油三酯(TG)委派楊凌示范區醫院進行檢測。
1.6.3 血清中T-AOC、MDA以及肝臟中T-AOC、MDA、TC、TG的檢測 準確稱取肉雞肝組織,按質量﹕體積=1﹕9的比例,加入9倍的生理鹽水,用高通量組織研磨儀進行勻漿,隨后將組織勻漿置于4℃下2 500 r/min離心10 min,取上清采用BCA法測定蛋白濃度;后按試劑盒說明書方法測定肝組織中T-AOC、MDA、TC、TG含量。
1.6.4 RT-PCR檢測基因mRNA相對表達水平 使用Trizol提取肝臟RNA,隨后根據試劑盒說明書進行反轉錄,得到相應的cDNA。使用SYBR Premix TaqTMII試劑盒進行RT-PCR,所有步驟嚴格按照說明書進行,以β-actin為內參基因。基因引物序列見表1。10 μL的反應體系如下:cDNA 1 μL,上游引物與下游引物各0.5 μL,SYBR Premix Taq 5 μL,超純水3 μL。RT-PCR的反應程序為:95 ℃預變性10 min,95 ℃變性10 s,60 ℃退火30 s,72 ℃延伸30 s,40個循環,采用2-ΔΔCt法計算基因相對表達量[16]。
數據分析利用SPSS 26.0統計軟件,采用T檢驗方法進行分析,以平均值±標準誤的形式表示,<0.05說明具有統計學意義。
如圖1所示,與對照組相比,地塞米松組肉雞肝組織出現大量紅色脂滴,肝指數、肝臟中TC、TG含量與對照組相比顯著升高(<0.05)。

表1 引物序列
如表2所示,與對照組相比,地塞米松組血清中AST、TBIL、UA、TP、HDL-c、LDL-c、TC、TG含量顯著升高(<0.05),但ALT、GLU含量無顯著變化(>0.05)。
如圖2所示,與對照組相比,地塞米松注射顯著提高了肉雞肝臟與脂肪酸合成相關基因ACC、FAS、SCD1、PPARγ、ChREBP、SREBP1c、IGF2、GR的表達水平(<0.05),ELOVL6的mRNA豐度無顯著變化(>0.05);顯著降低了CPT1、LPL、PPARα等與脂肪酸分解代謝相關基因的表達(<0.05)。但地塞米松組與脂肪酸水解相關的ATGL和與脂肪酸轉運相關的CETP、MTTP的mRNA的表達量顯著高于對照組(<0.05)。
如圖3所示,與對照組相比,地塞米松注射顯著提高了肉雞肝臟與炎癥反應相關基因MyD88、NFκB、IL-6、TNFα的mRNA的表達水平(<0.05)。
如圖4所示,地塞米松注射僅提高了血清中丙二醛的含量(<0.05),血清中總抗氧化能力、肝臟的總抗氧化能力和丙二醛含量均無顯著變化(>0.05)。
地塞米松已經被廣泛應用在短期誘導脂肪肝模型試驗中,當機體攝入過多地塞米松,會導致體內的胰島素抵抗增加,導致葡萄糖/胰島素穩態紊亂和肝臟中甘油三酯過度沉積,最終形成脂肪肝[17]。隨著疾病的不斷發展,使肝臟發生炎癥反應并伴隨有纖維化和肝硬化[18]。前人研究發現,經地塞米松處理后的小鼠肝指數增大,血清和肝臟中TC、TG含量升高[19-20],與本試驗結果一致。在病理學檢測中,油紅O染色結果顯示地塞米松組肉雞肝組織有大量脂滴,并且肝指數、肝臟中TC、TG含量升高。上述結果表明利用地塞米松誘導肉雞脂肪肝的模型構建成功。

圖2 地塞米松對肉雞脂代謝相關基因表達的影響

圖3 地塞米松對肉雞肝臟炎癥反應相關基因表達的影響
ALT、AST是存在于肝細胞內的胞內酶,當肝細胞受到損傷時,會穿過細胞膜進入血液中。因此,血清中ALT、AST含量升高反映了肝細胞受到一定程度的損傷。LIU等[21]采用低蛋氨酸低膽堿日糧法誘導小鼠發生脂肪肝,發現血清中AST、ALT含量與對照組相比顯著升高,與本試驗結果一致。本試驗進一步研究發現血清中與脂質代謝相關的指標 HDL-c、LDL-c、TC、TG含量顯著升高,表明地塞米松注射引起肉雞血脂代謝異常,與前人研究結果一致[22]。同時,當機體發生脂肪肝時,大量脂質沉積在肝臟,導致脂質代謝紊亂,而糖異生增強,使GLU水平升高[23],進而導致糖尿病,造成血中酮體水平升高,并由尿液排出,競爭性抑制腎小管對血液中UA的排出,使血中UA水平升高[24],本試驗中地塞米松組肉雞血清GLU和UA水平均顯著升高。
肝臟中脂代謝穩態由脂肪酸從頭合成、脂質分解代謝、脂肪酸轉運以及β-氧化4個生物過程完成。因此,研究與上述過程相關的基因表達能夠驗證模型構建的效果。胡云[12]利用糖皮質激素誘導雞發生脂肪肝,發現與脂質合成相關的SREBFl、FASN、ACC、SCD和GR等的mRNA表達水平顯著增加,同時降低了CPT1α等與β-氧化相關的基因表達。HU等[25]采用日糧中添加乙醇的方法誘導脂肪變性,發現SREBP-1c、ACC1和FASN的mRNA豐度顯著增加,CPT1和PPARα表達量顯著降低。其中PPARα的表達量與本試驗結果有差異,因PPARα的主要功能是參與脂肪氧化,在脂質代謝能力強的組織,尤其是肝臟中高表達,通過調節糖代謝與脂代謝來使機體能量處于平衡狀態[26]。因此,在本試驗中,可能是機體為維持機體能量平衡而導致肝臟內PPARα的表達量升高。同時,本試驗中與脂肪酸分解代謝相關基因ATGL的表達量顯著升高,與前人的研究有一定差異[27]。ATGL是PPARγ轉錄激活的靶基因位點[28],因PPARγ的mRNA的表達量升高,猜測本次試驗中ATGL的mRNA的表達量升高可能是由于PPARγ的反向促進導致,另一方面,也可能是由于機體脂質合成代謝顯著增強,肉雞的反饋性調節使得與脂質水解相關的某些基因出現上調的現象。同時,前人研究發現機體中IGF2的表達與FAS、ACC等脂肪酸合成相關基因的表達呈正相關[16],與本試驗研究結果一致。因此,本試驗中頸部皮下注射地塞米松導致肉雞肝臟脂代謝相關基因的表達發生了異常,脂質合成代謝顯著增強。
越來越多的研究表明脂肪肝的發生通常伴隨著炎癥的發生。MyD88和NFκB是炎癥反應中的核心的轉錄因子,在傳遞上游信息和炎癥級聯放大過程中發揮重要作用,當肝細胞發生損傷時,會促進Toll樣受體(TLR4)與下游的MyD88相互作用,進而激活NFκB并促進TL-6、TNFα等炎癥因子的表達[29]。與前人研究結果一致[30-31],本試驗中地塞米松組肉雞肝臟IL-6、MyD88、NFκB、TNFα的mRNA的表達量均顯著增加,表明地塞米松注射建立的肉雞脂肪肝模型已經處于該疾病的炎癥發生階段。
除此之外,脂肪肝疾病的發生往往伴隨著氧化應激的產生。一些內源性刺激或外源性刺激也可使肝臟發生氧化應激反應,使機體的氧化與抗氧化失衡,導致肝臟發生氧化損傷[7,32]。T-AOC能反映機體抗氧化物質和抗氧化酶的總抗氧化能力, MDA作為氧化應激的產物,其水平可以衡量動物體內氧化應激的程度。LI等[33]研究發現誘導小鼠發生脂肪肝,肝臟中T-AOC含量顯著下降,MDA水平顯著升高。但本試驗中肉雞肝臟的T-AOC和MDA均無顯著變化,但血清中MDA的含量顯著升高,表明機體確實受到了氧化應激,這種抗氧化結果的差異可能與物種不同有關。
本研究采用連續7 d頸部皮下注射地塞米松磷酸鈉的方法誘導肉雞脂肪肝模型,通過肝組織形態與病理特征,血清生化指標,肝臟脂代謝和炎癥反應相關基因表達,以及機體抗氧化指標等方面系統性評價地塞米松誘導肉雞脂肪肝的效果,發現注射地塞米松導致肉雞機體脂代謝紊亂,并引發氧化應激與炎癥反應,與脂肪肝疾病的特征相似,表明該方法可以用來較快速地建立脂肪肝模型,為家禽脂代謝紊亂相關模型提供理論依據。但由于地塞米松本身具有抗炎、鎮痛、抗過敏等功能,因此,該模式可能不適用于脂肪肝與抗炎、抗過敏等疾病的互作研究。
[1] METE A, GIANNITTI F, BARR B, WOODS L, ANDERSON M. Causes of mortality in backyard chickens in northern California: 2007-2011. Avian Diseases, 2013, 57(2): 311-315.
[2] ZHUANG Y, XING C H, CAO H B, ZHANG C Y, LUO J R, GUO X Q, HU G L. Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Scientific Reports, 2019, 9: 10141.
[3] 王譯彬, 劉瑞, 劉南南, 楊小軍, 劉艷利. 動物脂肪肝模型構建研究進展. 家畜生態學報, 2022, 43(6): 8-16.
WANG Y B, LIU R, LIU N N, YANG X J, LIU Y L. Research progress of fatty liver models in animals. Journal of Domestic Animal Ecology, 2022, 43(6): 8-16. (in Chinese)
[4] ROZENBOIM I, MAHATO J, COHEN N A, TIROSH O. Low protein and high-energy diet: a possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens. Poultry Science, 2016, 95(3): 612-621.
[5] XING C H, WANG Y, DAI X Y, YANG F, LUO J R, LIU P, ZHANG C Y, CAO H B, HU G L. The protective effects of resveratrol on antioxidant function and the mRNA expression of inflammatory cytokines in the ovaries of hens with fatty liver hemorrhagic syndrome. Poultry Science, 2020, 99(2): 1019-1027.
[6] 郭小權, 胡國良, 曹華斌, 張彩英, 李浩棠, 王小鶯. 高能低蛋白日糧致脂肪肝出血綜合征雞抗氧化能力和肝損傷的研究. 中國獸醫學報, 2010, 30(06):829-832.
GUO X Q, HU G L, CAO H B, ZHANG C Y, LI H T, WANG X Y. Study on antioxidant capacity and liver damage in chickens with fatty liver bleeding syndrome induced by high energy and low protein diet. Chinese Journal of Veterinary Science, 2010, 30(06):829-832. (in Chinese)
[7] JIAN H F, XU Q Q, WANG X M, LIU Y T, MIAO S S, LI Y, MOU T M, DONG X Y, ZOU X T. Amino acid and fatty acid metabolism disorders trigger oxidative stress and inflammatory response in excessive dietary valine-induced NAFLD of laying hens. Frontiers in Nutrition, 2022, 9: 849767.
[8] ZHANG Y H, LIU Z, LIU R R, WANG J, ZHENG M Q, LI Q H, CUI H X, ZHAO G P, WEN J. Alteration of hepatic gene expression along with the inherited phenotype of acquired fatty liver in chicken. Genes, 2018, 9(4): 199.
[9] YAO Y, WANG H H, YANG Y, JIANG Z H, MA H T. Dehydroepiandrosterone activates the GPER-mediated AMPK signaling pathway to alleviate the oxidative stress and inflammatory response in laying hens fed with high-energy and low-protein diets. Life Sciences, 2022, 308: 120926.
[10] LI Y Y, CAO C Y, ZHOU Y L, NIE Y Q, CAO J, ZHOU Y J. The roles and interaction of FXR and PPARs in the pathogenesis of nonalcoholic fatty liver disease. Arab Journal of Gastroenterology: the Official Publication of the Pan-Arab Association of Gastroenterology, 2020, 21(3): 162-168.
[11] HU X Y, WANG Y F, SHEIKHAHMADI A, LI X L, BUYSE J, LIN H, SONG Z G. Effects of glucocorticoids on lipid metabolism and AMPK in broiler chickens' liver. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2019, 232: 23-30.
[12] 胡云. 糖皮質激素誘導的雞脂肪肝發生機制與甜菜堿的緩解作用[D]. 南京: 南京農業大學, 2019.
HU Y. Mechanism of glucocorticoid-induced fatty liver in chickens and the relieving effects of betaine[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[13] XIANG L P, JIAO Y, QIAN Y L, LI Y, MAO F, LU Y. Comparison of hepatic gene expression profiles between three mouse models of Nonalcoholic Fatty Liver Disease. Genes & Diseases, 2021, 9(1): 201-215.
[14] 趙南南. 母源性甜菜堿緩解子代大鼠糖皮質激素誘導的非酒精性脂肪肝的作用及其機制[D]. 南京: 南京農業大學, 2018.
ZHAO N N. Maternal betaine alleviates glucocorticoid-induced nonalcoholic fatty liver disease in offspring rats and its mechanisms[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[15] 顏妍. 地塞米松誘導大鼠肝臟糖脂代謝紊亂分子機制研究[D]. 呼和浩特: 內蒙古農業大學, 2020.
YAN Y. Study on the molecular mechanism of dexamethasone induced hepatic glucose lipid metabolism disorder in rats [D]. Hohhot: Inner Mongolia Agricultural University, 2020. (in Chinese)
[16] 劉艷利, 黨燕娜, 段玉蘭, 楊小軍. 雞原代肝細胞培養及葉酸對脂質代謝相關基因表達的影響. 中國農業科學, 2017, 50(21): 4205-4211. doi: 10.3864/j.issn.0578-1752.2017.21.005.
LIU Y L, DANG Y N, DUAN Y L, YANG X J. Effect of folic acid on lipid metabolism associated gene expression in primarily cultured chickens hepatocytes. Scientia Agricultura Sinica, 2017, 50(21): 4205-4211. doi: 10.3864/j.issn.0578-1752.2017.21.005.(in Chinese)
[17] RAHIMI L, RAJPAL A, ISMAIL-BEIGI F. Glucocorticoid-induced fatty liver disease. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, 13: 1133-1145.
[18] FRIEDMAN S L, NEUSCHWANDER-TETRI B A, RINELLA M, SANYAL A J. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine, 2018, 24(7): 908-922.
[19] FENG Z W, PANG L J, CHEN S Y, PANG X H, HUANG Y S, QIAO Q, WANG Y L, VONGLORKHAM S, HUANG Q F, LIN X, WEI J B. Didymin ameliorates dexamethasone-induced non-alcoholic fatty liver disease by inhibiting TLR4/NF-κB and PI3K/Akt pathways in C57BL/6J mice. International Immunopharmacology, 2020, 88: 107003.
[20] GUPTA A P, SINGH P, GARG R, VALICHERLA G R, RIYAZUDDIN M, SYED A A, HOSSAIN Z, GAYEN J R. Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomedicine & Pharmacotherapy, 2019, 116: 108959.
[21] LIU B B, DENG X L, JIANG Q Q, LI G X, ZHANG J L, ZHANG N, XIN S L, XU K S. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomedicine & Pharmacotherapy, 2020, 125: 109895.
[22] FAN Y B, HE Z W, WANG W, LI J J, HU A M, LI L, YAN L, LI Z J, YIN Q. Tangganjian Decoction ameliorates type 2 diabetes mellitus and nonalcoholic fatty liver disease in rats by activating the IRS/PI3K/AKT signaling pathway. Biomedicine & Pharmacotherapy, 2018, 106: 733-737.
[23] LIANG M, HUO M H, GUO Y, ZHANG Y Y, XIAO X, XV J, FANG L X, LI T Q, WANG H, DONG S Y, JIANG X W, YU W H. Aqueous extract ofimproves non-alcoholic fatty liver and obesity in mice induced by high-fat diet. Frontiers in Pharmacology, 2022, 13: 1084435.
[24] 沈翠萍. 糖尿病患者血清尿酸及血脂檢測效果分析. 世界最新醫學信息文摘, 2016, 16(97): 155.
SHEN C P. Analysis on the detection effect of serum uric acid and blood lipid in diabetic patients. World Latest Medicine Information, 2016, 16(97): 155. (in Chinese)
[25] HU M Y, CHEN Y, DENG F, CHANG B, LUO J L, DONG L J, LU X, ZHANG Y, CHEN Z L, ZHOU J. D-mannose regulates hepatocyte lipid metabolismPI3K/akt/mTOR signaling pathway and ameliorates hepatic steatosis in alcoholic liver disease. Frontiers in Immunology, 2022, 13: 877650.
[26] 徐文靜, 范江霖. PPARα與FXR通路在非酒精性脂肪肝病中的交互作用. 生命的化學, 2020, 40(9): 1500-1506.
XU W J, FAN J L. Crosstalk between PPARα and FXR in nonalcoholic fatty liver disease. Chemistry of Life, 2020, 40(9): 1500-1506. (in Chinese)
[27] WANG A Q, ZHANG K X, FU C Y, ZHOU C M, YAN Z G, LIU X L. Alleviation effect of conjugated linoleic acid on estradiol benzoate induced fatty liver hemorrhage syndrome in Hy-line male chickens. Journal of Animal Science, 2023, 101: skad045.
[28] KRALISCH S, KLEIN J, LOSSNER U, BLUHER M, PASCHKE R, STUMVOLL M, FASSHAUER M. Isoproterenol, TNFalpha, and insulin downregulate adipose triglyceride lipase in 3T3-L1 adipocytes. Molecular and Cellular Endocrinology, 2005, 240(1/2): 43-49.
[29] WANG L L, JIA Z D, WANG B C, ZHANG B. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway. The Turkish Journal of Gastroenterology: the Official Journal of Turkish Society of Gastroenterology, 2020, 31(12): 902-909.
[30] YANG J Y, ZHANG Y, YI H F, LIAO Y, SHU L, ZHANG S, LI C Y, AN L, DU N L, SHI Z H, MA W. Fuzi-lizhong decoction alleviates nonalcoholic fatty liver disease by blocking TLR4/MyD88/TRAF6signaling. Evidence-Based Complementary and Alternative Medicine: ECAM, 2022, 2022: 1637701.
[31] WU J T, YANG G W, QI C H, ZHOU L, HU J G, WANG M S. Anti-inflammatory activity of platycodin d on alcohol-induced fatty liver rats via tlr4-myd88-nf-κb signal path. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 2016, 13(4): 176-183.
[32] ZHU M K, LI H Y, BAI L H, WANG L S, ZOU X T. Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations. Poultry Science, 2020, 99(6): 3215-3228.
[33] LI Y N, WU S D. Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway. Molecular and Cellular Biochemistry, 2018, 448(1): 175-185.
Fatty Liver Model Construction and Its Effectiveness Evaluation Induced by Dexamethasone in Broilers
WANG ChaoHui, SUN Xi, WANG QiangGang, LIU RuiBing, LI Ni, YANG XiaoJun, LIU YanLi
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi
【Background】Excessive abdominal fat deposition and fatty liver syndrome are important industrial problems of lipid metabolism disorder in poultry breeding. The liver is the main site of de novo fatty acid synthesis in poultry, which plays a vital function in nutrients metabolism, formation of bile acids and detoxication. Therefore, the mechanism analysis of lipid metabolism disorder will provide reference for the healthy development of poultry industry, but the disease model is necessary for pathogenesis research. 【Objective】This experiment was conducted to evaluate the effect of dexamethasone-induced fatty liver in broilers, aimingto provide the reference for the construction of lipid metabolism disorder model in poultry. 【Method】Sixteen 35-day-old AA broilers with similar body weight were randomly divided into control group and dexamethasone group (DXM), with 8 replicates in each group. The birds in the DXM were injected subcutaneously with dexamethasone sodium phosphate (4.5 mg·kg-1) for 7 days, and the birds in the control group were given the administration of normal saline injection. After 7 days, oil red O staining was used to analyze the histopathological changes of the liver, and serum biochemical and antioxidant indexes were detected. RT-PCR was applied to detect genes expression related to lipid metabolism and inflammatory response in the liver. 【Result】Compared with the control group, the liver index of broilers in the DXM was significantly increased (<0.05). Oil red O sections showed a large number of red lipid droplets, and the contents of TGand TC in the liver were higher than those in the control group (<0.05). Serum biochemical results showed that aspartate amino transferase (AST), total bilirubin (TBIL), uric acid (UA), total protein (TP), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), total cholesterol (TC) and triglyceride (TG) levels in the DXM were significantly higher than those in the control group (<0.05), but there was no significant difference about alanine aminotransferase (ALT) and glucose (GLU) (>0.05). Dexamethasone injection significantly increased genes expression about lipid synthesis, such as ACC, FAS, SCD1, PPARγ, ChREBP, SREBP-1c, IGF2 and GR in the liver (<0.05), but ELOVL6 expression was not affected (>0.05). In addition, genes expression about lipid catabolism such as CPT1, LPL and PPARα were deceased in DXM group (<0.05). However, the expression ofgene related to lipid hydrolysis,andgene related to lipid transport were significantly higher in DXM group (<0.05). On the other hand, DXM injection significantly increased the genes expression of,,,in the liver of broilers (<0.05). Antioxidant analysisshowed that there was no significant change in the total antioxidant capacity of liver and serum (>0.05), but the content of malondialdehyde in serum was significantly higher in DXM group (<0.05).【Conclusion】Neck subcutaneous injection of DXM could cause lipid metabolism disorders in broilers, and lead to oxidative stress and liver inflammation, which was similar to the characteristics of fatty liver disease, indicating that this method could be used to establish the fatty liver model in broilers quickly.
dexamethasone; broiler; fatty liver syndrome

10.3864/j.issn.0578-1752.2023.20.015
2022-12-20;
2023-05-30
國家重點研發青年科學家項目(2022YFF1001000)、陜西省青年科技新星項目(2022KJXX-13)、大學生創新創業訓練計劃(202210712104,S202210712483)
王超慧,Tel:15621030107;E-mail:WW15621030107@163.com。通信作者劉艷利,E-mail:liuyanli@nwsuaf.edu.cn
(責任編輯 林鑒非)