趙綺 方政





摘 要:超纖合成革在日常使用過程中極易被污漬沾污,且難以清洗。通過在超纖合成革表面構筑具有微-納結構的復合水凝膠涂層,可實現超纖合成革全效去除水性和油性污漬的效果。超纖合成革經等離子體活化處理后,將含有親水性處理后的石墨相氮化碳(g-C3N4)的溫敏聚合物單體和交聯劑的混合溶液均勻涂覆于合成革表面。利用交聯作用和g-C3N4納米顆粒的可控聚集行為,在超纖合成革表面構筑具有微-納尺寸突起結構的復合水凝膠涂層。利用K/S值表征微-納結構與光催化作用對超纖合成革表面油性和水性污漬協同清潔效果。結果表明:借助微-納結構的高比表面積和水凝膠良好的親水性,協同g-C3N4的光催化特性可以極大地提升油性和水性污漬的去除率,實現改性后超纖合成革的高效清潔性能。
關鍵詞:超纖合成革;復合水凝膠;微-納結構;光催化;高效清潔
中圖分類號:TS195.6 文獻標志碼:A 文章編號:1009-265X(2023)06-0036-07
隨著人們環保意識的日益增強,合成革被用于代替真皮,應用于服裝、箱包、鞋帽、車輛和其他日常用品中。在眾多的合成革中,超纖合成革制備容易、成本低,同時具有和天然皮革近似的外觀、手感和功能,越來越受到人們的關注,應用非常廣泛。但是在日常使用中,超纖合成革面料極易受到污漬的污染,較難清洗。如何簡單有效地去除超纖合成革表面的污漬,同時減少清潔過程中能源和清潔劑的消耗,成為亟待解決的問題。通過超纖合成革表面的改性,實現其高效清潔功能,在功能紡織品領域具有重要的實用價值與應用前景。
水凝膠是一種具有三維網狀結構的功能性聚合物,被廣泛應用于生物醫學領域[1-3]、日常化學[4-6]和工業領域[7-9]。在以前的研究中,通過引入含有溫敏聚合物單體的水凝膠涂層,通過不同溫度下表面親/疏水性的轉變,可以實現材料表面的易清潔性能。主要原理是當外界溫度低于低臨界共溶溫度(Lower critical solution temperature, LCST)時,材料表面具備親水性時,水滴在表面鋪展開來,將灰塵和基板隔絕開來,因此灰塵附著力變差,水很容易沖刷掉附著在表面的污染物[10-11]。當溫度大于LCST時,材料表面具備超疏水性時,接觸角增大至150°及以上,水分子在表面團聚成水滴,水滴在重力的作用下運動,將灰塵粘附帶走。但是這類方法只能有效去除油性污漬,如果污漬是親水性的,則會牢牢附著在超纖合成革表面,簡單的水沖洗也不能將其除去。基于上述缺點,有必要進一步改進超纖合成革的水凝膠來解決上述問題。
近年來,光催化以其自潔、防腐、防污等特點引起了極大關注。其中石墨氮化碳(g-C3N4)作為一種非金屬光催化劑已經在光催化領域進行了廣泛的研究[12-13],出色的光催化特性、適度的帶隙和較低的生產成本,已經在中國市場上具有很高的知名度[14-15]。由于光催化過程中生成的自由基可有效分解有機化合物,通過在水凝膠涂層中引入g-C3N4,可利用其有效去除水性污漬,從而實現同步提升水性/油性污漬去除的效果。
基于以上論述,在本文中,擬通過等離子體處理,賦予超纖合成革表面活性基團,采用丙烯酸酯類單體結合丙烯酰胺和阿拉伯膠在超纖合成革表面制備水凝膠,并進一步引入光催化劑g-C3N4納米顆粒,將制備的水凝膠涂在等離子體處理過的超纖合成革上。借助水凝膠的親水性實現對油性污漬的高效去除,利用g-C3N4在光照下可產生自由基的特性實現對水性污漬的快速去除,最終獲得具有高效清潔效果的復合水凝膠涂層改性超纖合成革。
1 實 驗
1.1 材料和儀器
材料:超纖合成革從浙江禾欣科技有限公司獲得;阿拉伯膠(GA,醫藥級)、丙烯酰胺(AAm,AR)、N,N,N′,N′-四甲基乙二胺(TEMED,AR)、聚乙二醇甲醚甲基丙烯酸酯(OEGMA300,純度95%)和過硫酸銨(APS,純度99.99%),購自Aladdin;羅丹明B(RhB,AR)、N,N′-亞甲基雙(丙烯酰胺)(MBA,純度99%)和尼羅紅(NR,純度95%),從Macklin獲得。
儀器:掃描電子顯微鏡(Gemini SEM500型,美國Zeiss UK公司),紅外光譜儀(Vertex70型,德國布魯克公司),原子力顯微鏡(Bruker Dimension ICON,德國布魯克公司),氙燈(HDL-II,博貝照明電器廠),K/S儀器(DC600, Datacolor公司)。
1.2 復合水凝膠涂層改性超纖合成革的制備
將0.5 g阿拉伯樹膠(GA)、1.0 g丙烯酰胺(AAm)、714 μL 2-甲基-2丙烯酸-2-[2-(2-甲氧基乙氧基)乙氧基]乙酯(OEGMA300)、0.01 g N,N′-亞甲基雙丙烯酰胺(MBA)溶解在20 mL去離子水中,并在室溫下持續攪拌20 min;然后將25 mg經親水性處理的g-C3N4(1.0 g g-C3N4分散到45 mL濃度為0.1 mol/L的NaOH溶液中,在80 ℃下加熱10 h,離心收集沉淀物即得親水性g-C3N4,g-C3N4的合成方法參考文獻[16])添加到水凝膠單體溶液中并用超聲波處理30 min;分別將10 mg過硫酸銨(APS)和10 μL N,N,N′,N′-四甲基乙二胺(TMEDA)作為氧化還原引發劑加入燒杯攪拌5 min。待溶液變得黏稠后,將其均勻涂抹在經氧等離子體活化處理后的超纖合成革表面(功率30 W、時間3 min、工作壓強為3 kPa);最后,將其放置在45 ℃烘箱中聚合5 min,確保超纖合成革與復合水凝膠完全交聯,制備形成超纖合成革樣品1(親水性g-C3N4質量分數為0.5%)。為了進行對比實驗,提升g-C3N4含量,制備形成超纖合成革樣品2(親水性g-C3N4質量分數為1.0%)、超纖合成革樣品3(親水性g-C3N4質量分數為2.0%),同時為了研究未經親水性處理g-C3N4對去除油性污漬的影響,超纖合成革樣品4(g-C3N4質量分數為2.0%,未經親水處理)。
1.3 測試與表征
1.3.1 復合水凝膠涂層改性超纖合成革形態測試
復合水凝膠涂層改性超纖合成革形態測試采用SEM和AFM測試完成。SEM測試采用Gemini SEM500型掃描電子顯微鏡測試復合水凝膠涂層改性超纖合成革的表面形態。AFM測試采用Bruker Dimension ICON原子力顯微鏡來觀察復合水凝膠涂層的超纖合成革表面形貌。
1.3.2 復合水凝膠涂層改性超纖合成革的ATR-FTIR測試
采用Vertex70型紅外光譜儀測試復合水凝膠涂層改性超纖合成革的表面化學組成和結構特征,掃描波數范圍設置為500~4000 cm-1,分辨率和掃描時間分別設置為4 cm-1和32 s。
1.3.3 復合水凝膠涂層改性超纖合成革的清潔性能表征
通過去除有色污漬(羅丹明B和含尼羅紅的食用油污漬),評估了復合水凝膠涂層改性超纖合成革的清潔性能。為了研究超纖合成革的水性污漬(羅丹明B)去除性能,將復合水凝膠涂層的超纖合成革放置在氙燈(HDL-II,博貝照明電器廠)下,控制氙燈與涂層合成革的距離為10 cm以模仿太陽光強度。在涂層合成革表面涂上100 mL 0.2g/L羅丹明B(RhB)溶液,并使用K/S儀器(DC600, Datacolor公司)測定表面顏色變化。為了研究超纖合成革的油性污漬去除性能,在使用食用油和尼羅紅的混合物(體積比為1∶1)對其表面進行染色后,使用去離子水在25 ℃下沖洗30 s,隨后使用K/S儀器測定沖洗前后的表面顏色變化。
2 結果與討論
2.1 表面成像分析
SEM表面成像分析:樣品1—3的電鏡掃描形態如圖1所示,可以看到隨著g-C3N4含量提升(質量分數分別為0.5%、1.0%、2.0%),表面明顯可以看到更多的g-C3N4聚集顆粒。
AFM表面成像分析:如圖2所示,可以看到改性后的超纖合成革表面由于含有g-C3N4納米顆粒,表面粗糙不平,有很多小的突起。從樣品1—3的AFM表面成像分析可以看出,在g-C3N4含量提升的情況下(質量分數分別為0.5%、1.0%、2.0%),粗糙度也升高(分別為106、126、154 nm)。通過SEM圖,可以清晰地觀察到隨著添加的g-C3N4含量的增加,復合水凝膠涂層表面的聚集效應更趨明顯,同時結合AFM圖,可以明確地觀察到隨著g-C3N4含量的增加,表面的粗糙度亦提升,說明g-C3N4含量的增加有利于復合水凝膠表面微-納結構的構建。
2.2 ATR-FTIR測試結果分析
測試結果如圖3所示,可以看到樣本1—3的ATR-FTIR測試結果顯示基本一致,只有在810 cm-1處峰強度不同,主要是由于親水性g-C3N4含量的提升造成810 cm-1處峰強度變強。這也進一步證明了增加復合水凝膠涂層制備過程中的親水性g-C3N4含量,可以提升涂層表面的g-C3N4含量,利于構建微-納結構。
2.3 水性污漬去除效果分析
將樣品1—3所制備的改性超纖合成革平鋪于玻璃皿底部,在其表面均勻的涂抹羅丹明B溶液,然后置于氙燈下光照,結果如圖4(a)所示。同時測試不同表面粗糙度的復合水凝膠涂層改性超纖合成革去除水性污漬RhB的K/S值隨時間的變化,結果如圖4(b)所示。相同時間內,復合水凝膠涂層的粗糙度隨著g-C3N4含量的增加而變大。同時K/S值亦隨著粗糙度的增加而呈現更快的下降趨勢,在表面粗糙度為154 nm時,超纖合成革表面的RhB在180 min內的降解率達83.42%,表明涂層表面的水性污漬被更多地去除了,實現了對水性污漬的高效去除。主要原理是g-C3N4具有優異的光催化性能,在光照下可生成烴基自由基、超氧自由基,能夠降解各種有機物,在此基礎上再借助微納結構突起的高比表面積,顯著提升了附著表面的水性污漬與光催化劑的接觸面積,從而進一步提高了分解水性污漬的效率。
2.4 油性污漬去除效果對比測試結果分析
將樣品1—4所制備的改性超纖合成革平鋪于玻璃皿底部,在其表面均勻涂抹含食用油的尼羅紅溶液,然后用去離子水進行沖洗,結果如圖5(a)所示。同時測試不同含量親水性處理的及未親水處理的g-C3N4水凝膠涂層改性超纖合成革去除油性污漬的K/S值變化,結果如圖5(b)所示。第一列(黑色)為用含有尼羅紅的食用油染色后的K/S值與初始狀態的K/S值的差值,第二列(白色)為用蒸餾水在25 ℃下沖洗30 s后的K/S值與初始狀態的K/S值的差值。
隨著g-C3N4含量的增加,復合水凝膠涂層改性超纖合成革在涂抹含食用油的尼羅紅溶液后,其K/S值與初始值的差從0.83降到0.49,由于親水g-C3N4的添加,增強了復合水凝膠涂層的親水性,而親水性的提高使油性污漬更不易附著,因此K/S值與初始值的差值表現出了減小的趨勢。用蒸餾水
在25 ℃下沖洗30 s后,g-C3N4質量分數分別為0.5%和1.0%的復合水凝膠涂層改性超纖合成革的K/S值變化分別為0.28和0.21,這意味著仍然有大量的食用油殘留在表面,而g-C3N4質量分數為2.0%的復合水凝膠涂層改性超纖合成革沖洗后的K/S值與初始值的差只有0.08,這表明幾乎所有的油漬都從表面去除了。對于樣品4所制備的g-C3N4質量分數為2.0%未經親水性處理的復合水凝膠涂層改性超纖合成革,同樣進行與樣品1—3相同的操作,測試結果如圖5所示,染色后與初始值的差為1.05,較g-C3N4質量分數為2.0%經親水性處理的復合水凝膠改性超纖合成革的值要高,說明未處理的g-C3N4增加涂層表面疏水性,所以導致更油漬更容易沾染上去,同時,其沖洗前后K/S值的變化為0.41,可知其去除油性污漬性能相比前面3個樣品變差了。
上述現象主要是由于水凝膠中固有的羥基和羧基自由基與經等離子體處理過的超纖合成革的羥基和羧基自由基之間的強氫鍵交聯起來,獲得的復合水凝膠涂層表面由于分散有親水性g-C3N4聚集體,形成了具有優異親水性的微-納結構,由于水凝膠自身具有的高表面能,加上親水性g-C3N4賦予其增大的粗糙度,其表面會更加親水,從而顯著降低油性污漬和復合水凝膠涂層間的結合力,由此實現對油性污漬的有效去除。
3 結 論
通過將共混有親水處理的g-C3N4納米催化劑和交聯劑的溫敏聚合物單體溶液均勻涂覆于經等離子體活化處理后的超纖合成革表面,借助交聯反應和納米催化劑的自發聚集效應,成功地在超纖合成革表面構筑了具有微-納結構的復合水凝膠涂層。親水g-C3N4可有效增強油性污漬的去除能力,與未親水處理的g-C3N4相比,清潔效果提升80%;同時由于g-C3N4納米顆粒在復合水凝膠表面的微-納突起結構,其比表面積顯著增加,有效增強了g-C3N4光催化降解效果,當復合水凝膠涂層的表面粗糙度為154 nm時,180 min內對合成革表面的RhB的降解效果可達83.42%,較粗糙度為106 nm的復合水凝膠涂層的降解效率提升34%。最終獲得的復合水凝膠改性超纖合成革能夠高效去除各種油性/水性污漬,可應用于汽車內飾件、家具等多個領域,具有廣闊的市場前景。
參考文獻:
[1]趙嬋,劉昊,陳潔瑩,等.溫度/超聲雙重響應型相變液滴對水凝膠結構性能的調控[J].南京醫科大學學報(自然科學版),2022,42(7):948-956.
ZHAO Chan, LIU Hao, CHEN Jieying, et al. Structure and properties regulation of hydrogels by temperature/ultrasound dual-responsive phase-change droplets[J]. Journal of Nanjing Medical University (Natural Sciences), 2022, 42(7): 948-956.
[2]KURBASIC M, GARCIA A M, VIADA S, et al. Tripeptide self-assembly into bioactive hydrogels: Effects of terminus modification on biocatalysis[J]. Molecules, 2020, 26(1): 173.
[3]賴彩云,潘煒倫,李博,等.聚多巴胺溫敏水凝膠敷料的制備及其抗菌性能研究[J].暨南大學學報(自然科學與醫學版),2022,43(4):447-452.
LAI Caiyun, PAN Weilun, LI Bo, et al. Preparation and antibacterial activity of polydopamine temperature-sensitive hydrogel dressing[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2022, 43(4): 447-452.
[4]CHEN G Q, HU O D, LU J, et al. Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor[J]. Chemical Engineering Journal, 2021, 425: 131505.
[5]FENG G Y, ZHANG S T, ZHONG S L, et al. Temperature and pH dual-responsive supramolecular hydrogels based on riboflavin sodium phosphate and 2, 6-Diaminopurine with thixotropic and fluorescent properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127548.
[6]李嬌,王超,田瑞,等.環境響應性的木質素基水凝膠材料研究進展[J].中國造紙,2022,41(12):111-118.
LI Jiao, WANG Chao, TIAN Rui, et al. Review on lignin-based hydrogel materials with environmental responsiveness[J]. China Pulp & Paper, 2022, 41(12): 111-118.
[7]姜旻,郝雪芳,葉磊,等.聚N-羥乙基丙烯酰胺-明膠基水凝膠傳感器的制備及性能[J].高分子材料科學與工程,2022,38(7):149-158,167.
JIANG Min, HAO Xuefang, YE Lei, et al. Preparation andproperties of poly (N-hydroxyethyl acrylamide)-gelatin-
based hydrogel sensor [J]. Polymer Materials Science & Engineering, 2022, 38(7): 149-158,167.
[8]JANA S, RAY J, MONDAL B, et al.pH responsive adsorption/desorption studies of organic dyes from their aqueous solutions by katira gum-cl-poly(acrylic acid-co-N-vinyl imidazole) hydrogel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 472-486.
[9]余云材,張毅,林玲,等.三乙醇胺硼酸酯交聯制備聚乙烯醇水凝膠及其吸附性能研究[J].功能材料,2022,53(8):8226-8230.
YU Yuncai, ZHANG Yi, LIN Ling, et al. Preparation of hydrogel by crosslinking of polyvinyl alcohol with trietha-nolamine borate [J]. Journal of Functional Materials, 2022, 53(8): 8226-8230.
[10]BAHATTAB M A, ALHOMOUDI I A, ALHUSSAINI M I, et al. Anti-soiling surfaces for PV applications prepared by sol-gel processing: Comparison of laboratory testing and outdoor exposure[J]. Solar Energy Materials and Solar Cells, 2016, 157: 422-428.
[11]HAGER P J, SCHLECHTE J S. Silica coating for enhanced hydro-philicity: US, 20130071649 [P]. 2013-03-21.
[12]蔡文宇,劉成寶,陳豐,等.g-C3N4/CeO2/BiOBr三相復合材料的制備及其可見光催化降解RhB性能[J].材料工程,2023,51(2):131-140.
CAI Wenyu, LIU Chengbao, CHEN Feng, et al. Preparation of g-C3N4/CeO2/BiOBr composite and its photocatalytic degradation property for RhB under visible light [J]. Journal of Materials Engineering, 2023, 51(2): 131-140.
[13]江志勇,路蘊,孫建華,等.磷鎢酸/S摻雜的g-C3N4復合光催化材料的制備及光催化性能研究[J].水處理技術,2022,48(10):88-91.
JIANG Zhiyong, LU Yun, SUN Jianhua, et al. Synthesis of phosphotungstic acid/S-doped g-C3N4 photocatalyst and the photocatalytic performances [J]. Technology of Water Treatment, 2022, 48(10): 88-91.
[14]張亞蘋,李伯珍,閆海彥,等.g-C3N4納米片的合成與光催化性能研究進展[J].高分子通報,2021(10):11-20.
ZHANG Yaping, LI Bozhen, YAN Haiyan, et al. Advanced in preparation of g-C3N4 nanosheets and its photocatalytic activity [J]. Polymer Bulletin, 2021(10): 11-20.
[15]肖開棒,許偉城,梁發文,等.MO源改性石墨相氮化碳(g-C3N4)活化過一硫酸鹽可見光降解羅丹明B的性能研究[J].環境科學學報,2021,41(9):3521-3534.
XIAO Kaibang, XU Weicheng, LIANG Fawen, et al. Efficient activation of peroxymonosulfate by Mo source modified graphite phase carbon nitride (g-C3N4) for the degradation of Rhodamine B under visible light [J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3521-3534.
[16]HU N, CHEN C, TAN J, et al. Enhanced adsorption of methylene blue triggered by the phase transition of thermo-responsive polymers in hybrid interpenetrating polymer network hydrogels[J]. ACS Applied Polymer Materials, 2020, 2(8): 3674-3684.
Construction of efficient cleaning properties of microfiber synthetic leather surfaces based on micro-nano structures and photocatalysis
ZHAO Qi1, FANG Zheng 2
Abstract: Because of its natural leather-like structure, microfibre synthetic leather has excellent resistance to wear, ageing, as well as cold and breathability, and is widely used in furniture and leather goods. However, microfibre synthetic leather is prone to contamination by various types of stains in use, and due to the special characteristics of furniture, etc., stain removal cannot be achieved by simple washing, so new strategies are needed to achieve easy cleaning of microfibre synthetic leather. In previous studies, temperature-sensitive hydrogel coatings were cross-linked to the surface of microfibre synthetic leather to enhance the removal of oleophilic stains by exploiting the transformation of hydrophilic and hydrophobic properties at different temperature zones, but this method was limited in its effectiveness in removing hydrophilic stains. In this study, g-C3N4 with photocatalytic properties was introduced into the hydrogel coating to effectively decompose organic compounds by using the free radicals generated during the photocatalytic process, and to enhance the roughness of the surface of microfibre synthetic leather by constructing a micro-nano structure on the surface of microfibre synthetic leather with the help of g-C3N4, so as to improve the removal efficiency of hydrophilic stains from two aspects. The experiments were carried out by using ammonium persulphate (APS) and N,N,N′,N′-tetramethylethylenediamine (TMEDA) as redox initiators to completely cross-link the composite hydrogel coating containing g-C3N4 with microfibre synthetic leather. The effect of the hydrophilic treatment on the removal rate of both oleophilic and hydrophilic stains was compared. The experimental results show that the surface hydrophilic treatment of g-C3N4 can effectively enhance the removal ability of oleophilic stains, while due to the spontaneous aggregation behaviour of g-C3N4 nanoparticles, protrusions with micro-nano structures are constructed on the surface of the composite hydrogel coating, which enhances the specific surface area and enhances the g-C3N4 photocatalytic degradation effect, optimizing the removal ability of aqueous stains.
The microfibre synthetic fabrics developed are easy to clean in everyday use: oleophilic stains (e.g. cooking oil) can be removed simply by scrubbing with water. If hydrophilic stains (e.g. red wine) are present, they can be effectively degraded by photocatalytic action. As a functional fabric, it can be widely used in the design of automobiles, furniture and bags to enhance the customer experience and increase product sales, which has promising market potential. The research can provide reference for further improvement of the easy cleaning performance of microfibre synthetic leather fabrics.
Keywords: microfiber synthetic leather; hybrid hydrogels; micro-nano structures; photocatalyst; efficient cleaning
收稿日期:20230322 網絡出版日期:20230510
基金項目:高校國內訪問工程師課題(FG2021286)
作者簡介:趙綺(1983—),女,浙江嘉興人,講師,碩士,主要從事紡織服裝材料方面的研究。