常 誠,錢福麗,芶國汝,唐 銳,王體爐,高思博,張韋晨曦,何陽陽,李 理,楊啟鳴,張 杰,劉穎琪,段 瑜,楊文運,王光華
高效疊層OLED白光器件進展
常 誠,錢福麗,芶國汝,唐 銳,王體爐,高思博,張韋晨曦,何陽陽,李 理,楊啟鳴,張 杰,劉穎琪,段 瑜,楊文運,王光華
(云南北方奧雷德光電科技股份有限公司,云南 昆明 650223)
疊層有機發光二極管(Organic Light-Emitting Diode,OLED)白光器件具備低功耗、高亮度、高色域等性能優勢。然而,由于效率、壽命及驅動電壓等性能仍有較大改進空間,疊層結構的材料及電學結構仍需進一步優化。本文重點介紹疊層OLED白光器件的最新研究進展,總結了三類電荷產生層(Charge Generation Layer,CGL)在工程化應用中存在的問題以及其非破壞性檢測方法;綜述高效疊層OLED白光器件的“全磷光體系”、“并行通道激子收集”及“混合磷光熱活性型延遲熒光(Thermally Activated Delayed Fluorescence,TADF)體系”最新研究成果,對器件壽命問題進行總結,探討分析“分級摻雜”、“四色混合TADF體系”等從結構方面提出優化方案,并針對不同發光材料體系中的CGL材料及結構綜述疊層OLED白光器件實現較低工作電壓的技術方法,最后對疊層OLED白光器件的材料和結構提出改進建議。
疊層白光有機發光二極管;電荷產生層;有機發光單元;功能層結構;有機發光材料
由于高效率、低功耗、寬視角、快速響應、薄厚度等[1-3]優點,OLED受到市場及研究者的廣泛關注[4-6]。為進一步提升發光效率及器件壽命,以應對OLED的商業化需求,研究者提出了疊層器件架構的設計[7]。
本文將著重介紹近年來高效率疊層OLED白光器件的研究進度;總結近年來實現高效率疊層OLED白光器件的最新策略;介紹疊層OLED白光器件中最具代表性的功能層——電荷產生層的研究進展以及重點介紹4種不同發光材料的疊層發光結構,即疊層熒光、疊層磷光、疊層TADF和疊層混合發光材料白光OLED的研究進展;最后,對疊層白光OLED的發展進行展望。
1950年,法國南錫大學的Bornanose等人通過使用高壓交流電觀察到吖啶橙(Acridine orange)和奎納克林(Quinacrine)的電致發光現象[8]。隨后的幾十年間有機電致發光現象被深入探索并實現工程化應用(圖1)[9-10]。目前,OLED應用于手機、VR等高分辨率顯示市場[11-16]。

圖1 OLED器件發展時間線
OLED器件結構可簡單視為由陽極(Anode)、陰極(Cathode)、空穴層(Hole Layer,HL)、電子層(Electron Layer,EL)和有機發光層(Emitting Layer,EML)組成。如圖2所示,所述電致發光就是在外部電場的作用下使得EML中的有機物分子處于不穩定態(激發態),其為回到穩定的電子組態(基態)需要將能量釋放,從而形成光子或熱的輻射[17-19]。

圖2 OLEDs結構及發光原理示意圖[19]
從產業化發展方向來看,OLED白光器件可以分為最初的單層發光白光器件、多層發光白光器件和目前主流的疊層白光器件,如圖3所示。單層發光白光器件(圖3(a))指的是將混合互補色摻雜材料共蒸鍍在同一個發光層中,利用能量轉移使得器件呈現混合后的白色,但因為很難實現完全轉移,導致器件整體效率不高[20]。多層發光白光器件(圖3(b))指的是將不同顏色的摻雜材料摻入不同發光層中,通過不同顏色的發光層來實現整體器件的白光顯示。由于膜層增加,多層發光白光器件的工作電壓更高,且相鄰的發光層必將導致激子的集中分布,導致其光的穩定性及壽命均不佳[21]。

圖3 OLED電致發光結構示意圖(a)單層白光OLED器件,(b)多層白光OLED器件,(c)疊層白光OLED器件
疊層串聯白光器件結構(圖3(c))最早是由日本大學的Kido教授[22]所提出的,指將多個顏色相同或不同的發光單元(Emitting Layer unit,EL unit)用CGL垂直連接,形成白光顯示的一類器件。由于串聯式結構該類器件工作電流低,因此相較于單層及多層結構具備一定的壽命優勢,同時在同一電流密度下串聯式結構具備較高電流效率及亮度。但由于疊層白光器件中各個顏色獨立發光,器件膜層厚度較厚,因此其工作電壓及色彩穩定性等方面仍存在一定的問題[23-24]。同時,受限于有機材料本身的理化性質,疊層白光器件也存在壽命及效率難以提升的難關。近年研究者對高效疊層OLED白光器件進行多維度的深入探討,以下將針對光電效率、壽命及工作電壓等多方面對疊層OLED白光器件的CGL和發光單元發展進行論述。
近年的研發工作讓研究者們發現CGL功能層的優化是一條獲取高效率的白光OLED器件的技術路徑。自2003年報道的第一種采用n型摻雜有機材料/透明導電材料的CGL起[25],研究者紛紛證明CGL在高效率疊層OLED白光器件中的起著至關重要的作用[26-27]。
CGL在電場的作用下通過n/p半導體層結合界面的異質結[28-31]擁有產生及分離載流子——電子/空穴的能力,并將產生的電子/空穴分別注入到附近的發光單元使其發光[32]。因此,CGL可以將一對由電極注入的電子/空穴轉換為多個激子,從而能激發出更多的光子,使得疊層OLED器件在較低電流密度下可以獲得更高的亮度和電流效率。同時較低的電流密度大大減小器件中電流的泄漏以及OLED被擊穿的風險,有利于延長OLED器件的使用壽命[33-36]。此外,高效的CGL需要包含良好的電荷產生/分離性能(高電荷遷移率或電導率[37-39])、較小的注入勢壘[40-41]、較小的消光系數、良好的導電性和長時間工作穩定性[42]等理化性質。
CGL通常由表1所示的p-n結組成,中間連接器的p型半導體層通常由金屬氧化物構成,包括氧化銦錫(ITO)、V2O5、WO3、MoO3或摻雜Lewis酸(如FeCl3: N,N-二苯基-N,N-二[萘基-1]-4,4-聯苯二胺(NPB))的有機空穴傳輸材料等構成;而n型半導體層則多由摻雜低功函數金屬或堿金屬氧化物的電子傳輸材料制備而成,如Cs、Li、Mg、Rb2O3等。除卻常見的CGL材料結構外,還有金屬材料p型半導體層,C60型p型半導體層等。

表1 常見疊層OLED器件CGL的組成
在n型半導體層中電子注入性能主要由金屬功函數控制[74],電子注入勢壘將隨著金屬摻雜劑功函數的降低而降低,從而采用低功函數的摻雜以保證器件的電學性能。Tang[75]等人分別采用Alq3:Mg,Alq3:Yb及Alq3:Ca作為CGL中n半導體層,其中Mg,Yb及Ca的功函數分別為3.6eV,2.6eV,及2.9eV。如圖4(a)所示,原始Alq3膜的HOMO位于EF以下1.55eV處,其電離電勢(IP)估計為5.75eV[76],可以看出,有機層中的金屬摻雜導致了相當大的帶彎曲,表明電荷從金屬轉移到Alq3分子內,并以可移動的Alq3-的形式儲存,同時從n半導體層到Alq3層的電子注入勢壘與3種不同金屬摻雜劑的功函數變化一致。對于疊層OLED白光器件而言,垂直電導率高則有利于獲得較低的驅動電壓,Tang等人認為反應性金屬摻雜使得金屬和Alq3分子之間發生化學鍵合導致產生新的復合物,采用不同的金屬摻雜材料可以獲得了不同電導率的n半導體層,同時主體材料采用電導率更高的BPhen也可獲得更低的驅動電壓。值得注意的是,例如Li等金屬摻雜在有機層中具有較高的擴散率,在Alq3及BCP中甚至可達到80nm[77],該特性是不利于制備長壽命器件的。
CGL的材料、組成、折射率/消光系數(/值)及與相鄰功能層的匹配等從微觀方面影響著器件的性能,然而疊層OLED白光器件整體的光電性能的優良難以判別CGL的優化方向。阻抗譜是一種廣泛用于無機半導體和固液界面研究的工具[78],可用于研究本體或界面區域中結合或移動電荷的動力學,具有無損分析的巨大優勢。Chen等[79]人采用電容電壓(-)測量來驗證CGL的性能,該方法通過將如圖4(b)所示的CGL器件等效為RC電路,對其施加額外的AC信號,并通過其監測電容值的變化獲得載流子行為信息。圖4(b)中CGL兩端為與陽極接觸的電子傳輸層(Bphen)和與陰極接觸的空穴傳輸層(NPB),該結構可觀察由CGL產生的電子和空穴注入傳輸層的性能并且阻擋從電極注入的載流子對研究結果的影響。圖4(c)中曲線可分為4個區域,I區中電場不足以彎曲CGL能帶,載流子不能隧穿能壘,此時電容值為器件本征電容。II區中電場足以使得電荷產生分離,但不足以克服傳輸層界面(NPB和Bphen)處的能壘從而在界面上積累載流子,導致電容值上升。III及IV區中電場使得電極上的載流子進入傳輸層內并與界面上的載流子互相消耗導致電容值下升。該過程中曲線的拐點電壓代表CGL工作電壓,電容峰值代表分離的電荷數量,斜率代表電荷分離效率,從而對-曲線分析可獲得CGL結構精細優化方向。
不同結構的CGL在光學性能或產業化方面仍然存在一定的缺陷:如采用金屬材質p/n型半導體層的CGL具有一定的光反射性,可見光的透過率較低,影響器件的出光效率;而采用低功函數堿金屬n型半導體層的CGL則由于容易氧化,在空氣中狀態極不穩定,對使用以及保存條件要求較高;而若采用堿金屬氧化物n型半導體層的CGL雖然理化性質相對穩定[80-81],但材料蒸發溫度較高,同樣給實際應用帶來一定的困難。因此對高效CGL的工作機理、結構創新以及制備方法更新換代仍需著重研究,從而有效指導疊層OLED白光器件產業化發展的方向。

圖4 CGL能級性質及CGL性能檢測方法(a)分別為Alq3/Mg:Alq3、Alq3/Yb:Alq3和Alq3-Ca:Alq3界面的能級圖[75],(b) CGL器件示意圖,(c) CGL器件的C-V分析 (@100Hz)[79]
采用高性能的CGL是獲得高效疊層OLED白光器件的一個必要條件,但同時高效的EL單元也是不可或缺的。而高效的EL單元主要由OLED白光器件結構及EML材料性質兩部分決定:為確保疊層OLED白光器件的每層EML都能產生高效的可見光發射,在關注由器件結構引申出的電荷注入效率、電荷輸運、電荷平衡、激子產生、激子擴散、激子猝滅、波導/表面等離子體/襯底模式、微腔效應等問題[82-90]的同時,對于EML材料選擇也至關重要。下面將重點介紹熒光、磷光、TADF和混合發光材料疊層OLED白光器件中的應用及其結構優化。
1.4.1 熒光發光材料疊層OLED白光器件
熒光材料具備穩定性好,器件壽命較長的優勢,但由于熒光材料只能通過單重態激子能輻射躍遷發出電致熒光,因此依據自旋統計規律內量子效率上限只能達到25%,其余的能量則因三重激發態激子的非輻射躍遷轉化為振動能而損失。
首個熒光發光材料策略的疊層OLED白光器件采用Alq3:4-(二氰基亞甲基)-2-叔丁基-6-(1,1,7,7-四甲基久羅尼定基-4-乙烯基)-4H-吡喃(DCJTB)作為紅色,Alq3作為綠色和9,10-2(2-萘基)蒽(AND)作為藍色熒光EML[61];并通過BCP:Li║V2O5作為CGL層對發光單元進行連接。此白光器件在不同工作電壓下的光譜曲線無較大變化(圖5(a)),且具備較高的電流效率(10.7cd×A-1@3.5mA cm-2)及較高的亮度(10200cd m?2),自此后研究者們在熒光疊層OLED白光器件方面進行廣泛的研究[91]。Ho等人[92]使用Bphen:Cs2CO3║NPB: WO3作為CGL層連接兩個熒光發光單元,其發光單元具體結構為Bphen+藍色熒光2-甲基-9,10-二[萘-2-基]蒽(MADN):NPB:1-4-二[4-(N,N-二苯基)氨基]苯乙烯基苯(DSA-Ph)+黃色熒光MADN:NPB:DSA-Ph:Rb+四丙基氯化銨(TPAC)。在此策略下的熒光疊層OLED白光器件電流效率高達23.9cd×A-1(@20mA×cm-2)接近理論值(圖5(b))。盡管熒光疊層OLED白光器件的亮度和效率可以隨發光單元的數量線性擴展,但受限于三重激發態激子的非輻射衰減,導致這類器件的性能難以滿足工業化需求[93]。
1.4.2 磷光發光材料疊層OLED白光器件
與熒光材料不同,磷光材料理論上可以利用100%的激子能[21,94]。隨著材料的發展,單層磷光EML器件的外量子效率可以達到20%以上[95-96]。磷光材料作為發光材料是目前OLED器件發光材料的主流開發方向,將其應用于疊層OLED白光器件中可進一步提升器件性能。
Kanno等[64]首先提出采用磷光發光材料的疊層OLED白光器件,其采用Bphen:Li║MoO3作為CGL并將兩個白色磷光發光單元連接。圖6(a)顯示此器件的材料及能級結構,如圖所示每個發光單元均為紅綠光+藍綠光發光層:其紅綠光采用混合摻雜結構,將三[2-苯基吡啶]合銥(Ir(ppy)3)及乙酰乙酸二[2-苯基喹啉]銥(PQIr)分別作為綠色及紅色熒光摻雜材料加入4,4-二[9-咔唑]聯苯(CBP)主體材料中。此器件在亮度為500cd×m-2時,達到51.0±3.2%的外量子效率。王等人[97]首先通過研究高效的單層有機磷光發光白光器件,其峰值功率效率為42.5lm×W-1及19.3%的外量子效率。此器件是將用于藍色熒光摻雜Ir(III)[二[4,6二氟苯基]-吡啶-N,C2]吡啶甲酸(FIrpic)和用于橙色熒光摻雜二[2-(9,9-二乙基-9h-芴-2-基)-1-苯基-1H-苯并咪唑-N,C3]Ir(乙酰丙酮)((fbi)2Ir(acac))共同摻雜到單能量阱狀發射層9,9-(1,3-苯基)二-9H-咔唑(mCP)中,此結構的高效主要來源于兩個平行通道的共存,即空穴捕獲后直接形成激子并將電子直接注入到(fbi)2Ir(acac)分子上,以及從主體mCP到FIrpic分子的有效能量轉移以獲取激子。隨后該團隊采用BCP:Li║MoO3的CGL對兩個高效共摻雜白光發光層進行串聯如圖6(b),最終該疊層器件的最大電流效率為110.9cd×A-1,外量子效率為43.3%[98]。隨著材料的開發,研究者提出更多具有高外量子效率的磷光材料。Lee等[99]采用水平定向發射偶極子的紅-綠磷光材料共摻雜形成具備32%外量子效率的橙色磷光OLED器件,并通過BPhen:Rb2CO3║HATCN/TAPC(4-(1-(4-(二[4-甲基苯基]氨基)苯基)環己基)-N-(3-甲基苯基)-N-(4-甲基苯基)苯胺)結構的CGL將橙色及藍色發光單元進行連接(如圖7(a)所示)。基于經典偶極子模型進行模擬,優化EML在疊層磷光OLED白光器件中的位置以及有機層和ITO層的總厚度(如圖7(b)所示),外量子效率達到52.6%(@1000cd×m-2。

圖5 磷光疊層OLED白光器件的光電性能(a)首個磷光疊層OLED白光器件的發光光譜隨電壓變化的趨勢[61],(b) 器件1和器件2的電流效率/外量子效率與電流密度之間的關系[92]

圖6 磷光疊層OLED白光器件的能級、結構及光電性能(a) 采用Ir(ppy)3及PQIr共摻雜CBP主體材料紅綠光以及FlzIr摻雜mCP主體材料藍綠光的器件材料及能級結構示意圖(插圖:FlzIr結構式)[64];(b) 采用藍色磷光摻雜材料FIrpic以及橙色磷光摻雜材料(fbi)2Ir(acac)共摻雜mCP主體材料中的高效疊層有機磷光發光白光器件的功率效率、外量子效率(插圖:電壓-亮度及電壓-電流密度圖)[97]以及結構示意圖[98]

圖7 采用TCTA:三[4-咔唑-9-基苯基]胺(TCTA):4,6-雙(3,5-二(3-吡啶)基苯基)-2-甲基嘧啶(B3PYMPM:Ir(ppy)2(tmd)):二[2-苯喹啉]四甲基庚二酸銥(Ir(mphmq)2(tmd))的橙色磷光EML以及mCP:B3PYMPM:FIrpic的藍色磷光EML的疊層磷光OLED白光器件結構及優化(a)功能層結構;(b) 基于經典偶極子模型對橙色磷光OLED器件以及疊層磷光OLED白光器件進行模擬優化[99]
目前藍光磷光材料的壽命及穩定性較差[100-102],而其壽命對于防止顏色變化和亮度隨著老化而迅速下降至關重要。目前仍未有可以作為工業生產的藍色磷光材料,而近期Coburn等研究者為獲得長壽命的藍色磷光發光單元采用濃度分級摻雜和熱激發態管理來增加藍光磷光材料的穩定性[103]。濃度分級摻雜可以平衡EML中的空穴和電子傳遞,拓寬激子復合區,降低導致分子解離的雙分子淬滅率[104]。此外,他們采用的深藍色發光材料Mer-三-(n-苯基,n-甲基吡啶咪唑-2-基)銥(III)(Mer-Ir(pmp)3)通常被用于通過降低由于熱激發態所導致的EML主體或EML摻雜材料分子降解的概率來提高藍色元素的可靠性[105]。
結構的優化仍然不能徹底解決藍色磷光材料發光效率較低,壽命短等性能問題,獲取穩定高效的藍色磷光材料或許是磷光疊層OLED白光器件主要發展方向。
1.4.3 TADF發光材料疊層OLED白光器件
熱活化延遲熒光材料是繼熒光材料、磷光材料之后的第三代材料,它可以通過由于熱活化導致的反向系間穿越(Reverse Inter System Crossing,RISC)綜合利用單重態和三重態激子[106-107](熱活化機理的實現需三重態T1與單重態S1之間的能隙≤0.2eV[108-109]),TADF發射器可達到100%的理論內量子效率[110]。從2012年日本九州大學發表關于熱活化延遲熒光材料研究[13,111]到目前國內相關課題組[112]都在進行該類材料的研究,熱活化延遲熒光材料成為目前OLED材料研究的熱點方向。
Zhao等[113]采用TCTA:Bphen作為藍色TADF EML[114],1,1-二(二-4-甲苯氨基)苯基)環己烷(TAPC)和2,4,6-三(3-(1H-吡唑-1-基)苯基)-1,3,5-三嗪(3P-T2T)作為橙色TADF EML(圖8(a))。通過時間分辨光致發光光譜(圖8(b)),研究者通過藍色和橙色激發的延遲時間,證明橙色和藍色EML均基于TADF機制發光[115]。研究者基于兩個EML,并采用3P-T2T:Cs2CO3|Al║MoO3作為CGL,設計出TADF發光材料疊層OLED白光器件。該器件能獲得5451cd×m-2的亮度,最大電流效率為25.4cd×A-1,最大外量子效率為9.17%。值得注意的是,該結構載流子注入及運輸平衡且電子與空穴有效復合使得不同電壓下CIE色坐標變化小。
目前TADF發光材料疊層OLED白光器件的發光效率仍然較低,特別在藍色TADF EML中該缺陷更為凸出[113]。
1.4.4 混合發光材料疊層OLED白光器件
全磷光器件由于強自旋軌道耦合可以捕獲所有的重態激子及三重態激子,被認為是獲得高效白光的最有前途的策略,然而藍色磷光材料在壽命及色彩純度方面限制了磷光疊層OLED白光器件的發展。因此,藍色熒光材料結合紅、綠磷光材料或黃色磷光材料的混合結構是目前實現OLED白光顯示或照明產業的主要途徑之一。

圖8 TCTA:Bphen作為藍色TADF EML以及TAPC:3P-T2T作為橙色TADF EML的光學分析(a)歸一化發射光譜以及(b)在300 K下不同延遲時間下的歸一化時間分辨光致發光光譜[113]
針對磷光及熒光材料混合的體系,Shi等采用LiF║HATCN(LiF/Ca(Al)║HATCN)作為CGL連接藍色熒光EML和橙色磷光EML的形成熒光-磷光混合疊層OLED白光器件(圖9)[116]。他們認為Ca可以降低p-n結之間的勢壘,因此采用Ca金屬薄層的CGL具備更低的電壓(5.9V@100cd×m-2)。在此CGL的基礎上研究者通過制備綠色和紅色磷光EML與藍色熒光EML組成的混合疊層OLED白光器件,獲得26.8%的外量子效率。

圖9 具有三種不同CGL的熒光-磷光混合疊層OLED白光結構[116]
然而,由于傳統熒光染料只能捕獲單重態激子的性質,這種熒光-磷光混合結構的設計只能有限地捕獲輻射衰變的激子,增加設計高效混合發光材料疊層OLED白光器件的難度[117-118],因此采用藍光TADF材料配合紅、綠或者橙光磷光材料組合形成白光,可以實現更高效的混合發光材料疊層OLED白光器件。
Zhang等基于藍色TADF材料研發出第一款混合發光材料疊層OLED白光器件,該器件最大外量子效率為22.5%,最大功率效率為47.6lm×W-1[119]。Wu等人[120]開發出一種三色混合器件,其采用高效的藍色TADF發射器與紅色和綠色磷光發射器相結合,在利用藍-綠-紅級聯能量轉移結構時,實現51.7lm×W-1的最大前視功率效率及89顯色指數(CRI)的白光器件。Huang等人[121]報道的基于TADF的混合發光材料疊層OLED白光器件,其最大電流效率和EQE分別為78.5cd×A-1和28.5%。
研究者對此類高效率器件的材料進行大量的研究,但很少有人優化器件結構設計來最大限度地利用三重態激子。Huang等人在之前的研究基礎上開發一種新的混合四色混合發光材料疊層OLED白光器件設計[122],其結構如圖10(a),該設計由基于激基復合物主體的黃紅色發射單元(Yellow-Red Unit,YRU)和包含TADF藍色發射器的藍紅色發射單元(Blue-Red Unit,BRU)構成。在該策略中,TADF機制被充分利用(圖10(b)),具有分子間相互作用誘導的TADF特性的激基復合物被用作主體材料使得器件驅動電壓較低。值得注意的是,控制BRU中的磷光紅色摻雜劑濃度形成兩個輻射通道,使得過量的藍色激子可以轉移到紅色發射極,這可以穩定藍色發射極,尤其是在高亮度下的穩定性極佳。采用該結構的器件最大EQE和功率效率分別為42.9%和66.3lm×W-1。

圖10 BRU+YRU混合疊層OLED白光器件能級結構及工作機理(a) 能級結構示意圖,以及藍色TADF和黃色和紅色磷光摻雜料的化學結構,(b)工作機制[122]
疊層OLED白光器件的性能一直處于不斷改進中,如今可以滿足手機、燈具和電視的實際商業化需求。本文針對工程化應用需求,總結近年來對高效疊層OLED白光器件的研究進展,重點關注CGL結構以及有機發光單元結構。
到目前為止,效率、驅動電壓、穩定性等方面仍然制約疊層OLED白光器件進一步的商業化應用。第一,疊層OLED白光器件的理論效率極限約為248lm×W-1,目前采用混合發光材料疊層OLED白光器件方案僅能使效率達到66.3lm×W-1,仍有很大的提升空間。第二,疊層OLED白光器件的驅動電壓較高,這不僅增加器件的功耗,并且不利于進一步提升功率效率。第三,疊層OLED白光器件由于采用不同發光層進行串聯,因此每個發光層的起亮電壓均不相同,這對器件在低亮度情況下的色彩穩定性提出重大挑戰;同時由于相鄰透明層之間的折射率具有一定差異,器件會受到微腔效應的影響,因此顯示顏色在所有角度上的穩定性也是一個嚴重的問題。本文針對疊層OLED白光器件,從EML對激子進行有效的光電轉換,CGL高效的電荷產生及分離性能,功能層電荷和激子分布精細化管理3個方面進行論述總結,并提出了C-V法優化CGL電學性能、發光層并行通道激子收集、四色混合磷光TADF材料等多類優化方法。
[1] LIU B, XU M, TAO H, et al. Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer[J]., 2013, 142: 35-39.
[2] XIANG C, KOO W, SO F, et al. A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices[J]., 2013, 2(6): e74-e74.
[3] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]., 1990, 347(6293): 539-541.
[4] YANG X, ZHOU G, WONG W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices[J]., 2015, 44(23): 8484-8575.
[5] Jou J H, Kumar S, Agrawal A, et al. Approaches for fabricating high efficiency organic light emitting diodes[J]., 2015, 3(13): 2974-3002.
[6] FAN C, YANG C. Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices[J]., 2014, 43(17): 6439-6469.
[7] XIAO P, HUANG J, YU Y, et al. Recent developments in tandem white organic light-emitting diodes[J]., 2019, 24(1): 151.
[8] Bernanose A, Comte M, Vouaux P. A new method of emission of light by certain organic compounds[J]., 1953, 50: 64-68.
[9] Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals[J]., 1963, 38(8): 2042-2043.
[10] TANG C W, VanSlyke S A. Organic electroluminescent diodes[J]., 1987, 51(12): 913-915.
[11] Madhava Rao M V, Kuin Su Y, HUANG T S, et al. White organic light emitting devices based on multiple emissive nanolayers[J]., 2010, 2: 242-246.
[12] Eslamian M. Inorganic and organic solution-processed thin film devices[J]., 2017, 9(1): 3.
[13] Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence[J]., 2012, 492(7428): 234-238.
[14] LIU B, LI X L, TAO H, et al. Manipulation of exciton distribution for high-performance fluorescent/phosphorescent hybrid white organic light-emitting diodes[J]., 2017, 5(31): 7668-7683.
[15] Tyan Y S. Organic light-emitting-diode lighting overview[J]., 2011, 1(1): 011009-011009.
[16] LIU B Q, GAO D Y, WANG J B, et al. Progress of white organic light-emitting diodes[J]., 2015, 31(10): 1823-1852.
[17] 陳金鑫, 黃孝文. OLED有機電致發光材料與器件[M]. 北京: 清華大學出版社, 2007.
CHEN J X, HUANG X W.[M]. Beijing: Tsinghua University Press, 2007.
[18] 應根裕, 胡文波, 邱勇. 平板顯示技術[M]. 北京: 人民郵電出版社, 2002.
YING G Y, HU W B, QIU Y.[M]. Beijing: People's Posts and Telecommunications Publishing House, 2002.
[19] 付相杰. 電荷產生層厚度對疊層式白光OLED性能影響的研究[D]. 上海: 上海交通大學, 2015.
FU X J. Study of the Effect of Charge-Generating Layer Thickness on the Performance of Stacked White OLEDs[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[20] KO Y W, CHUNG C H, LEE J H, et al. Efficient white organic light emission by single emitting layer[J]., 2003, 426(1-2): 246-249.
[21] Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency[J]., 2009, 459(7244): 234-238.
[22] Kido J. High performance OLEDs for displays and general lighting[J]., 2008, 39(1): 931-932.
[23] Burrows P E, Khalfin V, GU G, et al. Control of microcavity effects in full color stacked organic light emitting devices[J]., 1998, 73(4): 435-437.
[24] Nowatari H, Ushikubo T, Ohsawa N, et al. Intermediate connector with suppressed voltage loss for white tandem OLEDS[C]//, 2009, 40(1): 899-902.
[25] Kido J, Matsumoto T, Nakada T, et al. High efficiency organic el devices having charge generation layers[C]//, 2003, 34(1): 964-965.
[26] PU Y J, Chiba T, Ideta K, et al. Fabrication of organic light-emitting devices comprising stacked light-emitting units by solution-based processes[J]., 2015, 27(8): 1327-1332.
[27] YU J, YIN Y, LIU W, et al. Effect of the greenish-yellow emission on the color rendering index of white organic light-emitting devices[J]., 2014, 15(11): 2817-2821.
[28] LI X L, OUYANG X, LIU M, et al. Highly efficient single-and multi-emission-layer fluorescent/phosphorescent hybrid white organic light-emitting diodes with 20% external quantum efficiency[J]., 2015, 3(35): 9233-9239.
[29] Kim D Y, Park J H, Lee J W, et al. Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission[J]., 2015, 4(4): e263-e263.
[30] XIAO P, HUANG J, DONG T, et al. Room-temperature fabricated thin-film transistors based on compounds with lanthanum and main family element boron[J]., 2018, 23(6): 1373.
[31] LIU B, XU Z, ZOU J, et al. High-performance hybrid white organic light-emitting diodes employing p-type interlayers[J]., 2015, 27: 240-244.
[32] CHEN Y, MA D. Organic semiconductor heterojunctions as charge generation layers and their application in tandem organic light-emitting diodes for high power efficiency[J]., 2012, 22(36): 18718-18734.
[33] Hwang S H. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes[J]., 2015, 27(15): 2515-2520.
[34] SHI Z, LI Y, LI S, et al. Localized surface plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based on coaxial core/shell heterojunction architecture[J]., 2018, 28(20): 1707031.
[35] XIAO P, HUANG J, YU Y, et al. Recent advances of exciplex-based white organic light-emitting diodes[J]., 2018, 8(9): 1449.
[36] LIU B, XU M, WANG L, et al. Investigation and optimization of each organic layer: a simple but effective approach towards achieving high-efficiency hybrid white organic light-emitting diodes[J]., 2014, 15(4): 926-936.
[37] LIU B, XU M, WANG L, et al. Comprehensive study on the electron transport layer in blue flourescent organic light-emitting diodes[J]., 2013, 2(11): R258-R261.
[38] LIU B, XU M, WANG L, et al. Simplified hybrid white organic light-emitting diodes with efficiency/efficiency roll-off/color rendering index/color-stability trade-off[J].(), 2014, 8(8): 719-723.
[39] DU X, TAO S, HUANG Y, et al. Efficient fluorescence/phosphorescence white organic light-emitting diodes with ultra high color stability and mild efficiency roll-off[J]., 2015, 107(18): 183304.
[40] CHEN Y H, MA D G, SUN H D, et al. Organic semiconductor heterojunctions: electrode-independent charge injectors for high-performance organic light-emitting diodes[J]., 2016, 5(3): e16042-e16042.
[41] JIANG C, LIU H, LIU B, et al. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers[J]., 2016, 31: 82-89.
[42] SUN H, CHEN Y, CHEN J, et al. Interconnectors in tandem organic light emitting diodes and their influence on device performance[J]., 2015, 22(1): 154-163.
[43] SUN J X, ZHU X L, PENG H J, et al. Effective intermediate layers for highly efficient stacked organic light-emitting devices[J]., 2005, 87(9): 093504.
[44] ZHAO D W, SUN X W, JIANG C Y, et al. Efficient tandem organic solar cells with an Al/MoO3intermediate layer[J]., 2008, 93(8): 313.
[45] ZHANG H, DAI Y, MA D, et al. High efficiency tandem organic light-emitting devices with Al∕WO3∕Au interconnecting layer[J]., 2007, 91(12): 123504.
[46] ZHANG H M, Choy W C H, DAI Y F. Independently controllable stacked OLEDs with high efficiency by using semitransparent Al/WO3/Ag intermediate connecting layer[J].:Applied Physics, 2008, 41(10): 105108.
[47] ZHANG H M, Choy W C H. Real-time color-tunable electroluminescence from stacked organic LEDs using independently addressable middle electrode[J]., 2008, 20(13): 1154-1156.
[48] ZHANG H M, Choy W C H, DAI Y F, et al. The structural composite effect of Au–WO3–Al interconnecting electrode on performance of each unit in stacked OLEDs[J]., 2009, 10(3): 402-407.
[49] Knauer K A, Najafabadi E, Haske W, et al. Stacked inverted top-emitting green electrophosphorescent organic light-emitting diodes on glass and flexible glass substrates[J]., 2013, 14(10): 2418-2423.
[50] Chiba T, Pu Y J, Miyazaki R, et al. Ultra-high efficiency by multiple emission from stacked organic light-emitting devices[J]., 2011, 12(4): 710-715.
[51] JIAO B, WU Z, YANG Z, et al. Tandem organic light-emitting diodes with an effective nondoped charge-generation unit[J].(a), 2013, 210(12): 2583-2587.
[52] Meyer J, Kr?ger M, Hamwi S, et al. Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism[J]., 2010, 96(19): 193302.
[53] Sasabe H, Minamoto K, Pu Y J, et al. Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%[J]., 2012, 13(11): 2615-2619.
[54] CHEN Y, CHEN J, MA D, et al. Effect of organic bulk heterojunction as charge generation layer on the performance of tandem organic light-emitting diodes[J]., 2011, 110(7): 074504.
[55] CHEN Y, CHEN J, MA D, et al. High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer[J]., 2011, 98(24): 43309-43309.
[56] Burrows P E, Forrest S R, Sibley S P, et al. Color-tunable organic light-emitting devices[J]., 1996, 69(20): 2959-2961.
[57] GU G, Parthasarathy G, TIAN P, et al. Transparent stacked organic light emitting devices. II. Device performance and applications to displays[J]., 1999, 86(8): 4076-4084.
[58] Matsumoto T, Nakada T, Endo J, et al. Multiphoton organic EL device having charge generation layer[J]., 2003, 34(1): 979-981.
[59] Tsutsui T, Terai M. Electric field-assisted bipolar charge spouting in organic thin-film diodes[J]., 2004, 84(3): 440-442.
[60] Terai M, Fujita K, Tsutsui T. Capacitance measurement in organic thin-film device with internal charge separation zone[J]., 2005, 44(8L): L1059-L1062.
[61] GUO F, MA D. White organic light-emitting diodes based on tandem structures[J]., 2005, 87(17): 173510-173510-3.
[62] CHANG C C, CHEN J F, HWANG S W, et al. Highly efficient white organic electroluminescent devices based on tandem architecture[J]., 2005, 87(25): 253501.
[63] CHANG C C, HWANG S W, CHEN C H, et al. High-efficiency organic electroluminescent device with multiple emitting units[J]., 2004, 43(9A): 6418-6422.
[64] Kanno H, Holmes R J, Sun Y, et al. White stacked electrophosphorescent organic light-emitting devices employing MoO3as a charge-generation layer[J]., 2006, 18(3): 339-342.
[65] CHAN M Y, LAI S L, LAU K M, et al. Influences of connecting unit architecture on the performance of tandem organic light-emitting devices[J]., 2007, 17(14): 2509-2514.
[66] LIAO L S, Slusarek W K, Hatwar T K, et al. Tandem organic light‐emitting diode using hexaazatriphenylene hexacarbonitrile in the intermediate connector[J]., 2008, 20(2): 324-329.
[67] BAO Q Y, YANG J P, TANG J X, et al. Interfacial electronic structures of WO3-based intermediate connectors in tandem organic light-emitting diodes[J]., 2010, 11(9): 1578-1583.
[68] LIAO L S, Klubek K P. Power efficiency improvement in a tandem organic light-emitting diode[J]., 2008, 92: 223311.
[69] LIAO L S, Klubek K P, Tang C W. High-efficiency tandem organic light-emitting diodes[J]., 2004, 84(2): 167-169.
[70] CHO T Y, LIN C L, WU C C. Microcavity two-unit tandem organic light-emitting devices having a high efficiency[J]., 2006, 88(11): 111106.
[71] Kr?ger M, Hamwi S, Meyer J, et al. Temperature-independent field-induced charge separation at doped organic/organic interfaces: Experimental modeling of electrical properties[J]., 2007, 75(23): 235321.
[72] Leem D S, Lee J H, Kim J J, et al. Highly efficient tandem p-i-n organic light-emitting diodes adopting a low temperature evaporated rhenium oxide interconnecting layer[J]., 2008, 93(10): 103304.
[73] YANG J P, BAO Q Y, XIAO Y, et al. Hybrid intermediate connector for tandem OLEDs with the combination of MoO3-based interlayer and p-type doping[J]., 2012, 13(11): 2243-2249.
[74] CHAN M Y, LAI S L, FUNG M K, et al. Efficient CsF/Yb/Ag cathodes for organic light-emitting devices[J]., 2003, 82(11): 1784-1786.
[75] TANG J X, FUNG M K, LEE C S, et al. Interface studies of intermediate connectors and their roles in tandem OLEDs[J]., 2010, 20(13): 2539-2548.
[76] TANG J X, LAU K M, LEE C S, et al. Substrate effects on the electronic properties of an organic/organic heterojunction[J]., 2006, 88(23): 232103.
[77] Parthasarathy G, Shen C, Kahn A, et al. Lithium doping of semiconducting organic charge transport materials[J]., 2001, 89(9): 4986-4992.
[78] Garrido J A, Nowy S, Haertl A, et al. The diamond/aqueous electrolyte interface: an impedance investigation[J]., 2008, 24(8): 3897-3904.
[79] CHEN Y Y, Tsai C T, HUANG W L, et al. Investigation and optimization of the charge generation layer (CGL) in tandem OLEDs using Taguchi’s orthogonal arrays and nondestructive capacitance-voltage (CV) measurements[J]., 2021, 274: 116713.
[80] LIU J, CHEN Y, QIN D, et al. Improved interconnecting structure for a tandem organic light emitting diode[J]., 2011, 26(9): 095011.
[81] Diez C, Reusch T C G, Lang E, et al. Highly stable charge generation layers using caesium phosphate as n-dopants and inserting interlayers[J]., 2012, 111(10): 103107.
[82] LIU B, XU M, WANG L, et al. Regulating charges and excitons in simplified hybrid white organic light-emitting diodes: The key role of concentration in single dopant host–guest systems[J]., 2014, 15(10): 2616-2623.
[83] LIU B, ZOU J, SU Y, et al. Hybrid white organic light emitting diodes with low efficiency roll-off, stable color and extreme brightness[J]., 2014, 151: 161-164.
[84] LUO D, XIAO Y, HAO M, et al. Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission[J]., 2017, 110(6): 061105.
[85] CHEN B, LIU B, ZENG J, et al. Efficient bipolar blue AIEgens for high-performance nondoped blue OLEDs and hybrid white OLEDs[J]., 2018, 28(40): 1803369.
[86] Chapran M, Angioni E, Findlay N J, et al. An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser toward multifunctional devices[J]., 2017, 9(5): 4750-4757.
[87] LIU B, Delikanli S, Gao Y, et al. Nanocrystal light-emitting diodes based on type II nanoplatelets[J]., 2018, 47: 115-122.
[88] Cekaviciute M, Simokaitiene J, Volyniuk D, et al. Arylfluorenyl-substituted metoxytriphenylamines as deep blue exciplex forming bipolar semiconductors for white and blue organic light emitting diodes[J]., 2017, 140: 187-202.
[89] HUANG Q, Walzer K, Pfeiffer M, et al. Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers[J]., 2006, 88(11): 113515.
[90] YOUN W, LEE J, XU M, et al. Corrugated sapphire substrates for organic light-emitting diode light extraction[J]., 2015, 7(17): 8974-8978.
[91] Yokoyama M, Su S H, Hou C C, et al. Highly efficient white organic light-emitting diodes with a p–i–n tandem structure[J]., 2011, 50(4S): 04DK06.
[92] Ho M H, Chen T M, Yeh P C, et al. Highly efficient p-i-n white organic light emitting devices with tandem structure[J]., 2007, 91(23): 233507.
[93] CHEN S, ZHAO X, WU Q, et al. Efficient, color-stable flexible white top-emitting organic light-emitting diodes[J]., 2013, 14(11): 3037-3045.
[94] SU S J, Gonmori E, Sasabe H, et al. Highly efficient organic blue‐and white‐light‐emitting devices having a carrier‐and exciton-confining structure for reduced efficiency roll-off[J]., 2008, 20(21): 4189-4194.
[95] ZHU L, WU Z, CHEN J, et al. Reduced efficiency roll-off in all-phosphorescent white organic light-emitting diodes with an external quantum efficiency of over 20%[J]., 2015, 3(14): 3304-3310.
[96] XU L, TANG C W, Rothberg L J. High efficiency phosphorescent white organic light-emitting diodes with an ultra-thin red and green co-doped layer and dual blue emitting layers[J]., 2016, 32: 54-58.
[97] WANG Q, DING J, MA D, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: fabrication and emission‐mechanism analysis[J]., 2009, 19(1): 84-95.
[98] WANG Q, DING J, ZHANG Z, et al. A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer[J]., 2009, 105: 076101.
[99] LEE S, SHIN H, KIM J J. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles[J]., 2014, 26(33): 5864-5868.
[100] XUE K, HAN G, DUAN Y, et al. Doping-free orange and white phosphorescent organic light-emitting diodes with ultra-simply structure and excellent color stability[J]., 2015, 18: 84-88.
[101] XUE K, SHENG R, DUAN Y, et al. Efficient non-doped monochrome and white phosphorescent organic light-emitting diodes based on ultrathin emissive layers[J]., 2015, 26: 451-457.
[102] Fleetham T, LI G, LI J. Phosphorescent Pt (II) and Pd (II) complexes for efficient, high-color-quality, and stable OLEDs[J]., 2017, 29(5): 1601861.
[103] Coburn C, Jeong C, Forrest S R. Reliable, all-phosphorescent stacked white organic light emitting devices with a high color rendering index[J]., 2018, 5(2): 630-635.
[104] ZHANG Y, LEE J, Forrest S R. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes[J]., 2014, 5(1): 5008-5015.
[105] LEE J, Jeong C, Batagoda T, et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes[J]., 2017, 8(1): 15566.
[106] Rajamalli P, Senthilkumar N, Gandeepan P, et al. A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes[J]., 2016, 138(2): 628-634.
[107] YANG Z, MAO Z, XIE Z, et al. Recent advances in organic thermally activated delayed fluorescence materials[J]., 2017, 46(3): 915-1016.
[108] GUO J, LI X L, NIE H, et al. Achieving high-performance nondoped OLEDs with extremely small efficiency roll-off by combining aggregation-induced emission and thermally activated delayed fluorescence[J]., 2017, 27(13): 1606458.
[109] WU Z, WANG Q, YU L, et al. Managing excitons and charges for high-performance fluorescent white organic light-emitting diodes[J]., 2016, 8(42): 28780-28788.
[110] WANG J, CHEN J, QIAO X, et al. Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off[J]., 2016, 8(16): 10093-10097.
[111] Goushi K, Yoshida K, Sato K, et al. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion[J]., 2012, 6(4): 253-258.
[112] ZHANG D, CAI M, ZHANG Y, et al. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability[J]., 2016, 3(2): 145-151.
[113] ZHAO B, ZHANG T, CHU B, et al. Highly efficient tandem full exciplex orange and warm white OLEDs based on thermally activated delayed fluorescence mechanism[J]., 2015, 17: 15-21.
[114] DUAN Y, SUN F, YANG D, et al. White-light electroluminescent organic devices based on efficient energy harvesting of singlet and triplet excited states using blue-light exciplex[J]., 2014, 7(5): 052102.
[115] Park Y S, KIM K H, KIM J J. Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes[J]., 2013, 102(15): 153306.
[116] SHI C, SUN N, WU Z, et al. High performance hybrid tandem white organic light-emitting diodes by using a novel intermediate connector[J]., 2018, 6(4): 767-772.
[117] DU X, ZHAO J, YUAN S, et al. High-performance fluorescent/ phosphorescent (F/P) hybrid white OLEDs consisting of a yellowish-green phosphorescent emitter[J]., 2016, 4(25): 5907-5913.
[118] CHEN Y, YANG D, QIAO X, et al. Novel strategy to improve the efficiency roll-off at high luminance and operational lifetime of hybrid white OLEDs via employing an assistant layer with triplet–triplet annihilation up-conversion characteristics[J]., 2020, 8(19): 6577-6586.
[119] ZHANG D, DUAN L, LI Y, et al. Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material with thermally activated delayed fluorescence[J]., 2014, 2(38): 8191-8197.
[120] WU Z, LUO J, SUN N, et al. High-performance hybrid white organic light-emitting diodes with superior efficiency/color rendering index/color stability and low efficiency roll-off based on a blue thermally activated delayed fluorescent emitter[J]., 2016, 26(19): 3306-3313.
[121] HUANG C, XIE Y, WU S, et al. Thermally activated delayed fluorescence-based tandem OLEDs with very high external quantum efficiency[J].(a), 2017, 214(10): 1700240.
[122] HUANG C, ZHANG Y, ZHOU J, et al. Hybrid tandem white OLED with long lifetime and 150lm×W?1in luminous efficacy based on TADF blue emitter stabilized with phosphorescent red emitter[J]., 2020, 8(18): 2000727.
Development of Highly Efficient Tandem White OLEDs
CHANG Cheng,QIAN Fuli,GOU Guoru,TANG Rui,WANG Tilu,GAO Sibo,ZHANG Weichenxi,HE Yangyang,LI Li,YANG Qiming,ZHANG Jie,LIU Yingqi,DUAN Yu,YANG Wenyun,WANG Guanghua
(Yunnan Olightek Opto-electronic Technology Co., Ltd., Kunming 650223, China)
Tandem white OLEDs offer low power consumption, high brightness, and a high color gamut. However, the material and electrical structures of tandem white OLEDs still need to be optimized owing to the outstanding challenges in efficiency, lifetime, and driving voltage. In this study, we focused on the latest research on tandem white OLEDs and summarized the problems in engineering preparation and non-destructive detection method of 3 types of CGLs for high-efficiency tandem white OLEDs. We focused on the latest research on the “all-phosphorescent system,” “harvesting excitons via two parallel channels,” and the “mixed-phosphorescent-TADF system” simultaneously. We summarized the device lifetime problems and discussed structural solutions such as "graded doping" and "four-color mixed-phosphorescent-TADF system." From the aspect of CGL materials and structures in different systems, we reviewed the scheme of lower driving voltage for tandem white OLEDs. Finally, we provided suggestions for improving the materials and structures of tandem white OLEDs.
tandem white OLEDs, CGL, Emitting Layer unit, functional layer structure, organic light-emitting material
TN312+.8
A
1001-8891(2023)11-1141-12
2023-05-31;
2023-09-20.
常誠(1996-),男,云南昆明人,碩士,主要從事電化學及硅基OLED面板的研究。E-mail: cc993242801@163.com。
段瑜(1981-),女,云南羅平人,碩士,研高工,主要從事高分子化學和物理以及硅基OLED面板的研究。E-mail: duanyu@oleid.com。
云南省科技廳科技計劃項目(2022024H210001)。