999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

內生菌協助水稻緩解重金屬脅迫和積累研究進展

2023-12-29 00:00:00付思遠彭玉林黃水明郭達偉李忠金江麗芳江巍陳萍萍
江蘇農業學報 2023年3期

摘要: 稻田土壤重金屬污染是引起環境和食品安全問題的主要原因之一。土壤中重金屬的過量積累給水稻的生長發育、稻米產量和品質造成負面影響,并會導致重金屬進入食物鏈。內生菌與宿主具有穩定的互利共生關系,一些有益內生菌能夠提高水稻產量和重金屬抗性。本文總結了抗重金屬內生菌改善水稻重金屬脅迫和減少植株重金屬積累的機制,最后針對內生菌在農業中的研究與應用提出了幾點展望。

關鍵詞: 內生菌;水稻;重金屬;緩解脅迫

中圖分類號: Q945.78 文獻標識碼: A 文章編號: 1000-4440(2023)03-0859-14

Research progress of endophytes in alleviating heavy metal stress and accumulation in rice

FU Si-yuan, PENG Yu-lin, HUANG Shui-ming, GUO Da-wei, LI Zhong-jin, JIANG Li-fang, JIANG Wei, CHEN Ping-ping

(Longyan Institute of Agricultural Sciences, Longyan 364000, China)

Abstract: Heavy metal pollution in paddy soils is one of main concerns causing some of the environmental and food safety problems. Excess accumulation of heavy metals in soil has a negative impact on the growth and development, yield and quality of rice, and will make heavy metals enter the food chain. Endophytes have a stable mutualism relationship with their hosts. It is well known that plant growth-promoting endophytes (PGPEs) enhance rice productivity and resistance to heavy metal stress. This paper summarized the mechanisms of heavy metal resistant-PGPEs in improving heavy metal stress and reducing the accumulation of these metals in rice. Finally, some prospects for research and application of endophytes in agriculture were put forward.

Key words: endophytes;rice;heavy metals;stress alleviation

重金屬(或類金屬)是具有高相對原子質量、高密度特性的天然化學元素,其含量超過一定閾值時對細胞有毒害作用[1]。稻田土壤中的砷(As)、鎘(Cd)、鉛(Pb)、汞(Hg)、銅(Cu)等重金屬含量高于旱地土壤[2]。水稻是人類的主要糧食作物之一,稻田重金屬污染不僅會降低稻谷的產量和質量,還會導致重金屬被水稻吸收累積,威脅人類健康[3]。傳統農業通過加強農業管理(如灌溉、施肥和輪作)或使用化學鈍化劑進行重金屬污染防治[4-7]。這些方法在一定程度上可以鈍化重金屬,但所用材料昂貴且耗時,可能帶來二次污染。所以,應尋求更有效的方法緩解水稻重金屬脅迫和積累以保障糧食安全。

有益內生菌是指生活在植物組織內部而不會引起疾病的一類原核或真核微生物,其占據宿主的根、莖、葉、種子等不同生態位[8]。研究結果[9-10]表明,某些抗重金屬有益內生菌能夠改變重金屬的生物有效性減輕其對植物的毒害,重金屬的生物有效性與重金屬的存在形態直接相關,重金屬的毒性取決于其在土壤中的生物有效性[11])。當植物處于生物和非生物脅迫下,定殖于植物組織中的內生菌不易受環境因子影響,與寄主植物的互利共生關系更加穩固,對宿主產生的有利影響通常大于根際微生物[12-14]。有益內生菌在修復土壤污染和保障農產品安全方面發揮效用,其通過提高重金屬生物有效性、增加植物的生物量、酸化根際環境、增加根系表面積等機制強化植物對土壤重金屬的吸收,輔助植物修復被重金屬污染的土壤[15-16],但此類內生菌可能會增加作物可食用部位的重金屬含量。最近研究結果表明,一些內生菌既能緩解水稻重金屬脅迫,又能降低水稻植株地上部和籽粒中的重金屬積累,使稻米生產更加安全[17-18]。

長期以來,關于內生菌輔助植物修復被重金屬污染的土壤的研究進展已有許多全面的綜述[19-22]。然而,還沒有文章回顧內生菌緩解水稻重金屬脅迫和積累的機制。本文對現有國內外文獻進行了總結和歸納(表1、表2),闡述了內生菌協助水稻緩解重金屬脅迫和積累的作用機制,并針對多抗型內生菌菌種資源的發掘及合成菌群的研究應用提出展望,以期為內生菌進一步的深入研究和實際應用提供理論依據與參考。

1 內生菌緩解水稻重金屬脅迫的機制

1.1 調節水稻激素平衡

重金屬脅迫會打破植物內源激素平衡[67]。在重金屬脅迫下脫落酸(Abscisic acid, ABA)和茉莉酸(Jasmonic acid, JA)的含量增加,導致氣孔導度降低、葉片衰老、葉綠素合成減緩、光合作用減弱,抑制植物生長[24,68-69]。赤霉素(Gibberellins,GAs)對種子萌發、生長發育具有重要作用,其通過增強抗氧化系統[70]、調節激素平衡[71]等機制緩解重金屬脅迫。Shahzad等[24]研究發現,銅脅迫下接種產GA的內生芽孢桿菌(Bacillus amyloliquefaciens RWL-1)有助于降低水稻內源ABA和JA的含量,促進水稻生長。接種產GA內生真菌(Glomerella sp. JP4)明顯改善了鎘脅迫下水稻的抗氧化系統[45-46]。內源水楊酸(Salicylic acid, SA)對于重金屬脅迫的應答機制尚不明確,但水稻在鎘和鎳脅迫下ABA含量升高、SA含量降低,ABA對SA表現出拮抗作用;接種內生腸桿菌(Enterobacter ludwigii SAK5)和微小桿菌(Exiguobacterium indicum SA22)后,水稻內源ABA含量降低、SA含量升高,植株生長狀況明顯改善[17]。重金屬脅迫誘導乙烯(Ethylene, ET)過量產生,導致過氧化氫(H2O2)積累和細胞凋亡,抑制根的發育[72-73]。1-氨基環丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid,ACC)脫氨酶可以將ET的前體ACC水解為氨和α-酮丁酸來促進根系生長,降低ET含量[74]。接種產ACC脫氨酶內生假單胞菌(Pseudomonas stutzeri A1501)降低了鎘、銅、鋅、鎳等脅迫下水稻內源ET含量,促進了水稻生長;進一步進行基因組分析,結果表明,Pseudomonas stutzeri A1501攜帶1個編碼ACC脫氨酶的acdS基因, acdS基因突變后,突變體喪失了ACC脫氨酶活性,在重金屬脅迫下促進水稻生長的能力喪失,表明產ACC脫氨酶是內生菌緩解水稻重金屬脅迫的一種重要機制[72]。此外,產吲哚乙酸(Indole acetic acid, IAA)內生菌通過以下兩方面緩解植物重金屬脅迫:一是刺激細胞伸長和分裂促進根系生長,使植物獲得更強的養分吸收能力[19, 75]。如鎘脅迫下接種產IAA內生沙雷氏菌(Serratia sp. AI001)和克雷伯氏菌(Klebsiella sp. AI002),增加了水稻不定根和側根的數量[76]。二是誘導宿主生理變化來增強植物抗性和適應性[77-78]。如IAA誘導抗氧化酶產生,從而增強抗氧化系統[73]。再如,根系分泌物通過螯合根際或質外體中的金屬離子從而阻止金屬離子進入細胞,這是植物應對重金屬脅迫的重要策略。IAA能夠激活植物的細胞壁,刺激根系分泌物產生[79-80]。接種Liu等[81]分離的產IAA和ACC脫氨酶內生腸桿菌(Enterobacter sp. SE-5)顯著提升了鎘脅迫下水稻的IAA含量和ACC脫氨酶活性,提高了水稻種子發芽率、幼苗成活率、株高、根長、葉綠素含量和鮮質量。

綜上所述,重金屬脅迫下,內生菌通過分泌外源植物激素(如IAA、GA等)和調節水稻內源激素(如IAA、ABA、JA、SA、ET等)平衡來降低應激激素對水稻生長發育的不利影響,增強水稻抗氧化系統的作用,緩解重金屬脅迫,促進植株生長發育。一些內生菌還能分泌細胞分裂素(CK),但國內外關于CK-內生菌-水稻-重金屬脅迫之間相互作用的研究仍然較少。

1.2 增強水稻光合作用

重金屬脅迫會嚴重減弱水稻光合作用,接種內生菌能夠增強水稻光合作用。Fv/Fm表示光系統Ⅱ(Photosystem II, PSII)的光能轉化效率,Fv/Fo表示光系統Ⅱ的潛在活性[82]。鉛脅迫下水稻幼苗葉綠素a、葉綠素b含量降低,凈光合速率(Pn)降低,蒸騰速率(E)減弱,Fv/Fm、Fv/Fo值分別低于0.8和4.0,表明光系統II的功能被抑制。接種內生真菌Sordariomycetes sp. EF0801后,Fv/Fm和Fv/Fo分別提高到0.8和4.0以上,增加了光合色素含量,提高了Pn和E,有效維持了PSII的正常生理功能,光合強度得到提升[83-84]。汞脅迫下水稻SPAD值(代表葉綠素含量)顯著降低,接種內生真菌Curvularia geniculata P1和Aspergillus sp. A31提高了SPAD值、Fv/Fm、Fv/Fo,光合效率增強,水稻株高和干質量顯著增加[85]。砷脅迫時水稻接種印度梨形孢(Piriformospora indica)使水稻葉綠素含量恢復到正常水平[42]。研究發現,在砷酸鹽或亞砷酸鹽脅迫下,接種叢枝菌根真菌(Arbuscular mycorrhizal fungi, AMF)異形根孢囊霉(Rhizophagus irregularis DAOM 197198)提高了旱稻葉綠素含量、水分利用效率、碳同化率、氣孔導度和蒸騰速率,提升了PSII的最大量子產率與實際量子產率、電子傳輸速率,促進了旱稻生長[86]。此外,植物體內高含量糖有助于增強光合作用以抵抗銅脅迫,接種內生菌RWL-1顯著提高了銅脅迫下水稻碳水化合物(葡萄糖、蔗糖、果糖和棉子糖)的含量[24]。綜上所述,內生菌通過增強光合作用促進了水稻在重金屬脅迫下的生長發育。

1.3 增加水稻氨基酸和蛋白質的含量

氨基酸是蛋白質(包括各種酶、受體、某些激素)生物合成的基本單位,植物中的氨基酸調控有利于改善防御系統[26,87]。接種內生菌Bacillus amyloliquefaciens RWL-1提高了正常環境和銅脅迫下水稻幼苗中天冬氨酸、谷氨酸、丙氨酸等13種氨基酸的含量,其中大多數氨基酸是其他代謝物的前體或中間產物,有助于增強水稻對重金屬的耐受性[24,87]。Zhou等[23]的研究結果表明,接種內生芽孢桿菌(Bacillus koreensis 181-22)顯著提高了鎘脅迫下旱稻的總蛋白質含量。以上研究結果表明,內生菌通過提升水稻氨基酸和蛋白質的含量協助水稻抵御重金屬脅迫,但重金屬脅迫下內生菌提高水稻氨基酸、蛋白質含量的機制還有待研究。

1.4 增強水稻抗氧化系統

重金屬誘導脂質過氧化,破壞細胞內自由基產生和被清除之間的平衡,從而產生大量活性氧(Reactive oxygen species, ROS),ROS會迅速與核酸、蛋白質、脂質和氨基酸等生物分子反應,導致細胞功能障礙和細胞損傷[88-89]。內生菌可以提高水稻抗氧化酶和非酶抗氧化劑水平,降低ROS和丙二醛(MDA)的含量[84, 90-91]。研究發現,鎘脅迫下旱稻MDA含量升高,接種內生菌Bacillus koreensis 181-22使MDA含量下降到正常水平[23]。Shahzad等[24]的研究結果表明,銅脅迫會損害水稻抗氧化系統,接種內生菌Bacillus amyloliquefaciens RWL-1顯著提升了過氧化物酶(POD)、多酚氧化酶(PPO)等的活性和還原型谷胱甘肽(GSH)的含量。鉛脅迫下水稻體內POD和過氧化氫酶(CAT)的活性下降,接種內生真菌Sordariomycetes sp. EF0801后超氧化物歧化酶(SOD)、POD、CAT活性均增強[84]。砷脅迫下水稻幼苗根部還原型抗壞血酸(AsA)、還原型谷胱甘肽含量顯著下降,氧化型谷胱甘肽(GSSG)、脫氫抗壞血酸(DHA)含量增加,AsA/DHA和GSH/GSSG降低;印度梨形孢接種使參與AsA-GSH循環的谷胱甘肽還原酶(GR)、單脫氫抗壞血酸還原酶(MDAR)、脫氫抗壞血酸還原酶(DHAR)的活性升高,增加了GSH和AsA的含量,AsA/DHA和GSH/GSSG升高,增強了水稻對氧化應激的耐受性[42]。鎘脅迫下接種堿蓬內生真菌Glomerella sp. JP4也提高了水稻AsA和GSH的含量,增強了SOD、POD、GR、CAT的活性,降低了H2O2和MDA的含量[45]。Li等[51]研究發現,鎘脅迫下接種AMF(Rhizophagus intraradices, Ri)降低了旱稻ROS水平,提升了GSH含量和谷胱甘肽過氧化物酶(GPX)活性,促進了旱稻生長。接種AMF(Glomus versiforme, Gv)還可以上調鎘脅迫下旱稻根系過氧化物酶基因的表達,提高了旱稻的鎘脅迫抗性[56]。接種印度梨形孢顯著降低了鎘脅迫下水稻根部ROS的積累,減少了根部細胞死亡[44]。此外,重金屬脅迫會使細胞產生有毒化合物甲基乙二醛(Methylglyoxal, MG),其會對脂質、蛋白質、DNA、RNA造成嚴重損害,并誘導H2O2積累[92-93]。乙二醛酶(GLY)是MG的生理解毒酶系統,能夠將細胞內具有糖基化毒性的MG轉化為無毒的乳酸鹽排到細胞外[94]。砷脅迫導致水稻MDA、MG含量以及GLY I、GLY II活性升高,接種印度梨形孢進一步提高了GLY I和GLY II的活性,降低了MDA和MG的含量,減少了MG對細胞的毒害,增強了水稻對砷的耐受性[42]。綜上所述,重金屬脅迫下內生菌可以提高水稻抗氧化酶活性,改善AsA-GSH循環的氧化還原狀態,增強GLY循環系統,減輕了水稻氧化應激以促進植株生長。

1.5 促進水稻對營養元素的吸收

重金屬會干擾水稻根系對營養元素的吸收和分配,造成營養缺乏和養分失衡,導致水稻生長遲緩[95-96]。研究發現,隨著鉛離子含量的增加,水稻根中鉀(K)、鈣(Ca)、鎂(Mg)、磷(P)、鐵(Fe)、鋅(Zn)和錳(Mn)等營養元素的含量降低,內生真菌Sordariomycetes sp. EF0801的接種促進了根部對營養元素的吸收和向地上部的運輸,使幼苗葉片中上述離子含量顯著增加,有助于維持鉛脅迫下水稻的光合作用和酶促反應[97]。同樣,鎘脅迫下接種內生成團泛菌(Pantoea agglomerans Tm02)促進了Mn、Ca、Fe、Mg等離子向籽粒的轉運,增加養分的同時減少了鎘向籽粒的轉運[28]。產鐵載體內生菌促進水稻對鐵和其他微量元素的吸收利用[98]。接種產鐵載體內生菌Pseudomonas sp.、Bacillus thuringiensis、B. pumilus使砷脅迫下水稻根部鐵含量升高[35]。砷脅迫下會增加水稻幼苗根中鐵含量,但減少了鐵向地上部的轉運,接種印度梨形孢上調了水稻鐵轉運相關基因(OsIRO2、OsFRDL1、OsYSL1)的表達,顯著增加了地上部的鐵含量,有利于葉綠素合成和光合作用[42]。有些內生菌還可以通過生物固氮為重金屬脅迫下的水稻提供必需的氮素營養[28,30,99]。土壤中的有效磷含量較低,不能滿足植物需求[100]。具有溶磷功能的內生菌能夠將難溶性磷轉化為可溶性磷供重金屬脅迫下的水稻吸收利用[28,30,37-39]。AMF在促進水稻磷吸收方面具有重要作用。多項研究結果表明,銅、鉛、鎘、砷等重金屬脅迫下,AMF接種能夠增加水稻植株的磷含量,有利于水稻營養物質合成以抵抗重金屬脅迫[55-56,61,64,101]。綜上所述,內生菌通過溶磷、固氮、產生鐵載體、上調營養元素吸收和營養轉運相關基因的表達等機制加強水稻對營養元素的吸收和運輸,從而促進水稻在重金屬脅迫下生長。

2 內生菌降低水稻地上部和籽粒重金屬積累的作用機制

2.1 胞內積累和胞外吸附固定重金屬

內生細菌通過主動運輸和區域化作用將重金屬吸收進細胞內,也可由分泌的胞外聚合物在細胞外富集重金屬,降低其流動性[77]。氫離子與金屬離子存在競爭吸附位點,堿性環境能夠加強土壤和細胞表面對重金屬的吸附[102]。一些兼性內生細菌可以提高環境pH值,如,兼性內生沙雷氏菌(Serratia liquefaciens F2)通過提高發酵液pH值加強自身對砷的胞外富集和胞內積累,砷脅迫下接種Serratia liquefaciens F2加強了根表面和土壤對砷的固定,減少了水稻對砷的吸收和砷向籽粒的轉移,最終籽粒砷含量低于歐洲水稻籽粒中最大允許砷含量(0.2 mg/kg)[34]。內生真菌利用細胞壁、中央大液泡、菌絲體、孢子等特殊結構固定重金屬[103]。鎘脅迫下接種印度梨形孢使水稻根部的菌絲體和孢子中積累了大量鎘,阻止鎘離子向地上部轉運[44]。深色有隔內生真菌稻鐮狀瓶霉(Falciphora oryzae EU63669)是典型的鎘離子生物過濾器,接種水稻后大量的鎘以黑色沉積物和顆粒的形式在其液泡和厚壁孢子中被固定,阻止鎘轉移至地上部,降低了籽粒鎘含量[40]。植物細胞壁主要由多糖和蛋白質組成,含有羧基、羥基、氨基和醛基等潛在配體,這些配體可以參與離子交換、吸附、絡合、沉淀和結晶等各項反應,有效結合重金屬陽離子并限制其在細胞膜上的轉運[104-106]。植物在根細胞壁中隔離重金屬是緩解原生質體重金屬脅迫和抑制重金屬轉運的機制之一[104,107]。多項研究發現AMF可以影響水稻中的重金屬亞細胞分布。Gao等[48]的研究結果表明,AMF可以改變旱稻根細胞壁的化學性質,鎘脅迫下,接種Rhizophagus intraradices提高了根部細胞壁中果膠、半纖維素1和木質素的含量,觀察到更多羥基和羧基,根細胞壁的果膠和半纖維素1中鎘含量增加,進而顯著降低旱稻地上部的鎘含量。Zhang等[62]的研究結果表明,銅脅迫下接種AMF(Glomus mosseae, Gm)可使菌根中糖醛酸的含量增加,有利于增強菌根對銅的吸附,菌根細胞壁果膠和半纖維素1中的銅含量增加了約5倍,最終水稻地上部銅含量顯著降低。Li等[49]的研究結果表明,在低鎘脅迫(lt;0.05 mmol/L)下接種Rhizophagus intraradices和摩西管柄囊霉(Funneliformis mosseae, Fm)提高了旱稻根部細胞壁組分中鎘含量,高鎘脅迫(≥0.05 mmol/L)下提高了液泡中鎘含量,而細胞器組分鎘含量顯著降低,緩解了旱稻鎘脅迫,減少了地上部鎘積累。上述研究結果皆表明由內生菌介導的胞外吸附和胞內積累可以將重金屬固定,從而減弱重金屬向地上部的轉運,但AMF影響水稻根部重金屬亞細胞分布的機制還有待研究。

2.2 降低重金屬的生物有效性

堿性環境有利于重金屬沉淀的形成和穩定[102]。鎘脅迫下接種兼性內生細菌Pantoea agglomerans Tm02提高了土壤pH值并降低鎘的生物有效性,減少水稻對鎘的吸收和轉運,降低水稻籽粒、莖稈中的鎘含量[28]。內生巨大芽孢桿菌(Bacillus megaterium H3)和華氏新根瘤菌(Neorhizobium huautlense T1-17)共接種可以提高水稻根系土壤的pH值,在低鎘脅迫下增加鐵錳氧化物結合態鎘含量,高鎘脅迫下增加有機物結合態鎘和硫化鎘的含量,減少水稻對鎘的吸收,所產精米符合大米鎘限量國際標準(0.2 mg/kg以下)[36]。多胺是氨基酸脫羧過程中產生的一類堿性化合物,能夠提高周圍環境的pH值,最常見的多胺包括腐胺、亞精胺和精胺[108-110]。研究發現,使用外源多胺降低了水稻對鎘的吸收[111]。某些細菌可以產生精氨酸脫羧酶(ADC)從而分泌多胺[109,112]。Cheng等[27]分離的產ADC內生鞘氨醇單胞菌(Sphingomonas sp. C40)為兼性內生菌,其發酵液的多胺含量和pH值在鎘脅迫下顯著提高,接種后誘導鎘脅迫下水稻幼苗多胺合成酶相關基因(OsSPDS、OsSPMS1和OsSAMDC1)表達顯著上調,根際土壤和根內的亞精胺、精胺含量增加,土壤中鐵錳氧化物結合態鎘含量增加,水稻地上部鎘積累量顯著降低。鎘脅迫下,產ADC兼性內生根瘤菌(Rhizobium larrymoorei S28)發酵液的pH值和腐胺質量濃度升高,接種后顯著提高了水稻分蘗期和成熟期土壤pH值和有機質含量,降低了根際土壤有效態鎘含量和鎘轉移系數(TF,表示植物對重金屬的轉運能力),增加了成熟期根際土壤中碳酸鹽和有機物結合態鎘的含量,使水稻根部、地上部、籽粒中鎘含量皆降低[33]。但產ADC內生菌的研究目前僅限于水稻鎘脅迫,對其他重金屬脅迫的應用研究較少。

內生菌分泌的鐵載體也可與Cd2+、Cu2+、Pb2+、As3+、As5+等多種重金屬離子結合[113]。研究發現,與鐵載體結合的Fe3+更容易進入細胞,與鐵載體結合的有毒金屬離子不能有效地進入細胞,從而降低重金屬的生物有效性[114]。有機酸通過與重金屬形成復合物、誘導植物產生根系分泌物、溶解磷酸鹽釋放磷元素并形成不溶性重金屬磷酸鹽等多種機制降低重金屬的生物有效性,內生細菌Bacillus amyloliquefaciens RWL-1具有分泌檸檬酸、琥珀酸、丙酸和乙酸等多種有機酸的能力,接種后顯著降低了水稻根部和地上部的銅含量[25]。鉛脅迫下接種內生真菌Sordariomycetes sp. EF0801誘導水稻根系產生蘋果酸、酒石酸、乳酸和草酸等有機酸,緩解了水稻鉛脅迫[97]。金屬硫蛋白(Metallothioneins, MTs)是一類低分子量、半胱氨酸含量異常豐富的短肽,其巰基(-SH)能夠螯合重金屬[115]。鎘脅迫下接種變形球囊霉上調了旱稻菌根中MTs合成相關基因的表達,降低了旱稻地上部鎘含量[56]。無機硫化物也可與重金屬反應生成不溶性金屬硫化物[32]。內生臺灣貪銅菌(Cupriavidus taiwanensis KKU2500-3)能夠分泌MTs和無機硫化物,鎘脅迫下其發酵液中硫化鎘含量升高,降低了發酵液中有效鎘的含量,接種后顯著降低了水稻籽粒鎘含量[32]。AMF通過改變重金屬的生物有效性降低鎘在菌根中的遷移率和毒性,如高鎘脅迫(≥0.05 mmol/L)下,接種AMF的旱稻菌根中有效態鎘(無機鎘和水溶性鎘)的含量顯著低于未接種AMF的旱稻,無效態鎘(果膠酸鹽結合態鎘、蛋白質結合態鎘、不溶性和殘留鎘)占比高[49]。Luo等[50]研究發現,AMF接種提高了旱稻在開花期、成熟期根際土壤中無效態鎘的比例,與籽粒中鎘含量呈負相關,這表明旱稻開花期和成熟期是AMF限制籽粒積累鎘的關鍵時期。植物在細胞質中將重金屬與植物螯合素(Phytochelatins, PCs)螯合以降低其生物有效性,并將螯合物轉運至液泡,這是緩解重金屬脅迫與積累的一種重要機制。OsPCS1和OsPCS2是水稻合成PCs的2個主要基因,有助于提高水稻對砷和鎘的耐受性[116]。研究發現,砷脅迫上調了水稻根中OsPCS1和OsPCS2的表達;接種印度梨形孢進一步顯著上調了OsPCS1和OsPCS2的表達,增加了PCs的合成,砷被PCs螯合后轉移至根部液泡區隔化,從而減少了砷向地上部的轉運[42]。

綜上所述,內生菌通過降低重金屬的生物有效性減少水稻對重金屬的吸收和轉運,緩解了水稻重金屬脅迫,減少了植株地上部和籽粒重金屬積累。

2.3 調控水稻對重金屬的吸收和轉運基因的表達

根是植物吸收土壤重金屬的第一個部位,許多重要的重金屬吸收和轉運基因在根部表達。水稻根系可以通過硅酸鹽和磷酸鹽轉運蛋白質吸收和轉運As3+、As5+[117]。水稻硅酸鹽轉運基因OsLsi1參與砷的吸收,OsLsi6在將砷/硅轉運出木質部并向地上部再分配過程中起關鍵作用,OsLsi2參與砷向中柱的運輸且將其轉運到地上部,磷酸鹽轉運基因OsPT4參與砷的吸收[35,42,118-119]。砷脅迫下,水稻幼苗根部OsLsi1、OsLsi2、OsLsi6基因表達上調;接種印度梨形孢后,顯著下調了OsLsi2基因的表達,減少了砷向地上部的轉運,地上部砷含量顯著降低[42]。砷脅迫下水稻接種AMF(Glomus intraradices BGC AH01)顯著下調了OsLsi1、OsLsi2基因的表達,菌根對砷的吸收效率下降,大部分亞砷酸鹽在根部被固定從而阻止其轉移到地上部[66]。Rujira等[35]的研究結果表明,水稻OsLsi1、OsLsi2、OsPT4基因在砷脅迫下表達上調,根、枝、葉、穗枝、殼和籽粒中的砷積累顯著增加;單接種內生細菌假單胞菌、蘇云金芽孢桿菌、短小芽孢桿菌及配施風化褐煤皆能顯著下調OsLsi1、OsLsi2、OsPT4基因表達,籽粒砷含量低于大米砷限量國際標準(0.2 mg/kg)。植物重金屬三磷酸腺苷酶(Heavy metal ATPases, HMAs)家族在金屬轉運方面發揮重要作用[120],其中OsHMA2負責將鎘/鋅從根部轉運到地上部,OsHMA3負責將鎘運輸到根部大液泡中區隔化[121-122]。OsHMA3基因的過表達可以增加水稻根部鎘積累,減少地上部的鎘積累[123]。鎘脅迫下水稻接種內生菌C40顯著下調了OsHMA2基因表達,上調了OsHMA3基因表達,根部鎘積累增加,但重金屬轉移系數降低,減少了水稻地上部鎘積累[27]。

據報道,天然抗性相關巨噬細胞蛋白(Natural resistance-associated macrophage protein, NRAMP)家族參與金屬的吸收轉運[124]。其中OsNRAMP1轉運鐵、鎘、砷,敲除OsNRAMP1基因減少了水稻根系對鎘的吸收,鎘在籽粒中的積累顯著降低[125]。OsNRAMP5負責鎘、錳、鐵的吸收和轉運,敲除OsNRAMP5基因顯著降低水稻根部對鎘的吸收,但促進了鎘向地上部的轉運;進一步研究發現,在低濃度和中等濃度鎘脅迫下,敲除OsNRAMP5同時降低了根部和地上部鎘積累,抑制鎘吸收效應明顯大于促進鎘轉運效應,在高濃度鎘脅迫下,OsNRAMP5基因敲除雖然降低了根部鎘積累,但增加了地上部鎘積累,促進鎘轉運效應大于抑制鎘吸收效應[126]。研究發現,鎘脅迫下接種內生菌Stenotrophomonas maltophilia R5-5使水稻根中OsNRAMP5和OsHMA2的表達顯著下調,根和地上部鎘含量顯著降低[30]。砷脅迫下接種印度梨形孢下調了OsNRAMP1和OsNRAMP5的表達,減少了水稻地上部的砷積累[42]。鎘脅迫下接種Glomus versiforme或Rhizophagus intraradices下調了旱稻OsNRAMP5基因的表達,降低了旱稻地上部鎘積累[47, 56]。Yang等[54]研究發現,旱稻間作龍葵(鎘高積累植物)配合Funneliformis mosseae接種下調了旱稻根部OsNRAMP5基因的表達,上調了OsHMA3基因的表達,促進了龍葵的生長和鎘積累,減少了旱稻籽粒鎘積累,所產糙米鎘含量(0.38 mg/kg)符合國際食品法典委員會(CAC)對糙米中鎘的限量標準(≤0.40 mg/kg,CXS 193-1995)和中國飼料衛生標準(≤0.50 mg/kg,GB 13078-2017)。

綜上所述,內生菌通過調控水稻重金屬吸收和轉運相關基因的表達減少水稻對重金屬的吸收與轉運,降低了地上部和籽粒的重金屬含量。

2.4 調控根系和根內微生物群落結構

植物能夠招募特定功能的內生菌群,幫助自身抵御重金屬脅迫[127-129]。外源內生菌接種可以達到調控水稻根系和內生微生物群落結構的目的。Zheng等[29]研究發現,外源接種內生菌Stenotrophomonas maltophilia R5-5改變了水稻內生細菌群落網絡的拓撲特征,根部和地上部內生細菌群落表現出更強的復雜性和相互作用,內生菌與水稻之間構建了更有效的協同作用,從而共同抑制鎘的吸收和轉運。隨著內生細菌群落網絡復雜性和連通性的增加,水稻中鎘含量呈下降趨勢,表明復雜的微生物網絡具有適應性和抗逆性,比簡單的微生物網絡更有利于緩解水稻重金屬脅迫和積累。地桿菌屬(Geobacter)是土壤中的鐵還原細菌,能夠降低鎘和砷的生物有效性[130-131]。接種內生菌Rhizobium larrymoorei S28顯著增加了根際和根內地桿菌屬菌株的豐度,降低了水稻根際鎘的生物有效性和根內鎘積累[33]。據報道,放線菌可以吸收鎘并降低植物對鎘的攝取[132]。研究發現,鎘脅迫下接種Rhizophagus intraradices使旱稻根內節桿菌屬放線菌的豐度顯著提高,植株根部、地上部鎘含量降低,這表明Rhizophagus intraradices的接種促進了節桿菌的豐度和其對鎘的固定,因此減少了旱稻對鎘的吸收和轉運[47]。以上研究結果表明,外源接種內生菌可以改變水稻根際和根內細菌群落結構,有利于降低重金屬積累,但外源接種內生菌對水稻根系和內生真菌群落結構、功能的影響及其與緩解水稻重金屬脅迫和積累之間的關系還有待進一步闡明。

3 結論

內生菌通過一種或多種促生特性(溶磷、固氮以及產生鐵載體、ACC脫氨酶、IAA、GA、有機酸)促進水稻氨基酸、蛋白質、碳水化合物合成,并調節水稻激素平衡、增強水稻光合作用和抗氧化能力,進而緩解重金屬脅迫,促進水稻生長(圖1)。內生菌通過以下途徑緩解重金屬脅迫、降低重金屬積累(圖1):(1)加強自身細胞和水稻根部細胞對重金屬的胞外吸附和胞內積累固定重金屬;(2)誘導水稻生成植物螯合素、金屬硫蛋白、多胺等生物鈍化劑或自身產生鐵載體、有機酸、金屬硫蛋白、無機硫化物、多胺等生物鈍化劑來降低重金屬的生物有效性;(3)調控水稻重金屬吸收、轉運相關基因的表達,阻礙水稻對重金屬的吸收和轉運;(4)調控根部微生物群落結構,減少水稻對重金屬的吸收。需要進一步說明的是,內生菌緩解水稻重金屬脅迫機制與降低重金屬積累機制之間并不是互相獨立的,而是降低積累能夠緩解脅迫、緩解脅迫有利于降低積累的相互促進關系,如:有的內生菌接種后并未顯著改變水稻地上部重金屬含量,但通過提高水稻生物量而產生“生長稀釋效應”降低了植株重金屬含量[47];又如:有的內生菌接種后并沒有顯著提高水稻生物量,不存在“生長稀釋效應”,但減少了植株對重金屬的吸收和轉運[52];或者,有的內生菌既降低了水稻對重金屬的吸收和轉運,又促進了植株生長,以上3種情況皆能緩解水稻重金屬脅迫和積累[55]。

內生菌在緩解水稻重金屬脅迫和積累方面具有巨大的應用潛力,基于迄今為止的相關研究,本文提出3點未來有待加強研究的方向:

(1)目前,具有單一重金屬抗性特別是鎘和砷抗性的內生菌菌種資源發掘和保存較多,但具有多種重金屬抗性且能降低水稻重金屬積累的內生菌菌種資源發掘較少。建議今后可使用高通量分離培養技術規模化篩選抗重金屬內生菌,加快新型抗重金屬功能篩選培養基的開發以加強多抗型內生菌菌種資源的分離、鑒定和保存,為微生物肥料的制備提供優良內生菌。

(2)復合菌劑比單一菌劑在緩解水稻重金屬脅迫和積累上更加有效,但合成菌群緩解水稻重金屬脅迫和積累的應用研究較少。建議今后深層次揭示外源接種合成菌群在緩解水稻重金屬脅迫和積累方面的微生物組學機制,進一步加強合成菌群田間應用的穩定性研究,結合多年多點大田試驗評估合成菌群的綜合功效;還要繼續加強水稻與重金屬超積累植物間作、套作、輪作配合內生菌群接種的研究,形成能夠穩定應用于大田水稻生產的復合型技術。

(3)現有研究大多單向集中于內生細菌或內生真菌,但二者在緩解水稻重金屬脅迫和積累方面是否具有協同作用或拮抗作用及其機制還有待闡明,建議使用平板共接種培養法結合代謝組學、基因組學、蛋白組學分析探究內生真菌與內生細菌在緩解水稻重金屬脅迫和積累方面的相互作用,為合成菌群的構建增加理論基礎。

參考文獻:

[1] JASKULAK M, GROBELAK A, VANDENBULCKE F. Modelling assisted phytoremediation of soils contaminated with heavy metals-main opportunities, limitations, decision making and future prospects[J]. Chemosphere, 2020, 249:1-16.

[2] HUANG Y, WANG L Y, WANG W J, et al. Current status of agricultural soil pollution by heavy metals in China: a meta-analysis[J]. Science of the Total Environment, 2019, 651: 3034-3042.

[3] SATPATHY D, REDDY M V, DHAL S P. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the east coast of India[J]. BioMed Research International, 2014, 2014: 1-11.

[4] FONTI V, DELL'ANNO A, BEOLCHINI F. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments?[J]. Science of the Total Environment, 2016, 563/564: 302-319.

[5] HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science amp; Technology, 2016, 50(8): 4178-4185.

[6] YIN Y, YI Q Z, CHENG H L. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils[J]. PLoS One, 2015, 10(4): 1-9.

[7] YU L L, ZHU J Y, HUANG Q Q, et al. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety[J]. Ecotoxicology and Environmental Safety, 2014, 108: 287-293.

[8] ROSENBLUETH M, MARTNEZ-ROMERO E. Bacterial endophytes and their interactions with hosts[J]. Molecular Plant-Microbe Interactions, 2006, 19(8): 827-837.

[9] SARAVANAN V S, MADHAIYAN M, THANGARAJU M. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus[J]. Chemosphere, 2007, 66(9): 1794-1798.

[10]SHENG X F, XIA J J, JIANG C Y, et al. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J]. Environmental Pollution, 2008, 156(3): 1164-1170.

[11]WANG X D, HUA L, MA Y B. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): influence of calcium, magnesium, sodium, potassium and pH[J]. Chemosphere, 2012, 89(1): 89-95.

[12]CHANWAY C P, SHISHIDO M, NAIRN J, et al. Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria[J]. Forest Ecology and Management, 2000, 133(1/2): 81-88.

[13]PABLO R H, LEO S V O, JAN D V E. Properties of bacterial endophytes and their proposed role in plant growth[J]. Trends in Microbiology, 2008, 16(10): 463-471.

[14]INGA M, ODETA B, DANAS B, et al. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review[J]. Zemdirbyste-Agriculture, 2015, 102(4): 465-478.

[15]HASSAN E. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018, 147: 175-191.

[16]LUO J P, TAO Q, JUPA R, et al. Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii[J]. Environmental Science amp; Technology, 2019, 53(12): 6954-6963.

[17]RAHMATULLAH J, MUHAMMAD A K, SAJJAD A, et al. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of oryza sativa, via regulating its antioxidant machinery and endogenous hormones[J]. Plants, 2019, 8(10): 1-23.

[18]MA Y, OLIVEIRA R S, FREITAS H, et al. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation[J]. Frontiers in Plant Science, 2016, 7: 1-19.

[19]MA Y, RAJKUMAR M, ZHANG C, et al. Beneficial role of bacterial endophytes in heavy metal phytoremediation[J]. Journal of Environmental Management, 2016, 174: 14-25.

[20]張瑋川,李 劍,王志宇,等. 內生菌-植物聯合修復污染土壤研究進展[J]. 農業資源與環境學報, 2021, 38(3): 355-364.

[21]李 艷,李 劍,劉慶輝,等. 植物-內生菌聯合處理環境污染物研究進展[J]. 應用與環境生物學報, 2021, 27(6): 1706-1715.

[22]陳柯璇,湯雯婷,李麗娜,等. 種子內生菌增強宿主植物重金屬抗性的功能機制研究進展[J]. 微生物學通報, 2021, 48(6): 2187-2194.

[23]ZHOU X, LIU X Q, ZHAO J T, et al. The endophytic bacterium Bacillus koreensis 181-22 promotes rice growth and alleviates cadmium stress under cadmium exposure[J]. Applied Microbiology and Biotechnology, 2021, 105(21/22): 8517-8529.

[24]SHAHZAD R, BILAL S, IMRAN M, et al. Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation[J]. Biochemical Journal, 2019, 476(21): 3385-3400.

[25]SHAHZAD R, WAQAS M, KHAN A L, et al. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa[J]. Plant Physiology and Biochemistry, 2016, 106: 236-243.

[26]SHAHZAD R, KHAN A L, BILAL S, et al. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. Sp. Lycopersici in tomato[J]. PeerJ, 2017, 5. DOI:10.7717//peerj.3107.

[27]CHENG C, WANG R, SUN L J, et al. Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa Cliangyou 513)[J]. Chemosphere, 2021, 275: 1-11.

[28]TIAN W, LI L, XIAO X, et al. Identification of a plant endophytic growth-promoting bacteria capable of inhibiting cadmium uptake in rice[J]. Journal of Applied Microbiology, 2022, 132(1): 520-531.

[29]ZHENG Z Y, LI P, XIONG Z Q, et al. Integrated network analysis reveals that exogenous cadmium-tolerant endophytic bacteria inhibit cadmium uptake in rice[J]. Chemosphere, 2022, 301: 1-9.

[30]ZHOU J Y, LI P, MENG D L, et al. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment[J]. Environmental Pollution, 2020, 260: 1-9.

[31]PUNJEE P, SIRIPORNADULSIL W, SIRIPORNADULSIL S. Reduction of cadmium uptake in rice endophytically colonized with the cadmium-tolerant bacterium Cupriavidus taiwanensis KKU2500-3[J]. Canadian Journal of Microbiology, 2018, 64(2): 131-145.

[32]SURASAK S, WILAILAK S. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation[J]. Ecotoxicology and Environmental Safety, 2013, 94: 94-103.

[33]WANG Y L, WANG R, KOU F L, et al. Cadmium-tolerant facultative endophytic Rhizobium larrymoorei S28 reduces cadmium availability and accumulation in rice in cadmium-polluted soil[J]. Environmental Technology amp; Innovation, 2022, 26: 1-11.

[34]CHENG C, NIE Z W, HE L Y, et al. Rice-derived facultative endophytic Serratia liquefaciens F2 decreases rice grain arsenic accumulation in arsenic-polluted soil[J]. Environmental Pollution, 2020, 259: 1-10.

[35]RUJIRA D, PAITIP T. Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria[J]. Chemosphere, 2019, 223: 448-454.

[36]LI Y, PANG H D, HE L Y, et al. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria[J]. Ecotoxicology and Environmental Safety, 2017, 138: 56-63.

[37]范美玉,黎 妮,賈雨田,等. 耐鎘阿氏芽孢桿菌緩解水稻受鎘脅迫的研究[J]. 農業環境科學學報, 2021, 40(2): 279-286.

[38]馮 瑋,張 蕾,宣慧娟,等. 西藏土壤中耐輻射阿氏芽胞桿菌T61的分離和鑒定[J]. 微生物學通報, 2016, 43(3): 488-494.

[39]付少委,楚超群,黎 妮,等. 鎘污染水稻種子內生細菌的分離及其耐鎘性和植物促生性研究[J]. 微生物學報, 2022, 62(4): 1536-1548.

[40]SU Z Z, DAI M D, ZHU J N, et al. Dark septate endophyte Falciphora oryzae-assisted alleviation of cadmium in rice[J]. Journal of Hazardous Materials, 2021, 419: 1-13.

[41]YUAN Z L, LIN F C, ZHANG C L, et al. A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte[J]. FEMS Microbiology Letters, 2010, 307(1): 94-101.

[42]GHORBANI A, TAFTEH M, ROUDBARI N, et al. Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots[J]. Ecotoxicology and Environmental Safety, 2021, 209: 1-11.

[43]VERMA S, VARMA A, REXER K, et al. Piriformospora indica, gen. Et sp. Nov., a new root-colonizing fungus[J]. Mycologia, 1998, 90(5): 896-903.

[44]DABRAL S, YASHASWEE, VARMA A, et al. Biopriming with Piriformospora indica ameliorates cadmium stress in rice by lowering oxidative stress and cell death in root cells[J]. Ecotoxicology and Environmental Safety, 2019, 186: 1-12.

[45]MA L J, LI X M, WANG L L, et al. Endophytic infection modulates ROS-scavenging systems and modifies cadmium distribution in rice seedlings exposed to cadmium stress[J]. Theoretical and Experimental Plant Physiology, 2019, 31(4): 463-474.

[46]于 飛,谷 玥,張 奇,等. 一株堿蓬內生真菌的鑒定及促生活性產物的初步研究[J]. 生物技術通報, 2016, 32(5): 151-157.

[47]CHEN X W, WU L, LUO N, et al. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice[J]. Geoderma, 2019, 337: 749-757.

[48]GAO M Y, CHEN X W, HUANG W X, et al. Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root[J]. Journal of Hazardous Materials, 2021, 416: 1-9.

[49]LI H, LUO N, ZHANG L J, et al. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?[J]. Science of the Total Environment, 2016, 571: 1183-1190.

[50]LUO N, LI X, CHEN A Y, et al. Does arbuscular mycorrhizal fungus affect cadmium uptake and chemical forms in rice at different growth stages?[J]. Science of the Total Environment, 2017, 599: 1564-1572.

[51]LI H, CHEN X W, WU L, et al. Effects of arbuscular mycorrhizal fungi on redox homeostasis of rice under Cd stress[J]. Plant and Soil, 2020, 455(1): 121-138.

[52]LI H, CHEN X W, WONG M H. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains[J]. Chemosphere, 2016, 145: 224-230.

[53]HUANG X, AN G, ZHU S, et al. Can Cd translocation in Oryza sativa L. be attenuated by arbuscular mycorrhizal fungi in the presence of EDTA?[J]. Environmental Science and Pollution Research, 2018, 25(10): 9380-9390.

[54]YANG X, QIN J, LI J, et al. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil[J]. Journal of Hazardous Materials, 2021, 406: 1-13.

[55]LEI L, ZHU Q, XU P, et al. The intercropping and arbuscular mycorrhizal fungus decrease Cd accumulation in upland rice and improve phytoremediation of Cd-contaminated soil by Sphagneticola calendulacea (L.) Pruski[J]. Journal of Environmental Management, 2021, 298: 1-11.

[56]ZHU Q, XU P, LEI L, et al. Transcriptome analysis reveals decreased accumulation and toxicity of Cd in upland rice inoculated with arbuscular mycorrhizal fungi[J]. Applied Soil Ecology, 2022, 177: 1-9.

[57]李信茹,蘇海磊,周 民,等. 叢枝菌根真菌對汞脅迫下水稻葉片生理和光合特性的影響[J]. 環境科學研究, 2021, 34(8): 1918-1927.

[58]李信茹. 汞脅迫下叢枝菌根真菌對水稻生長生理特性和吸收積累汞的影響[D]. 北京:中國環境科學研究院, 2021.

[59]王幼珊,張俊伶. 中國叢枝菌根真菌的保藏、共享服務與研究利用[J]. 菌物學報, 2019, 38(11): 1760-1807.

[60]ZHANG X H, YANG W J, WANG L M, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth of upland rice under soil Pb contamination [J]. Agricultural Science amp; Technology, 2013, 14(11): 1624-1628.

[61]CHAN W F, LI H, WU F Y, et al. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi[J]. Journal of Hazardous Materials, 2013, 262: 1116-1122.

[62]ZHANG X H, LIN A J, GAO Y L, et al. Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake[J]. Soil Biology and Biochemistry, 2009, 41(5): 930-935.

[63]CHAN W F, LI W C, WONG M H. Uptake kinetics of arsenic in upland rice cultivar Zhonghan 221 inoculated with arbuscular mycorrhizal fungi[J]. International Journal of Phytoremediation, 2015, 17(11): 1073-1080.

[64]WU F, HU J, WU S, et al. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils[J]. Environmental Science and Pollution Research, 2015, 22(12): 8919-8926.

[65]ZHANG X H, ZHU Y G, CHEN B D, et al. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil[J]. Journal of Plant Nutrition, 2005, 28(12): 2065-2077.

[66]CHEN X, LI H, CHAN W F, et al. Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress[J]. Chemosphere, 2012, 89(10): 1248-1254.

[67]SHUKLA A, SRIVASTAVA S, SUPRASANNA P. Genomics of metal stress-mediated signalling and plant adaptive responses in reference to phytohormones[J]. Current Genomics, 2017, 18(6): 512-522.

[68]SUSSMILCH F C, ATALLAH N M, BRODRIBB T J, et al. Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time[J]. Plant Signaling amp; Behavior, 2017, 12(9): 1-5.

[69]KIM Y H, KHAN A L, KIM D H, et al. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones.[J]. BMC Plant Biology, 2014, 14(1): 1-13.

[70]SAVITA G, VIJAY P S, PRABHAT K S, et al. Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings[J]. Acta Physiologiae Plantarum, 2011, 33(4): 1385-1397.

[71]ATICI , AGAR G, BATTAL P E, et al. Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress[J]. Biologia Plantarum, 2005, 49(2): 215-222.

[72]HAN Y L, WANG R, YANG Z R, et al. 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals[J]. Journal of Microbiology and Biotechnology, 2015, 25(7): 1119-1128.

[73]JAGNA E B, JAROSLAW E, RENATA E S, et al. The new insights into cadmium sensing[J]. Frontiers in Plant Science, 2014, 5: 1-13.

[74]BERNARD R G. Using soil bacteria to facilitate phytoremediation[J]. Biotechnology Advances, 2010, 28(3): 367-374.

[75]BABU A G, SHEA P J, SUDHAKAR D, et al. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil[J]. Journal of Environmental Management, 2015, 151: 160-166.

[76]ULLAH I, MATEEN A, AHMAD M A, et al. Heavy metal ATPase genes (HMAs) expression induced by endophytic bacteria, \"AI001, and AI002\" mediate cadmium translocation and phytoremediation[J]. Environmental Pollution, 2022, 293: 1-7.

[77]MA Y, PRASAD M N V, RAJKUMAR M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2): 248-258.

[78]SESSITSCH A, KUFFNER M, KIDD P, et al. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils[J]. Soil Biology and Biochemistry, 2013, 60(100): 182-194.

[79]CHI F, SHEN S H, CHENG H P, et al. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology[J]. Applied and Environmental Microbiology, 2005, 71(11): 7271-7278.

[80]MAGDZIAK Z, KOZLOWSKA M, KACZMAREK Z, et al. Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis.Ⅱ.Secretion of low molecular weight organic acids to the rhizosphere[J]. Ecotoxicology and Environmental Safety, 2011,74(1):33-40.

[81]LIU Y P, TAN H M, CAO L X, et al. Rice sprout endophytic Enterobacter sp. SE-5 could improve tolerance of mature rice plants to salt or Cd2+ in soils[J]. Archives of Agronomy and Soil Science, 2020, 66(7): 873-883.

[82]ISRAR M, JEWELL A, KUMAR D, et al. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1520-1526.

[83]LI X M, ZHANG L H. Endophytic infection alleviates Pb2+ stress effects on photosystem II functioning of Oryza sativa leaves[J]. Journal of Hazardous Materials, 2015, 295: 79-85.

[84]LI X M, BU N, LI Y Y, et al. Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions[J]. Journal of Hazardous Materials, 2012, 213/214: 55-61.

[85]DE S K A, SENABIO J A, PIETRO-SOUZA W, et al. Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L.[J]. Archives of Microbiology, 2021, 203(9): 5345-5361.

[86]DE A S A L, DOMINGUES JR A P, MAZZAFERA P. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress[J]. Chemosphere, 2015, 134: 141-149.

[87]LESS H, GALILI G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses[J]. Plant Physiology, 2008, 147(1): 316-330.

[88]GRATO P L, POLLE A, LEA P J, et al. Making the life of heavy metal-stressed plants a little easier[J]. Functional Plant Biology, 2005, 32(6): 481-494.

[89]MLLER I M, JENSEN P E, HANSSON A. Oxidative modifications to cellular components in plants[J]. Annual Review of Plant Biology, 2007, 58(1): 459-481.

[90]MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell amp; Environment, 2010, 33(4): 453-467.

[91]SHARMA S S, DIETZ K. The relationship between metal toxicity and cellular redox imbalance[J]. Trends in Plant Science, 2009, 14(1): 43-50.

[92]葉芯妤,邱雪梅,王 月,等. 乙二醛酶系統及其在植物響應和適應環境脅迫中的作用[J]. 植物生理學報, 2019, 55(4): 401-410.

[93]CHARANPREET K, SNEH L S, SUDHIR K S. Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance[J]. Critical Reviews in Plant Science, 2014, 33(6): 429-456.

[94]RAHMAN A, MOSTOFA M G, ALAM M M, et al. Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers[J]. BioMed Research International, 2015, 2015: 1-12.

[95]BARCELO J, POSCHENRIEDER C. Plant water relations as affected by heavy metal stress: a review[J]. Journal of Plant Nutrition, 1990, 13(1): 1-37.

[96]OUZOUNIDOU G, MOUSTAKAS M, SYMEONIDIS L, et al. Response of wheat seedlings to ni stress: effects of supplemental calcium[J]. Archives of Environmental Contamination and Toxicology, 2006, 50(3): 346-352.

[97]LI X M, MA L J, LI Y Y, et al. Endophyte infection enhances accumulation of organic acids and minerals in rice under Pb2+ stress conditions[J]. Ecotoxicology and Environmental Safety, 2019, 174: 255-262.

[98]DIMKPA C O, MERTEN D, SVATO A, et al. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively[J]. Journal of Applied Microbiology, 2009, 107(5): 1687-1696.

[99]IMRAN A, ZABTA K S, SHOMAILA S, et al. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants[J]. Microbiological Research, 2019, 221: 36-49.

[100]IHSAN U, BASSAM O A, KHALID M S A, et al. Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene[J]. Ecotoxicology and Environmental Safety, 2019, 174: 197-207.

[101]ZHANG X H, ZHU Y G, CHEN B D, et al. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil[J]. Journal of Plant Nutrition, 2005, 28(12):2065-2077.

[102]MHLBACHOV G, IMON T, PECHOV M. The availability of Cd, Pb and Zn and their relationships with soil pH and microbial biomass in soils amended by natural clinoptilolite[J]. Plant, Soil and Environment, 2005, 51(1): 26-33.

[103]LI L J, ZENG X B, PAUL N W, et al. Arsenic resistance in fungi conferred by extracellular bonding and vacuole-septa compartmentalization[J]. Journal of Hazardous Materials, 2021, 401: 1-7.

[104]QIU Q, WANG Y T, YANG Z Y, et al. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation[J]. Food and Chemical Toxicology, 2011, 49(9): 2260-2267.

[105]WANG X, LIU Y G, ZENG G M, et al. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud[J]. Environmental and Experimental Botany, 2008, 62(3): 389-395.

[106]WANG J, YUAN J G, YANG Z Y, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.)[J]. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8942-8949.

[107]WENG B, XIE X, WEISS D J, et al. Kandelia obovata (S., L.) Yong tolerance mechanisms to cadmium: subcellular distribution, chemical forms and thiol pools[J]. Marine Pollution Bulletin, 2012, 64(11): 2453-2460.

[108]HEBA T E, NEMAT M H, ALSHAFEI M A. Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes[J]. Plant Physiology and Biochemistry, 2017, 118: 438-448.

[109]HAN H, WANG Q, HE L Y, et al. Increased biomass and reduced rapeseed Cd accumulation of oilseed rape in the presence of Cd-immobilizing and polyamine-producing bacteria[J]. Journal of Hazardous Materials, 2018, 353: 280-289.

[110]MAGDA P, GABRIELLA S, TIBOR J. Speculation: polyamines are important in abiotic stress signaling[J]. Plant Science, 2015, 237: 16-23.

[111]YI T H, CHING H K. Cadmium-induced oxidative damage in rice leaves is reduced by polyamines[J]. Plant and Soil, 2007, 291(1): 27-37.

[112]SUN L N, ZHANG Y F, HE L Y, et al. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J]. Bioresource Technology, 2010, 101(2): 501-509.

[113]SAHA M, SARKAR S, SARKAR B, et al. Microbial siderophores and their potential applications: a review[J]. Environmental Science and Pollution Research, 2016, 23(5): 3984-3999.

[114]BRAUD A, HOEGY F, JEZEQUEL K, et al. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway[J]. Environmental Microbiology, 2009, 11(5): 1079-1091.

[115]HALL J L. Cellular mechanisms for heavy metal detoxification and tolerance[J]. Journal of Experimental Botany, 2002, 53(366): 1-11.

[116]YAMAZAKI S, UEDA Y, MUKAI A, et al. Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance[J]. Plant Direct, 2018, 2(1): 1-15.

[117]MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9931-9935.

[118]PAN D D, HUANG G Y, YI J C, et al. Foliar application of silica nanoparticles alleviates arsenic accumulation in rice grain: co-localization of silicon and arsenic in nodes[J]. Environmental Science: Nano, 2022, 9(4): 1271-1281.

[119]YAMAJI N, MITATNI N, MA J F. A transporter regulating silicon distribution in rice shoots[J]. The Plant Cell, 2008, 20(5): 1381-1389.

[120]KAUR R, DAS S, BANSAL S, et al. Heavy metal stress in rice: uptake, transport, signaling, and tolerance mechanisms[J]. Physiologia Plantarum, 2021, 173(1): 430-448.

[121]SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant amp; Cell Physiology, 2012, 53(1): 213-224.

[122]SHAO J F, XIA J X, YAMAJI N, et al. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter[J]. Journal of Experimental Botany, 2018, 69(10): 2743-2752.

[123]SASAKI A, YAMAJI N, MA J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6013-6021.

[124]SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167.

[125]CHANG J D, HUANG S, YAMAJI N, et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]. Plant, Cell amp; Environment, 2020, 43(10): 2476-2491.

[126]TANG L, DONG J Y, QU M M, et al. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms[J]. Science of the Total Environment, 2022, 832: 1-11.

[127]SYRANIDOU E, THIJS S, AVRAMIDOU M, et al. Responses of the endophytic bacterial communities of Juncus acutus to pollution with metals, emerging organic pollutants and to bioaugmentation with indigenous strains[J]. Frontiers in Plant Science, 2018, 9: 1-14.

[128]SUN W H, XIONG Z, CHU L, et al. Bacterial communities of three plant species from Pb-Zn contaminated sites and plant-growth promotional benefits of endophytic Microbacterium sp. (strain BXGe71)[J]. Journal of Hazardous Materials, 2019, 370: 225-231.

[129]URKA Z, JOSEPH N, BERNHARD M, et al. Changes induced by heavy metals in the plant-associated microbiome of Miscanthus×giganteus[J]. Science of the Total Environment, 2020, 711: 1-10.

[130]MUEHE E M, OBST M, HITCHCOCK A, et al. Fate of Cd during microbial Fe (III) mineral reduction by a novel and Cd-tolerant Geobacter Species[J]. Environmental Science amp; Technology, 2013, 47(24): 14099-14109.

[131]DAI J, TANG Z, JIANG N, et al. Increased arsenic mobilization in the rice rhizosphere is mediated by iron-reducing bacteria[J]. Environmental Pollution, 2020, 263: 1-11.

[132]TSURUTA T, UMENAI D, HATANO T, et al. Screening micro-organisms for cadmium absorption from aqueous solution and cadmium absorption properties of Arthrobacter nicotianae[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(10): 1791-1796.

(責任編輯:陳海霞)

收稿日期:2022-06-15

基金項目:福建省科技計劃項目(2020N0075、2022N0050)

作者簡介:付思遠(1993-),男,吉林榆樹人,碩士,研究實習員,主要研究方向為農業微生物資源開發與利用。(E-mail)fusiyuan19940821@163.com

通訊作者:陳萍萍,(E-mail)pingpingchen1982@163.com; 彭玉林,(E-mail)pyl2010@163.com

主站蜘蛛池模板: 一区二区三区在线不卡免费| 精品色综合| 日本不卡视频在线| 日韩天堂网| 国产色爱av资源综合区| 亚洲美女一区| 青青青国产在线播放| 欧美啪啪一区| 欧美一级一级做性视频| 九月婷婷亚洲综合在线| 国产女人18水真多毛片18精品 | 欧美亚洲综合免费精品高清在线观看| 国内精品久久人妻无码大片高| 99青青青精品视频在线| 综合社区亚洲熟妇p| 99久久精品国产综合婷婷| 精品国产污污免费网站| 国产成人精品一区二区三区| www亚洲天堂| 免费 国产 无码久久久| 亚洲狠狠婷婷综合久久久久| 日韩欧美一区在线观看| 深爱婷婷激情网| 日韩高清成人| 国产真实乱人视频| 综合五月天网| 亚洲一级毛片在线播放| 久久亚洲国产一区二区| 天天综合天天综合| 精品少妇人妻无码久久| 欧美一区二区福利视频| 国产H片无码不卡在线视频| 亚洲欧洲国产成人综合不卡| 在线精品视频成人网| 欧美劲爆第一页| 一区二区日韩国产精久久| WWW丫丫国产成人精品| 性视频久久| 婷婷综合在线观看丁香| 波多野衣结在线精品二区| 亚洲人成网18禁| 91成人试看福利体验区| 欧美啪啪一区| 国产91色| 欧美成人国产| 成人年鲁鲁在线观看视频| 丰满人妻一区二区三区视频| 日韩区欧美区| 狼友av永久网站免费观看| 欧美综合成人| аv天堂最新中文在线| 一级毛片在线免费看| 国产成人精品免费av| 国产在线视频二区| 永久成人无码激情视频免费| a级免费视频| 婷婷综合缴情亚洲五月伊| 国产va在线观看免费| 国产精品极品美女自在线看免费一区二区 | 国产网站在线看| 高清亚洲欧美在线看| 欧美一级高清片欧美国产欧美| 激情国产精品一区| 久草视频中文| 久久久久亚洲AV成人网站软件| 亚洲国产精品久久久久秋霞影院| 综合亚洲色图| 中文无码毛片又爽又刺激| 国产黑丝视频在线观看| 国产日本欧美在线观看| 亚洲永久色| 日韩av电影一区二区三区四区 | 亚洲精品国产日韩无码AV永久免费网 | 国产伦精品一区二区三区视频优播 | 亚洲国产欧美国产综合久久| 精品一区二区三区视频免费观看| 欧美国产精品不卡在线观看| 精品人妻一区二区三区蜜桃AⅤ| 波多野结衣AV无码久久一区| 操美女免费网站| 在线欧美日韩| 国产成人区在线观看视频|