999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

吉林延吉杜荒嶺淺成熱液金礦床巖體鋯石微量元素地球化學特征及其地質意義

2023-12-29 00:00:00柴鵬孫景貴袁玲玲門蘭靜
吉林大學學報(地球科學版) 2023年3期

摘要:杜荒嶺金礦床是中國東北部吉林省延吉地區典型的淺成熱液高硫化型金礦床之一,礦區內發育大量早白堊世火成巖。為了更深入地認識杜荒嶺金礦床的巖漿作用、巖漿起源及成礦條件,本文在已有研究基礎上對礦區內含礦的石英閃長巖、花崗閃長巖和花崗閃長斑巖中的鋯石進行了微量元素測試。結果顯示,絕大多數鋯石Th/U值gt;0.1,鋯石的球粒隕石標準化REE配分曲線呈左傾配分型式,強烈富集重稀土元素、虧損輕稀土元素,并存在不同程度的Ce正異常與Eu負異常;研究對象為典型巖漿鋯石,結晶溫度主要介于700~900 ℃之間。研究認為含礦巖石起源于下地殼部分熔融,形成于板塊俯沖的弧構造環境。此外,成礦巖體花崗閃長斑巖鋯石相比成礦前巖石具有較高的Ce4+/Ce3+值和較低的結晶溫度,指示花崗閃長斑巖巖漿具有高氧逸度和含水量,即高成礦潛力。而巖漿氧逸度和含水量的差異可能是石英閃長巖和花崗閃長巖未成礦的原因。

關鍵詞:吉林延吉;淺成熱液高硫化型金礦床;杜荒嶺金礦床;鋯石;微量元素地球化學

doi:10.13278/j.cnki.jjuese.20210331

中圖分類號:P59

文獻標志碼:A

Abstract: Duhuangling gold deposit is one of the highsulphidation epithermal gold deposits in" Yanji area, northeast China, where a large number of Early Cretaceous igneous rocks are developed. In order to understand the magmatism, magma sources and oreforming condition of" Duhuangling gold deposit, integrated with the results of previous research, we conducted trace element analyses of zircons from the orebearing quartz diorite, granodiorite and granodiorite porphyry in ore district. The majority of zircons possess high Th/U values (gt;0.1), and their chondritenormalized REE patterns of all zircons are characterized by HREE enrichment relative to LREE and MREE with distinctive positive Ce and negative Eu anomalies, which are typical of magmatic zircons. All the zircons yield different Tiinzircon temperatures, with most zircon crystals between 700 to 900 ℃. Zircon trace elements provide that the orebearing rocks were derived from the partial melting of the lower crustal materials and formed in the arc environment related to the plate subduction. In addition, the zircon grains have higher Ce4+/Ce3+ values and lower temperature in the melt of oreforming granodiorite porphyry than preore rocks, indicating that granodiorite porphyry has high oxygen fugacity, water contents and oreforming potential. Therefore, the difference in magmatic oxygen fugacity and water contents may be the reasons why the quartz diorite and granodiorite are not mineralized.

Key words:Yanji area, Jilin Province; highsulfidation epithermal gold deposit; Duhuangling gold deposit; zircon; trace element geochemistry

0 引言

鋯石以副礦物形式廣泛分布于各類巖石中,因其穩定的物理化學屬性倍受地質學家關注。近二十年來,隨著微區測試技術的發展,運用鋯石定年、同位素以及微量元素解決地質與環境等問題成為地球科學研究的重要技術手段。伴隨鋯石微量元素理論研究的進展,礦床學家借助理論計算模型,將巖漿溫度、氧逸度等物理化學條件與巖漿演化過程相結合,在成礦作用特別是斑巖銅礦成礦作用制約方面取得了大量成果。但對淺成熱液高硫化型金礦床而言,該類研究工作還需要進一步展開。

吉林省延吉地區屬于太平洋成礦域,是我國重要的內生金屬成礦帶之一,區內有眾多斑巖-淺成熱液高硫化型銅金礦床產出,如杜荒嶺、九三溝、倉林等礦床。以杜荒嶺金礦床為例,作者所在團隊針對礦床地質、礦床成因、成礦時代、成礦流體、巖石成因和成巖成礦動力學模型開展了研究工作,取得了許多成果;但尚未從成礦巖體鋯石微量元素角度入手,揭示巖漿物理化學條件對成礦作用的制約。故本文主要在以往研究基礎上,開展了杜荒嶺礦區含礦巖體鋯石微量元素地球化學研究工作,試圖揭示杜荒嶺淺成熱液高硫化型礦床含礦巖體鋯石微量元素特征,厘定其巖漿物理化學條件,剖析其巖漿起源與成礦效應。

1 區域地質與礦床地質

延吉位于中國東北地區吉林省東緣,夾于興凱地塊與華北克拉通之間(圖1a),顯生宙以來經歷了晚古生代至早中生代古亞洲洋和古太平洋構造域疊加與構造體制轉換,以及中生代古太平洋板塊俯沖。延吉地區復雜的地質作用使得區內顯生宙花崗質巖石廣泛出露;多期次的巖漿活動致使該區域成礦地質條件優越,貴金屬礦床、礦化點發育(圖1b)。延吉地區構造單元地層主要由古生代淺變質巖及中生代火山-沉積巖組合構成,此外在區域西北部可見少量新生代火山巖出露(圖1b)。侵入巖時代橫跨二疊紀至白堊紀,主要由閃長巖、花崗閃

長巖和花崗巖組成(圖1b),但區域內銅金成礦作用主要集中于早白堊世。域內斷裂以北北東向、北西向和近東西向斷裂為主,斑巖-淺成低溫熱液型礦床主要受北西向和北北東向斷裂聯合控制。

杜荒嶺金礦床位于延吉中生代火山-沉積巖盆地東緣,區內早白堊世花崗巖發育,巖體受區內北西向斷裂與東西向斷裂聯合控制(圖1b)。礦區內出露的地質體以石英閃長巖、花崗閃長巖及花崗閃長斑巖3類侵入體單元為主(圖2)。礦區西側發育一條近北北東向的構造破碎帶,但與成礦無關。礦體類型可分為蝕變巖型與隱爆角礫巖型,礦石礦物以黃鐵礦、黃銅礦、斑銅礦、硫砷銅礦和自然金為主。礦床金儲量3.3 t;礦石金品位介于3.00~9.35 g/t之間,平均品位6.14 g/t。隱爆角礫巖型礦體位于礦區北部,呈橢圓狀分布(圖2),角礫巖巖筒長軸北東向,傾向約25°,長50 m,寬約30 m;角礫成分以花崗閃長斑巖和石英閃長巖為主,普遍遭受泥化蝕變;而膠結物發生強烈的青磐巖化蝕變。蝕變巖型礦體沿蝕變帶分布,蝕變強度決定其礦化強度,且

礦體薄厚程度不一;其中強蝕變帶以硅化、高級泥化、黃鐵絹英巖化為主,而弱蝕變帶以中級泥化和青磐巖化為主。礦區內3類侵入巖組合中均可見礦化,但礦化蝕變帶主要圍繞花崗閃長斑巖展布(圖2),故杜荒嶺金礦床成礦與花崗閃長斑巖關系密切。

2 采樣與測試

在杜荒嶺金礦床礦區內針對3類含礦侵入巖進行了系統采樣工作(圖2),樣品分別為石英閃長巖(dhl-3)、花崗閃長巖(dhl-9)和花崗閃長斑巖(dhl-1,JDH-mus)。其中,石英閃長巖為杜荒嶺礦區最主要的地質體,灰色,中細粒結構,塊狀構造;主要由斜長石(約50%)、鉀長石(約20%)、石英(約15%)、黑云母(約10%)和少量角閃石(約5%)組成,副礦物有榍石、磷灰石、磁鐵礦和鋯石等?;◢忛W長巖呈巖脈或巖株狀,灰白色,中細粒結構,塊狀構造;主要由斜長石(約50%)、石英(約20%)、鉀長石(約10%)、黑云母(約15%)和少量角閃石(約5%)組成,副礦物為磷灰石、榍石、獨居石、鋯石和磷釔礦等。花崗閃長斑巖主要呈脈狀,灰綠色,中細粒斑狀結構,塊狀構造;斑晶占整個巖石的30%左右,主要由斜長石(約40%)、石英(約30%)、鉀長石(約20%)、少量黑云母(約5%)和角閃石(約5%)組成;基質主要為斜長石和石英微晶;花崗閃長斑巖普遍可見硅化、絹云母化、泥化和黃鐵礦化蝕變現象。

該3類巖石4件樣品鋯石U-Pb年齡已經在作者前期研究中有詳細論述,3類侵入巖就位年齡分別約為118、116和110 Ma。本文主要針對上述測年單顆粒鋯石進行微量元素分析和討論。鋯石制靶、陰極發光圖像觀察、照相在中國科學院地質與地球物理研究所完成。單顆粒鋯石微量元素組成分析在中國科學院地質與地球物理所和中國地質大學(武漢)激光剝蝕等離子體質譜儀(LA-ICP-MS)上完成,運用國際標準鋯石91500和NIST610為標樣,其中29Si 作為內標元素。樣品的同位素比值及元素質量分數計算采用GLITTER程序,普通鉛校正采用Andersen的3D坐標法,測試結果見表1。

3 討論

3.1 巖體鋯石微量元素特征

本次研究對采自杜荒嶺礦區侵入巖中的63顆典型鋯石(石英閃長巖20顆、花崗閃長巖15顆和花崗閃長斑巖28顆)進行微量元素分析(圖3),所測試鋯石多呈短柱或長柱狀(100~250 μm),自形程度高,鋯石內部振蕩環帶或條帶結構發育,與典型巖漿鋯石一致。這些鋯石稀土總量(ΣREE)較高、變化范圍大((316~5 833)×10-6);在球粒隕石標準化的稀土元素配分曲線圖上呈陡左傾(圖4),此外,鋯石U和Th質量分數變化較大,w(Th)為(26.4~1 789.2)×10-6,w(U)為(52~1 077)×10-6,Th/U值為0.24~1.70,均大于0.1(圖5a),為典型的巖漿成因鋯石特征。而所有樣品中高場強元素Ti、Nb、Ta質量分數(w(Ti)=(2.60~30.20)×10-6,w(Nb)=(0.37~3.04)×10-6,w(Ta)=(0.15~0.99)×10-6)均在巖漿鋯石范圍(w(Ti)≤75×10-6,w(Nb)≤62×10-6,w(Ta)≤3×10-6)之內,暗示所測試鋯石

點位中不含有金紅石等包裹體,也未受到含鉭礦物結晶的影響與控制。排除包體干擾,可以應用鋯石Ti溫度計(T(Zr-Ti),表1)近似計算獲得鋯石的結晶溫度,本次計算鋯石結晶溫度范圍在673~924 ℃之間,位于未變質巖漿鋯石上下限之間(圖5b),暗示鋯石未遭受后期熱事件擾動。

(Sm/La)N-w(La)和Ce/Ce*-(Sm/La)N圖解(圖5c、d)可以很好地區分巖漿與熱液成因鋯石,本次研究大多數樣品鋯石落入或接近巖漿鋯石區域,表明其為巖漿鋯石。同時值得注意的是花崗閃長巖中1粒鋯石(D9-4)落入熱液鋯石或其鄰區,相比其他鋯石擁有較高的LREE質量分數。通常而言,包體礦物影響、變質或熱液作用、巖漿晚期結晶、放射性裂隙影響下的鋯石蛻晶化等會導致鋯石中LREE的富集。該顆粒鋯石因其完好的晶體形態(圖3)、正常未離群的表面年齡((115±6)Ma)和較高的結晶溫度(844 ℃)可以排除其為變質或熱液鋯石,以及巖漿晚期結晶鋯石的可能;因其具有較低的高場強元素質量分數,可以排除包體礦物的影響。放射性裂隙的影響可以明顯升高鋯石中的LREE和Th、U質量分數,但該顆粒鋯石w(Th)(63.8×10-6)、w(U)(268×10-6)較其他鋯石并不明顯偏高,結合其完好的晶型可以排除蛻晶化的影響。因此,該鋯石應來自LREE富集熔漿結晶,暗示花崗閃長巖巖漿局部存在不均一性。

3.2 對礦區巖漿背景、起源和演化的約束

上文提到本次研究鋯石均為典型巖漿鋯石,未遭受后期熱事件干擾,故均形成于封閉的巖漿系統,通過其微量元素質量分數,與已有全巖地球化學研究工作可以有效制約巖漿起源與演化過程。鋯石微量元素地球化學特征可以用以約束巖石成因的構造背景,在不同構造背景下鋯石的w(Ta)-w(Nb)、lg(U/Yb)-lg(Nb/Yb)、Gd/Yb-w(Yb)和U/Yb-w(Hf)判別圖解(圖6)中,杜荒嶺侵入巖鋯石主要落入島弧-大陸邊緣型成因鋯石區域及鄰區,這與全巖地球化學研究一致;而延邊地區乃至整個東北地區在早白堊世發育一套典型的島弧鈣堿性火山巖組合(玄武巖-安山巖-流紋巖),這也進一步佐證了杜荒嶺金礦與含礦侵入巖形成于島弧-陸緣弧構造背景,適值古太平洋板塊向古亞洲大陸邊緣俯沖。與典型的A及S型花崗巖相比,杜荒嶺含礦侵入巖鋯石擁有較高的(Nb/Pb)N、Eu/Eu*值及Th質量分數,較低的Pb質量分數(圖7a、b),與典型的I型花崗巖鋯石一致,說明其巖漿源區為火成巖。在U/Yb-w(Hf) 和U/Yb-w(Y) 判別圖解(圖7c、d)中,本文樣品的鋯石主要投在陸殼源區區域,說明這些侵入巖巖漿起源自陸殼,結合鋯石Hf同位素研究成果(εHf(t)=5.2~14.9),進一步表明其巖漿起源于新生下地殼的部分熔融。但必須指出的是,部分鋯石樣品擁有較低的U/Yb值(低至0.24),與大洋地殼接近(圖7c、d);考慮到研究區在晚古生代經歷了古亞洲洋的閉合過程,可能有少量古生代大

洋殘片卷入了巖漿源區,這一推論與杜荒嶺侵入巖少量鋯石擁有古生代的Hf同位素地殼模式年齡一致(TCDM=459~261 Ma)。

前人研究表明,隨著巖漿分異作用的進行,鋯石中Hf質量分數會不斷地升高;而杜荒嶺侵入巖斜長石環帶結構不發育,暗示巖漿過程波動性不明顯;因此,可以用鋯石結晶溫度與Hf質量分數反演巖漿演化過程。必須指出的是,石英閃長巖、花崗閃長巖(118~116 Ma)與花崗閃長斑巖(110 Ma)為兩期巖漿事件,其中花崗閃長斑巖具有最高的Hf質量分數(表1),是巖漿演化程度相對較高的產物。

石英閃長巖-花崗閃長巖鋯石伴隨溫度的降低與Hf質量分數的升高,其Ce/Ce*及Eu/Eu*呈現先升高又降低的趨勢,且異常變化范圍?。▓D8),暗示巖漿演化過程中隨斜長石的分離結晶巖漿的物理化學條件如氧逸度等波動較為有限;而花崗閃長斑巖鋯石隨溫度的降低與Hf質量分數的升高,其Ce/Ce*、Eu/Eu*有明顯降低的趨勢(圖8),

指示巖漿過程中氧逸度等參數變化范圍大;考慮到花崗閃長斑巖與成礦關系密切,可能晚期巖漿流體出溶誘發了巖漿物理化學條件劇烈波動。

3.3 對杜荒嶺金礦成礦作用的制約

含礦巖體不同于成礦巖體,就杜荒嶺金礦床而言,石英閃長巖與花崗閃長巖為成礦前巖體(118~116 Ma),而花崗閃長斑巖(110 Ma)的時空展布顯示其與成礦(流體包裹體Ar-Ar年齡(107±6)Ma)關系密切,為典型的成礦巖石。許多研究表明成礦與不成礦巖漿系統的物理化學條件特別是氧逸度等的區別制約了礦床的形成。本研究利用鋯石微量元素數據,借助前人方法計算了鋯石的氧逸度等參數(表1、圖9),探究其對杜荒嶺金礦床成礦作用的制約。計算結果顯示,成礦前巖漿系統(石英閃長巖-花崗閃長巖)lg(fO2)主要位于FMQ緩沖線附近(圖9),其ΔFMQ=-7.00~4.43(表1),平均值分別為-1.47與1.82,位于ΔFMQ=2線以下(圖10);而成礦巖漿系統(花崗閃長斑巖)lg (fO2)主要位于FMQ緩沖線之上(圖9),其ΔFMQ=-0.57~7.16(表1),平均值為2.23,位于ΔFMQ=2線之上(圖10),表明成礦巖漿系統具有較高的氧逸度。巖漿氧逸度控制著許多元素特別是金屬元素的地球化學行為,部分學者研究認為成礦巖漿氧逸度高于FMQ緩沖線兩個對數單位(ΔFMQ+2)時,最有利于斑巖銅金成礦系統的形成。

銅與金的親硫行為導致其在硫化物中有很高的分配系數,常以硫化物形式沉淀于下地殼等區域;而當氧逸度在ΔFMQ+2以上時,硫主要以硫酸根的形式存在,而硫酸根在巖漿中的溶解度遠高于硫化物,從而能夠大幅度提高初始成礦巖漿中銅與金的含量。本次研究工作發現,淺成低溫熱液高硫化型金礦床與斑巖銅礦床相似,其成礦巖漿與不成礦巖漿相比同樣擁有較高的氧逸度(大于ΔFMQ+2,圖10)。此外,成礦巖漿系統同時擁有較高的Ce4+/Ce3+值(11.91~120.51,平均值41.3。圖10),明顯區別于不成礦巖漿系統(石英閃長巖4.37~32.34,平均值9.96;花崗閃長巖7.79~57.41,平均值30.18;圖10)。另一方面,花崗閃長斑巖與成礦前巖石相比擁有更低的鋯石結晶溫度(表1),如存在許多低于800 ℃的鋯石,暗示其巖漿源區必然有俯沖帶流體的卷入而使其擁有高的含水量,高含水量一方面提高了巖漿攜帶金屬的能力,另一方面提高了巖漿的浮力;導致巖漿有更淺的侵位深度進而發生流體出溶,并上升至合適位置形成杜荒嶺金礦床。

4 結論

1)杜荒嶺礦區內含礦侵入巖中鋯石樣品微量元素呈左傾配分型式,強烈富集重稀土元素、虧損輕稀土元素,并存在不同程度Ce正異常與Eu負異常,多數鋯石在700~900 ℃之間結晶;為典型巖漿鋯石。

2)杜荒嶺礦區內含礦侵入巖中鋯石擁有島弧-大陸邊緣親緣性,成因類型與I型花崗巖鋯石一致;巖漿起源下地殼部分熔融,巖漿演化程度不均一,其形成于板塊俯沖的弧構造環境。

3)杜荒嶺金礦

床花崗閃長斑巖

成礦巖漿系統具有高的氧逸度和

含水量,即高成礦潛力;而巖漿氧逸度和含水量的差異可能是石英閃長巖和花崗閃長巖未成礦的原因。

致謝:謹以此文恭祝導師孫景貴教授六十壽誕!

參考文獻(References):

Cherniak D J,Hanchar J M,Watson E B. RareEarth Diffusion in Zircon. Chemical Geology,1997,134(4):289-301.

Watson E B,Harrison T M. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science,2005,308:841-844.

Trail D,Watson E B,Tailby N D. The Oxidation State of Hadean Magmas and Implications for Early Earth’s Atmosphere. Nature,2011,480:79-82.

Taylor R J M,Harley S L,Hinton R W,et al. Experimental Determination of REE Partition Coefficients Between Zircon, Garnet and Melt: A Key to Understanding HighT Crustal Processes. Journal of Metamorphic Geology, 2015,33(3):231-248.

Tang M,Rudnick R L,Mc Donough W F,et al. MultiMode Li Diffusion in Natural Zircons:Evidence for Diffusion in the Presence of StepFunction Concentration Boundaries. Earth and Planetary Science Letters,2017,474:110-119.

Turner S,Wilde S,Wrner G,et al. An Andesitic Source for Jack Hills Zircon Supports Onset of Plate Tectonics in the Hadean. Nature Communications,2020,11(1):1241.

Dilles J H,Kent A J R,Wooden J L,et al. Zircon Compositional Evidence for SulfurDegassing from OreForming Arc Magmas. Economic Geology,2015,110(1):241-251.

Buret Y,von Quadt A,Heinrich C,et al. From a LongLived UpperCrustal Magma Chamber to Rapid Porphyry Copper Emplacement?Reading the Geochemistry of Zircon Crystals at Bajo de la Alumbrera (NW Argentina). Earth and Planetary Science Letters,2016,450:120-131.

Buret Y,Wotzlaw J F,Roozen S,et al. Zircon Petrochronological Evidence for a PlutonicVolcanic Connection in Porphyry Copper Deposits. Geology,2017,45(7):623-626.

Sun Jinggui,Zhao Junkang,Chen Junqiang,et al. OreForming Mechanism for the Xiaoxinancha AuRich Cu Deposit in Yanbian,Jilin Province,China:Evidence from Noble Gas Isotope Geochemistry of Fluid Inclusions in Minerals. Science in China: Series D:Earth Sciences,2008,51(2):216-228.

孫景貴,陳雷, 趙俊康,等. 延邊小西南岔富金銅礦田燕山晚期花崗雜巖的鋯石SHRIMP U-Pb年齡及其地質意義. 礦床地質,2008,27(3):319-328.

Sun Jinggui, Chen Lei, Zhao Junkang, et al.SHRIMP U-Pb Dating of Zircons from Late Yanshanian Granitic Complex in Xiaoxinancha GoldRich Copper Oefield of Yanbian and Its Gological Implications. Mineral Deposits,2008,27(3): 319-328.

孫景貴,門蘭靜,趙俊康,等. 延邊小西南岔大型富金銅礦床礦區內暗色脈巖的鋯石年代學及其地質意義. 地質學報,2008,82(4):517-527.

Sun Jinggui, Men Lanjing, Zhao Junkang, et al. Zircon Chronology of Melanocratic Dykes in the District of the Xiaoxinancha AuRich Cu Deposit in Yanbian and Its Geological Implication. Acta Geological Sinca,2008,82(4):517-527.

Sun Jinggui, Zhang Yong, Han Shijiong, et al. Timing of Formation and Geological Setting of LowSulphidation Epithermal Gold Deposits in the Continental Margin of NE China. International Geology Review,2013,55:608-632.

柴鵬,孫景貴,門蘭靜,等. 延邊地區九三溝金礦床賦礦圍巖的鋯石U-Pb年齡與成巖成礦時代. 巖石礦物學雜志,2012,31(5):633-640.

Chai Peng, Sun Jinggui, Men Lanjing, et al. U-Pb Dating of Zircons from Host Rocks of the Jiusangou Gold Deposit in Yanbian Area and Determination of RockForming and OreForming Epochs. Acta Petrologica et Mineralogica,2012,31(5):633-640.

Han Shijiong, Sun Jinggui, Bai Ling’an, et al. Geology and Ages of Porphyry and Mediumto HighSulphidation Epithermal Gold Deposits of the Continental Margin of Northeast China. International Geology Review,2013,55:287-310.

Ren Yunsheng, Chen Cong, Zou Xintong, et al. The Age,Geological Setting,and Types of Gold Deposits in the Yanbian and Adjacent Areas,NE China. Ore Geology Reviews,2016,73:284-297.

趙羽軍,孫景貴,王清海,等. 吉林延邊地區淺成熱液金(銅)礦床的40Ar/39Ar激光探針測年與成礦時代討論. 地學前緣,2010,17(2):162-175.

Zhao Yujun, Sun Jinggui, Wang Qinghai, et al. 40Ar/39Ar Laser Probe Dating and Discussion on Metallogenic Epoch of Epithemal Au-Cu Deposit in Yanbian Area of Jilin. Earth Science Frontiers,2010,17(2):162-175.

門蘭靜,孫景貴,王好均,等.延邊淺成高硫化熱液金礦床的成礦流體起源與演化:以杜荒嶺和九三溝礦床為例. 吉林大學學報(地球科學版),2017,47(5):37-54.

Men Lanjing, Sun Jinggui, Wang Haojun, et al. Origin and Evolution of OreForming Fluids of Duhuangling and Jiusangou HighSulfidation Gold Deposit in Yanbian. Journal of Jilin University(Earth Science Edition),2017,47(5):37-54.

門蘭靜,孫景貴,王好均,等. 延邊杜荒嶺銅金礦區中酸性火成巖的地球化學特征及成巖機理. 長春工程學院學報(自然科學版),2017,18(4):74-80.

Men Lanjing, Sun Jinggui, Wang Haojun, et al. The Geochemical Characteristics and Diagenesis Mechanisms of Intermediate Acid Igneous Rocks in Duhuangling Cu-Au Mine, Yanbian China. Journal of Changchun Institute of Technology(Natural Sciences Edition),2017,18(4):74-80.

Chai Peng, Sun Jinggui, Men Lanjing, et al. Diagenesis and Metallogenetic Mechanisms of the Duhuangling Gold Deposit from the Yanbian Area, NE China. Acta Geologica Sinica, 2014, 88(Sup. 2):866-867.

Chai Peng, Sun Jinggui, Xing Shuwen, et al. Early Cretaceous Arc Magmatism and HighSulphidation Epithermal Porphyry Cu-Au Mineralization in Yanbian Area, Northeast China: The Duhuangling Example. International Geology Review,2015,57(9/10):1267-1293.

吳福元,孫德有,林強. 東北地區顯生宙花崗巖的成因與地殼增生. 巖石學報,1999,15(2):181-189.

Wu Fuyuan, Sun Deyou, Lin Qiang. Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China. Acta Petrologica Sinica, 1999,15(2):181-189.

邢樹文,孫景貴,張增杰,等. 中國東北部陸緣金有色金屬多期成礦作用和勘查選區研究. 北京:地質出版社,2014:1-361.

Xing Shuwen, Sun Jinggui, Zhang Zengjie, et al. Study on MultiStage Mineralization and Exploration Selection of Gold and Nonferrous Metals in the Continental Margin of Northeast China. Beijing: Geological Publishing House,2014: 1-361.

Xu Wenliang, Pei Fuping, Wang Feng, et al. SpatialTemporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations Between Multiple Tectonic Regimes. Journal of Asian Earth Sciences,2013,74:167-193.

孫景貴,門蘭靜,陳冬,等. 巖漿作用對巖漿熱液金銅成礦制約的元素地球化學和鋯石CL圖像記錄:以延邊小西南岔富金銅礦床為例. 礦物巖石,2009,29(3):43-52.

Sun Jinggui, Men Lanjing, Chen Dong, et al. Constraints of Magmatism on the OreForming Process of Magmatic Hydrothermal GoldRich Copper Deposits as Recorded from the Element Geochemistry and Zircon CL Image Features:A Case Study of the Xiaoxinancha GoldRich Copper Deposit,Yanbian,Jilin Province. Mineralogy and Petrology,2009,29(3):43-52.

Andersen T. Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb. Chemical Geology, 2002,192:59-79.

吳元保,鄭永飛. 鋯石成因礦物學研究及其對U-Pb年齡解釋的制約. 科學通報,2004,49(16):1589-1604.

Wu Yuanbao, Zheng Yongfei. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 2004,49(16):1589-1604.

張國賓,陳興凱,趙越,等. 張廣才嶺南部中侏羅世似斑狀二長花崗巖年代學、地球化學特征及其地質意義. 吉林大學學報(地球科學版),2022,52(6):1907-1925.

Zhang Guobin, Chen Xingkai, Zhao Yue, et al. Geochronology, Geochemistry and Geological Significance of the Middle Jurassic Porphyritic Monzogranite in the Southern Zhangguangcai Range, Heilongjiang Province. Journal of Jilin University(Earth Science Edition),2022, 52(6):1907-1925.

王琳琳,霍亮,王瑩. 吉林延邊小西南岔銅(金)礦床早白堊世中—酸性巖漿巖年代學、地球化學及其成因探討. 吉林大學學報(地球科學版),2022,52(5): 1658-1674.

Wang Linlin, Huo Liang, Wang Ying. Geochronology, Geochemistry and Genesis of Early Cretaceous IntermediateAcidic Magmatic Rocks in Xiaoxinancha Copper (Gold) Deposit, Yanbian Area, Jilin Province. Journal of Jilin University(Earth Science Edition),2022,52(5):1658-1674.

McDonough W F, Sun S S. The Composition of the Earth. Chemical Geology,1995, 120(3/4):223-253.

Belousova E, Griffin W, O’Reilly S Y, et al. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology,2002,143(5):602-622.

Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry,2003,53(1):27-62.

ElBialy M Z, Ali K A. Zircon Trace Element Geochemical Constraints on the Evolution of the Ediacaran (600-614 Ma) PostCollisional Dokhan Volcanics and Younger Granites of SE Sinai, NE ArabianNubian Shield. Chemical Geology,2013,360/361:54-73.

Van Lichtervelde M, Melcher F, Wirth R. Magmatic vs Hydrothermal Origins for Zircon Associated with Tantalum Mineralization in the Tanco Pegmatite, Manitoba, Canada. American Mineralogist,2009,94(4):439-450.

Ferry J M," Watson E B. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology,2007,154(4):429-437.

Hoskin P W O. TraceElement Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta,2005,69(3):637-648.

Cavosie A J, Valley J W, Wilde S A, et al. Correlated Microanalysis of Zircon:Trace Element, δ18O, and U-Th-Pb Isotopic Constraints on the Igneous Origin of Complex gt;3 900 Ma Detrital Grains. Geochimica et Cosmochimica Acta,2006,70(22):5601-5616.

Wang X, Griffin W L, Chen J. Hf Contents and Zr/Hf Ratios in Granitic Zircons. Geochemical Journal,2010,44(1):65-72.

Whitehouse M J, Kamber B S. On the Overabundance of Light Rare Earth Elements in Terrestrial Zircons and Its Implication for Earth’s Earliest Magmatic Differentiation. Earth and Planetary Science Letters,2002,204(3/4):333-346.

Schulz B, Klemd R, Brtz H. Host Rock Compositional Controls on Zircon Trace Element Signatures in Metabasites from the Austroalpine Basement. Geochimica et Cosmochimica Acta, 2006, 70(3):697-710.

Grimes C B, Wooden J L, Cheadle M J, et al. “Fingerprinting” TectonoMagmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 2015,170(5):46.

Wang Qing, Zhu Dicheng, Zhao Zhidan, et al. Magmatic Zircons from I-, S-and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences,2012,53:59-66.

Grimes C B, John B E, Kelemen P B, et al. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology,2007,35(7):643-646.

Chai Peng, Sun Jinggui, Xing Shuwen, et al. Geochemistry, Zircon U-Pb Analysis, and Fluid Inclusion 40Ar/39Ar Geochronology of the Yingchengzi Gold Deposit, Southern Heilongjiang Province, NE China. Geological Journal, 2016,51:505-522.

Chai Peng, Sun Jinggui, Xing Shuwen," et al. Ore Geology,Fluid Inclusion,and 40Ar/39Ar Geochronology Constraints on the Genesis of the Yingchengzi Gold Deposit, Southern Heilongjiang Province, NE China. Ore Geology Review, 2016,72:1022-1036.

Chai Peng, Sun Jinggui, Hou Zengqian, et al. Geology,Fluid Inclusion, H-O-S-Pb Isotope and Ar-Ar Geochronology Constraints on the Genesis of the Nancha Gold Deposit,Douthern Jilin Province,NE China. Ore Geology Review,2016,72:1053-1071.

Richards J P. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas: Implications for Metallogeny. Lithos,2015,233:27-45.

Eugster H P, Wones D R. Stability Relations of the Ferrugious Biotite, Annite. Journal of Petrology, 1962,3(1):82-89.

Mungall J E. Roasting the Mantle:Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 2002,30(10):915-918.

Sun Weidong, Liang Huaying, Ling Mingxing, et al. The Link Between Reduced Porphyry Copper Deposits and Oxidized Magmas. Geochimica et Cosmochimica Acta,2013,103:263-275.

Jugo P J. Sulfur Content at Sulfide Saturation in Oxidized Magmas. Geology,2009,37:415-418.

Sun Weidong, Huang Ruifang, Li He, et al. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews,2015,65:97-131.

Miller C F, McDowell S M, Mapes R W. Hot and Cold Granites?Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology,2003,31(6):529-532.

Richards J P," Kerrich R. Special Paper:AdakiteLike Rocks:Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology,2007,102:537-576.

主站蜘蛛池模板: 亚洲天堂区| 国产精品嫩草影院av| A级毛片无码久久精品免费| 亚洲国产精品VA在线看黑人| 国产亚洲欧美另类一区二区| 亚洲天堂精品视频| 国产91全国探花系列在线播放| 国产99欧美精品久久精品久久| 高潮毛片免费观看| 国产中文一区二区苍井空| 成人在线综合| 亚洲综合色在线| 国产精品人莉莉成在线播放| 欧美亚洲一二三区| 日本亚洲成高清一区二区三区| 在线观看国产小视频| 国产一区成人| 99久久精品国产精品亚洲| 国产白丝av| 丁香五月婷婷激情基地| 美女黄网十八禁免费看| 国产jizzjizz视频| 欧类av怡春院| 欧美亚洲欧美区| 91小视频在线播放| 69国产精品视频免费| 美女无遮挡被啪啪到高潮免费| 伊人婷婷色香五月综合缴缴情| 波多野结衣久久精品| 国产精品伦视频观看免费| 欧美黄网在线| 亚洲制服丝袜第一页| 国产精品永久在线| 欧美日韩资源| 免费毛片全部不收费的| 美女高潮全身流白浆福利区| 亚洲制服丝袜第一页| 精品人妻无码区在线视频| 日韩欧美视频第一区在线观看| 日本欧美在线观看| 日韩无码黄色| 国产欧美日韩专区发布| 亚洲综合激情另类专区| 在线看AV天堂| 成人午夜天| 国产一二三区在线| 激情综合五月网| 成人国产精品2021| 青青草一区| 国产精品漂亮美女在线观看| 女同久久精品国产99国| 精品日韩亚洲欧美高清a| 在线免费亚洲无码视频| 18禁高潮出水呻吟娇喘蜜芽| 欧美在线天堂| 亚洲综合第一页| 日本国产一区在线观看| 久久久久人妻一区精品| 国产精品久久久久久久久| 在线视频精品一区| 国产欧美日韩视频一区二区三区| 国产三级国产精品国产普男人| 伊人久久福利中文字幕| 国产永久在线视频| 成人在线天堂| 日本少妇又色又爽又高潮| 免费在线一区| 亚洲无码高清一区| 国产精品嫩草影院视频| 91无码视频在线观看| 欧美中文字幕一区| 日本黄色不卡视频| 亚洲 欧美 日韩综合一区| 欧美另类第一页| 国产成人AV男人的天堂| 99视频在线免费| 国产欧美日韩综合在线第一| 国产女人在线观看| 欧美成在线视频| 日韩精品久久无码中文字幕色欲| 国产精品午夜电影| www.99在线观看|