













摘要:伊東林場金多金屬礦床是小興安嶺地區新發現的淺成低溫熱液型金礦,礦區內火山-次火山巖分布廣泛,其中閃長玢巖和英安巖與成礦具有成因聯系。為了厘定閃長玢巖和英安巖與成礦的關系,制約成礦時代,本文對其進行了巖石地球化學、鋯石U-Pb年代學和Sr-Nd-Hf同位素等研究。巖石地球化學研究結果表明,與成礦密切相關的火山-次火山巖為一套過鋁質鈣堿性火山巖系,具有輕稀土富集和弱的Eu負異常,富集Rb、Ba大離子親石元素和Th、U等不相容元素,虧損Nb、P、Ti等高場強元素等與俯沖有關的弧巖漿特征。鋯石U-Pb定年結果顯示,閃長玢巖與英安巖的成巖年齡分別為(99.60±0.62)Ma和(98.50±0.50)Ma,均形成于早白堊世。Sr-Nd-Hf同位素分析結果顯示,樣品具有高的(87Sr/86Sr)i值(0.707 20~0.707 70),低εNd(t)值(-3.47~-2.42)以及εHf(t)值(-2.22~4.11),反映形成源區以幔源為主,但受較強的地殼混染。研究結果揭示,研究區早白堊世火山-次火山巖形成于活動大陸邊緣的陸緣弧環境下,為受俯沖洋板片脫水釋放的流體交代上覆地幔楔發生部分熔融的產物,并在演化過程中受到較強的地殼混染。結合區域地質背景,推測認為該套早白堊世火山-次火山巖形成于區域伸展構造背景下,與古太平洋板塊俯沖回撤的動力學背景有關。
關鍵詞:鋯石U-Pb定年;地球化學;巖石成因;淺成低溫熱液型金礦;小興安嶺地區
doi:10.13278/j.cnki.jjuese.20210317
中圖分類號:P581
文獻標志碼:A
Abstract: Yidong Linchang gold polymetallic deposit is a recently discovered gold deposit in Lesser Xing’an range. The volcanicsubvolcanic rocks are widely distributed in the mining area, among which the diorite porphyrite and dacite are closely related to the mineralization. In this contribution, we reported petrogeochemistry,zircon U-Pb ages and Sr, Nd and Hf isotope compositions of the diorite porphyrite and dacite at Yidong Linchang gold polymetallic deposit. Geochemical studies show that the volcanicsubvolcanic rocks closely related to mineralization are peraluminous calcalkaline volcanic rocks. All these rocks have arc magma characteristics related to subduction and are enriched in LREEs and weak negative Eu anomaly, enriched in largeion lithophile elements (Rb, Ba) and incompatible elements (Th, U), and relatively depleted of high fieldstrength elements (Nb, P and Ti). Zircon U-Pb ages of diorite porphyrite and dacite are (99.60±0.62) Ma and (98.50±0.50) Ma, respectively, both formed in the Early Cretaceous. Sr-Nd-Hf isotope analysis showed that the samples have high (87Sr/86Sr)i ratios (0.707 20-0.707 70), low εNd(t) values (-3.47--2.42) and εHf(t) values (-2.22-4.11), revealing that the source area is mainly mantle with the strong contamination of crustal materials. Research results reveal that the diorite porphyrite and dacite in Yidong Linchang gold polymetallic deposit were formed in the continental arc environment of the active continental margin. The magmas were likely derived from deepformed magmas by the partial melting of the overlying mantle wedge by the fluids released by the dehydration of the subducting Pacific Oceanic plate, and are strongly contaminated by the crust during the evolution process. On the basis of the above research and combined with the regional geological background, it is inferred that the volcanicsubvolcanic rocks of the Early Cretaceous were formed in the tectonic background of lithospheric extension as a consequence of the rollback of the subducted PaleoPacific Oceanic plate.
Key words:zircon U-Pb dating; geochemistry; petrogenesis; epithermal gold deposit; Lesser Xing'an range
0 引言
伊東林場金多金屬礦床是最近幾年在小興安嶺地區新發現的一處淺成低溫熱液型金礦。小興安嶺地區自顯生宙以來先后經歷了古亞洲洋構造體系的演化和環太平洋構造體系的改造。中國東北地區廣泛分布以侏羅紀—白堊紀為主的中生代火山-次火山巖,構成了規模宏大的火山巖帶,該火山巖帶是東亞大陸邊緣巨型火山巖帶的重要組成部分。這套復雜的火山-次火山巖與區內眾多熱液型礦床,尤其是淺成低溫熱液型金礦床關系密切。因此,對該套火山-次火山巖的研究有助于正確認識相關礦床的形成條件、控礦因素和成因機制。目前區內發現了眾多與早白堊世火山-次火山巖有關的淺成低溫熱液型金(銀)礦床,如東安、團結溝、三道灣子和永新等大型金礦床,以及上馬場、高松山和杜家河等一大批中小型金礦床。伊東林場金多金屬礦床也是產于小興安嶺地區中生代火山巖中的淺成低溫熱液型金礦床,該礦床的研究工作正處于起步階段,研究程度較低。前人尚未對與成礦關系密切的火山-次火山巖進行系統的年代學和巖石成因研究,尚不清楚其成巖成礦時代、巖石成因和構造背景,這嚴重制約著礦區的下一步工作部署。本次研究選擇礦區內與成礦關系密切的火山-次火山巖作為研究對象,在詳細的野外地質及室內巖相學觀察的基礎上,開展LA-ICP-MS鋯石U-Pb年代學、巖石地球化學和Sr-Nd-Hf同位素示蹤等工作,并結合地質調查相關資料,以深入探討研究區火山-次火山巖的成因類型、成巖時代、源區性質及形成的構造背景。
1 地質概況
伊東林場金多金屬礦床位于小興安嶺東南麓(圖1a),大地構造位置屬小興安嶺—張廣才嶺巖漿弧,伊春—延壽巖漿弧伊春火山盆地邊緣,顯生宙以來先后經歷了古亞洲洋構造體系演化和環太平洋構造體系改造,為淺成低溫熱液型礦床形成最為有利的部位。該區廣泛發育中生代火山巖,尤其發育下白堊統火山巖,可劃分為板子房組、寧遠村組、甘河組和福民河組,其中板子房組和寧遠村組的中酸性火山-次火山巖與淺成低溫熱液型金礦成礦關系十分密切,區域內發現了眾多與之密切相關的中—大型淺成低溫熱液型金礦,如東安、團結溝、三道灣子等大型金礦床,及上馬場、高松山等中小型金礦床(圖1b)。板子房組以中性火山巖為主,夾有少量中酸性火山巖,主要以安山巖、粗面安山巖、安山質凝灰巖、安山質火山角礫巖和玄武安山巖等為主,含有少量英安巖和英安質凝灰巖,成巖時代為125~117 Ma,是高松山金礦床的賦礦圍巖;寧遠村組以酸性火山巖為主,夾中酸性火山巖,主要以英安巖、流紋巖、流紋質凝灰巖和火山角礫巖等為主,局部見黑曜巖和珍珠巖,成巖時代為125~101 Ma,是團結溝、東安和三道灣子金礦床的賦礦圍巖。
伊東林場金多金屬礦床出露地層較為簡單,大面積分布下白堊統板子房組、寧遠村組,以及第四系(圖2)。其中,寧遠村組的英安巖、流紋巖、流紋質凝灰巖等為賦礦圍巖。礦區脈巖較為發育,主要包括閃長玢巖和英安玢巖脈,其中閃長玢巖主要呈北東向脈狀產出,大致與礦體平行。礦區內礦化蝕變分帶明顯,由近礦到遠礦依次發育硅化-黃鐵絹云巖化-泥化-青磐巖化,總體呈環帶狀,其中硅化與成礦關系最為密切(圖2)。礦石中的金、銀礦物主要為銀金礦、輝銀礦和自然銀,礦石礦物有黃鐵礦、黃銅礦、閃鋅礦和方鉛礦等。脈石礦物主要有石英、方解石、斜長石和絹云母,還含有少量的石膏。主要的礦石結構有自形半自形他形粒狀結構、碎裂結構、交代結構和包含結構等。常見的礦石構造為膠狀構造、孔洞狀構造、梳狀、晶簇狀構造、稀疏浸染狀構造、角礫狀構造、網脈狀構造和致密塊狀構造。
2 樣品特征
本次研究的火山-次火山巖樣品,巖性主要為閃長玢巖和英安巖(圖3),采樣位置見圖4。巖石的主要特征描述如下。
閃長玢巖(YD-3,圖3a—c) 巖石呈深灰綠色,斑狀結構,基質為顯微晶質結構,塊狀構造。斑晶由斜長石(粒徑為0.2~2.4 mm,體積分數為30%~35%)和其他少量暗色礦物(粒徑為0.2~1.6 mm,體積分數為8%~10%)組成。其中:斜長石多為半自形板柱狀,部分破碎成粒狀,多發育聚片雙晶和卡鈉復合雙晶,部分發育環帶結構,表面多發生土化、絹云母化和碳酸鹽化,部分發生綠簾石化,個別發生強烈的高嶺土化、絹云母化、綠泥石化和碳酸鹽化;暗色礦物可能由交代黑云母、角閃石和輝石組成,多被綠泥石集合體完全交代。基質主要由斜長石、石英、綠簾石、綠泥石、碳酸鹽礦物和不透明礦物等混雜分布組成,其中:斜長石多呈半自形板柱狀,部分呈他形粒狀,表面多發生較
強烈的土化、絹云母化和碳酸鹽化,部分可見聚片雙晶;石英多呈他形粒狀,表面較干凈;綠簾石多呈他形粒狀;綠泥石多呈鱗片狀集合體;碳酸鹽礦物多呈細小粒狀集合體;不透明礦物主要為他形粒狀的黃鐵礦,礦物粒徑多小于0.4 mm。巖石還含有少量副礦物,如鋯石、磷灰石等,局部發育裂隙,裂隙寬約為0.5 mm,裂隙多被石膏礦物充填。
英安巖(YD-5,圖3d—f) 巖石呈灰白色,斑狀結構,基質為顯微晶質結構,塊狀構造。斑晶主要由斜長石(粒徑為0.5~4.0 mm,體積分數為20%~25%)、石英(粒徑為0.2~0.5 mm,體積分數為~5%)和暗色礦物(粒徑為0.5~1.0 mm,體積分數為1%~2%)組成。其中:斜長石多呈半自形板柱狀,表面多發生強烈的土化、絹云母化和碳酸鹽化;石英多呈他形粒狀,表面較干凈,多填充在長
石顆粒之間;暗色礦物多發生強烈的褪色和蝕變,局部有少量殘余,部分被綠泥石交代或完全被白云母和碳酸鹽礦物集合體交代。基質由斜長石、鉀長石、石英、暗色礦物以及不透明礦物等組成,其中:
斜長石多呈半自形板柱狀,部分呈他形粒狀,表面多發生較強烈的土化、絹云母化和碳酸鹽化;鉀長石多呈半自形板柱狀,部分呈他形粒狀,表面多發生土化、絹云母化和碳酸鹽化;石英多呈他形粒狀,表面較干凈,多填充在長石顆粒之間;暗色礦物多發生強烈的褪色和蝕變,局部有少量殘余,可能由交代角閃石和黑云母形成;不透明礦物主要為他形粒狀的黃鐵礦(粒徑多小于0.5 mm),多呈不均勻集合體。巖石中還含有少量鋯石、磷灰石等副礦物,局部發育一條裂隙,裂隙寬約為0.8 mm,裂隙多充填碳酸鹽礦物。
3 分析測試方法
樣品的全巖主量和微量元素分析在武漢上譜分析科技有限責任公司完成,全巖主量元素分析利用日本理學PrimusⅡX射線熒光光譜儀(XRF)分析完成,全巖微量元素分析利用Agilent 7700e ICP-MS分析完成。對國際標準參考物質BHVO-2、BCR-2、RGM-2和AGV-2的同步分析及重復樣分析結果表明,微量、稀土元素分析的精確度和標準度優于±10%。
鋯石定年在北京科薈測試技術有限公司完成,使用測試系統為ESINWR 193 nm,ICP-MS儀器為Analytikjena Plas Ma Quant MS Elite(激光波長193 nm,激光束斑32 μm)。實驗過程中采用標準鋯石91500(GJ-1)作外標進行校正,元素質量分數以NIST610為外標,Si為內標元素,NIST612和NIST614為監控盲樣。鋯石同位素比值和質量分數采用ICP MS Data Cal計算,鋯石樣品數據處理、年齡加權平均值和年齡諧和圖繪制采用Isoplot/Ex_ver4軟件完成。
鋯石Lu-Hf同位素測試在北京科薈測試技術有限公司完成。測試儀器為Neptune Plus多接收電感耦合等離子體質譜儀與213 nm激光剝蝕系統構成的LA-MC-ICP-MS。Lu-Hf同位素測試點位同鋯石U-Pb定年測點位置一致,詳細的分析過程和數據處理參見文獻。分析過程中采用的束斑直徑為45 μm,剝蝕能量為10~11 J/cm2,脈沖頻率為10 Hz。標準鋯石GJ-1作為外標,監測儀器運行穩定性。本次實驗過程中獲得的GJ-1標樣測試值為0.282 008±0.000 023(2σ,n=12),這與推薦值在誤差范圍內一致。
Sr-Nd同位素分析在武漢上譜分析科技有限責任公司采用Thermo Fisher Scientific 公司的MC-ICP-MS(Neptune Plus)設備完成。其中Sr-Nd實驗流程采用兩個Sr、Nd同位素標樣(NBS SRM 987和Alfa Sr)之間插入樣品進行分析。NBS SRM 987的143Nd/144Nd為0.348 416±0.000 008(2σ,n=26)。本實驗選擇的巖石標樣流紋巖RGM-2具有較高的Rb質量分數(149×10-6)和適中的Sr質量分數(108×10-6),可以有效監控Rb的分離過程和測試結果。
4 測試結果
4.1 主量元素特征
本次分別選取了礦區內3件閃長玢巖和3件英安巖進行主微量元素測試,分析結果如表1所示。
閃長玢巖樣品的w(SiO2)為56.83%~60.30%,平均58.87%;w(TiO2)為0.52%~0.63%,平均0.58%;全堿w(Na2O+K2O)為4.68%~6.61%,平均5.89%;w(Al2O3)為14.88%~17.04%,平均16.17%。有較高的鋁飽和指數,A/CNK為0.91~1.08,平均1.01,為過鋁質巖石。在Zr/TiO2 -Nb/Y圖解(圖5a)上,樣品投入安山巖和流紋巖或英安巖的分界線上,在w(Th) -w(Co)判別圖(圖5b)中,所有樣品投入到鈣堿性巖石區域。
英安巖樣品的w(SiO2)為60.50%~63.05%,平均61.91%;w(TiO2)為0.46%~0.54%,平均0.51%;全堿w(Na2O+K2O)為4.55%~4.93%,平均4.68%;w(Al2O3)為15.73%~16.50%,平均16.21%。有較高的鋁飽和指數,A/CNK為1.33~2.69,平均1.49,為過鋁質巖石。在Zr/TiO2 - Nb/Y圖解(圖5a)上,樣品投入流紋巖或英安巖與安山巖交會區域,在w(Th)-w(Co)判別圖(圖5b)中,所有樣品投入到鈣堿性巖石區域。
4.2 稀土和微量元素特征
閃長玢巖:3件閃長玢巖樣品的稀土元素總量為96.32×10-6~114.30×10-6,LREE/HREE為7.65~8.22,(La/Yb)N為7.76~9.01,δCe為1.01~1.03,w(Y)為16.46~18.31,在稀土元素球粒隕石標準化配分圖(圖6a)中,顯示輕稀土元素富集(w(La)為18.40~22.56,La/Yb為10.8~12.5)、重稀土元素虧損的右傾模式,Eu負異常不明顯(δEu為0.84~0.95),指示了巖漿分異結晶作用較弱。在微量元素原始地幔標準化蛛網圖(圖6b)中,樣品的分布趨勢大致相同,相對于原始地幔來說,富集Rb、Ba、Sr等大離子親石元素和Th、U等不相容元素,弱富集Zr、Hf元素,相對虧損高場強元素Nb、P、Ti。
英安巖:3件英安巖樣品的稀土元素總量為113.19×10-6~134.74×10-6,LREE/HREE為8.04~10.68,(La/Yb)N為7.62~11.78,在稀土元素球粒隕石標準化圖譜(圖6a)上顯示輕稀土元素富集(w(La)為19.97~26.64,La/Yb為10.6~16.4)、重稀土元素虧損的右傾模式,具弱的Eu負異常(δEu為0.68~0.88)。在微量元素原始地幔標準化圖解(圖6b)中,樣品的分布趨勢大致相同,總體上富集Rb、Ba等大離子親石元素和Th、U等不相容元素,相對富集Zr、Hf元素,而虧損Nb、P、Ti等高場強元素。
4.3 鋯石U-Pb年代學
部分鋯石陰極發光圖像(CL)圖像和測點位置見圖7。
閃長玢巖(YD-3)樣品分選出的鋯石呈自形半自形板狀,粒徑介于120~220 μm之間,晶形較好,主要有長柱狀和短柱狀,它們的長寬比為2∶1~4.5∶1。在CL圖像(圖7a)中,可以看出鋯石多具有清晰均勻的巖漿振蕩環帶,未發現增長邊或核幔結構。在樣品測試數據(表2)中,鋯石的Th和U質量分數分別為9.8×10-6~285.4×10-6和23.1×10-6~682.7×10-6,Th/U值為0.39~1.55(平均0.61),具有巖漿成因鋯石的特征。經分析認為,有6顆鋯石測試數據的諧和率低,其余16顆鋯石的年齡較為一致,206Pb/238U表面加權年齡平均值為(99.60±0.62)Ma(MSWD=0.87),該年齡代表了閃長玢巖的結晶年齡(圖8)。
英安巖(YD-5)樣品分選出的鋯石呈自形-半自形板狀,粒徑介于115~180 μm之間,晶形較好,主要有長柱狀和短柱狀,它們的長寬比為1.8∶1~3∶1。在CL圖像(圖7b)中,本次測試的鋯石多具有清晰均勻的巖漿振蕩環帶,未發現增長邊或核幔結構。鋯石的樣品測試數據(表2)中,Th和U的質量分數分別為18.1×10-6~265.4×10-6和33.7×10-6~1 062.1×10-6 ,Th/U值為0.25~0.95(平均0.60),具有巖漿成因鋯石的特點。經分析認為,有13顆鋯石測試數據的諧和率低,其余21顆鋯石的年齡較為一致,206Pb/238U表面加權年齡平均值為(98.50±0.50)Ma(MSWD=0.51),該年齡代表了英安巖的結晶年齡(圖9)。
原始地幔和球粒隕石數據據文獻;陰影部分引自文獻。
以上兩個樣品中閃長玢巖與英安巖鋯石的結晶年齡基本一致((99.60±0.62)Ma和(98.50±0.50)Ma),基本上確定了礦區內與成礦密切相關的火山-次火山巖的成巖年齡為100~98 Ma。除此之外樣品測試結果中還存在4個測點(YD-3-2n、YD-3-4n、YD-3-19n和YD-5-4n)的206Pb/238U年齡為427.5~399.6 Ma(未參與加權平均值計算),該年齡應該為巖漿上侵過程中捕獲鋯石的年齡(表2)。
4.4 Sr-Nd-Hf同位素分析
選取測年樣品進行鋯石原位Hf同位素分析(表3,圖7、10)。閃長玢巖(YD-3)樣品中12個分析點的原位微區Hf同位素176Hf/177Hf值范圍為0.282 703~0.282 777,根據其成巖年齡,計算得出鋯石的初始Hf同位素εHf(t)范圍為-0.32~2.29;Hf同位素第二階段模式年齡tDM2為1 185~1 017 Ma。英安巖(YD-5)樣品中12個分析點的原位微區Hf同位素176Hf/177Hf值范圍為0.282 650~0.282 830,根據其成巖年齡,計算得出鋯石的初始Hf同位素εHf(t)范圍為-2.22~4.11;Hf同位素第二階段模式年齡tDM2為1 304~900 Ma。
Sr-Nd同位素分析測試結果見表4。閃長玢巖:根據其測年結果(99.60 Ma)計算,2件閃長玢巖樣品的87Rb/86Sr分別為0.230 0、0.290 9,(87Sr/86Sr)i為0.707 68、0.707 70,εNd(t)值分別為-3.47、-2.42,二階段Nd同位素模式年齡分別為1 182 Ma和1 095 Ma。英安巖:根據其測年結果(98.50 Ma)計算,2件英安巖樣品的87Rb/86Sr分別為5.603 8、5.824 8,(87Sr/86Sr)i分別為0.707 29、0.707 20,εNd(t)值兩組都為-2.99,二階段Nd同位素模式年齡分別為1 142 Ma和1 141 Ma。
5 討論
5.1 成巖成礦時代
伊東林場金多金屬礦體主要賦存于寧遠村組火山-次火山巖中,通過野外實地觀察和室內鏡下詳細研究,該套火山-次火山巖與礦體時空關系密切,多見被含金銀石英脈穿切現象,局部具有一定金銀礦化。該套火山-次火山巖的成巖年齡可作為限定伊東林場金多金屬礦床成礦的上限年齡。本次研究獲得的閃長玢巖的結晶年齡為(99.60±0.62)Ma,英安巖的結晶年齡為(98.50±0.50)Ma,基本確定礦區該套火山-次火山巖的成巖年齡在100~98 Ma之間,推測伊東林場金多金屬礦床成礦年齡應小于98 Ma。
小興安嶺地區有眾多與早白堊世火山-次火山巖密切相關的淺成低溫熱液型金礦床,成礦年齡基本在120~99 Ma之間(表5,圖11),如:三道灣子金礦床與成礦密切相關的流紋巖年齡為(125.3±1.8)Ma,成礦年齡為(119.1±3.9)Ma;東安金礦床與成礦密切相關的流紋斑巖年齡為(108.1±2.4)Ma,成礦年齡為(107.2±0.6)Ma;高松山金礦床與成礦密切相關的流紋巖年齡為(105.6±1.7)Ma,成礦年齡為(98.0±1.6)Ma;團結溝金礦床與成礦密切相關的安山玢巖年齡為(113.3±1.2)Ma,成礦年齡為(113.8±4.4)Ma;永新金礦床與成礦密切相關的英安巖和閃長玢巖年齡分別為(111.7±1.5)Ma、(114.8±1.9)Ma,成礦年齡為(107.0±4.0)Ma。以上這些礦床的成礦作用與成巖時代接近或者相差較小(lt;5 Ma)。結合本次研究工作獲得的成巖年齡,推測伊東林場金多金屬礦床成礦作用發生在火山-次火山巖形成之后(lt;98 Ma),并且成礦年齡應近同期或晚于火山-次火山巖的成巖年齡。結合本課題組最新獲得的主成礦期方解石Sm-Nd測年結果(97.5±2.2)Ma(待發表數據),筆者認為該年齡能代表伊東林場金多金屬礦床的成礦年齡,成礦時代為早白堊世晚期,該礦床是小興安嶺地區到目前為止發現的最年輕的淺成低溫熱液型金礦床。
5.2 巖石成因
對于巖漿巖,鋯石的Hf同位素組成可為示蹤巖漿源區和具體的巖漿過程提供證據,是討論地殼演化和示蹤巖石源區的重要工具。Kinny等認為巖漿鋯石Hf同位素具有低176Hf/177Hf和負εHf(t)值的巖石往往指示其來源于地殼或經受了地殼混染,而具有較高的176Hf/177Hf及正εHf(t)值的巖石則直接來自地幔物質或由幔源物質分異的新生殼源物質。
研究區閃長玢巖鋯石具有較高的176Hf/177Hf值(0.282 703~0.282 777)及εHf(t)值(-0.32~2.29,均值為0.79),英安巖的176Hf/177Hf值為0.282 650~0.282 830及εHf(t)值(-2.22~4.11,均值為0.45)。在圖12中,數據點落在了球粒隕石演化線附近,且均落入興蒙造山帶東部顯生宙火成巖區域,且εHf(t)值以正值為主,指示其源區可能為地幔或新生殼源物質;部分鋯石的εHf(t)為負值,推測該套火山-次火山巖形成過程中有少量陸殼物質的加入。
礦區內早白堊世火山-次火山巖的Sr-Nd同位素組成上,英安巖因遭受較強蝕變,燒失量較高,而具有較高的87Rb/86Sr值(87Rb/86Sr=5.6038,5.8248;Rb/Sr=1.9352,2.0116),在微量元素原始地幔標準化圖解(圖6b)中,也出現了Sr的虧損,此類具有較高Rb/Sr巖石的(87Sr/86Sr)i不具有巖石學意義。在與成礦有關的火山-次火山巖的εNd(t)-87Sr/86Sr巖石成因模式圖(圖13a)中,樣品數據點落入地幔演化線右側,位于早白堊世火山巖區域。從圖εNd(t)-(87Sr/86Sr)i(圖13b)中可以明顯看出,數據點落在了下地殼和玄武巖端元混合演化線右側,更偏向于大陸下地殼端元,這也說明了巖漿在上升過程中發生了較強烈的地殼物質的混染作用,混染程度在40%~50%之間。Nb/La-(La/Yb)N和La/Sm-w(La)圖解(圖14)也顯示巖漿在上升演化過程中受到了地殼物質的混染作用。且Sr-Nd同位素擁有較高的模式年齡,二階段模式年齡都大于1.0 Ga(tDM2為1 182~1 095" Ma)、低εNd(t)值(-3.47~ -2.42)和高放射成因Sr同位素比值(87Sr/86Sr)igt;0.705 00,暗示熔融源區的形成受到了地殼物質的混染影響。另外樣品中還存在4個年齡為427.5~399.6 Ma的捕獲鋯石,也證明了巖漿在上升過程中有地殼物質的參與。說明伊東林場金多金屬礦床早白堊世火山-次火山巖主要來自于地幔物質,并遭受到了較強的地殼混染(混染程度為40%~50%),與區域上早白堊世晚期火山巖成因一致。
綜合分析認為,伊東林場金多金屬礦床早白堊世火山-次火山巖具有幔源巖漿的特點,推測巖漿起源于受流體交代的地幔楔的部分熔融,巖漿在上升演化過程中受到地殼物質的強烈混染。
5.3 構造背景
在(La/Yb)N- w(YbN)圖解(圖15a)中,樣品全部落入經典島弧巖石區,在Sr/Y- w(Y)圖解(圖15b)中,樣品大部分靠近經典島弧巖石區,表明研究區巖石為經典島弧巖石。在w(Rb)- w(Y+Nb)、w(Ta)-w(Yb)構造環境判別圖解(圖16)中,樣品落入火山弧花崗巖區域,揭示了巖漿巖主要形成于俯沖造山的構造環境,指示該套火山-次火山巖形成于俯沖作用下的島弧環境。
一般情況下,與俯沖有關的變質交代作用既可MORB.大洋中脊玄武巖;DM.虧損地幔;PM.原始或未分異地幔;EMⅠ.Ⅰ型富集地幔;EMⅡ.Ⅱ型富集地幔;LCC.大陸下地殼;UCC.大陸上地殼。底圖據文獻;中國東北中生代花崗巖引自文獻;早白堊世侵入巖引自文獻;早白堊世火山巖引自文獻;晚侏羅世玄武巖引自文獻;中國東北顯生宙花崗巖引自文獻。b圖中的值為LCC和UCC中物質參與程度的比值,%,代表混染程度。
以是受板片流體作用影響,也可以是受遠洋沉積物熔體的交代,其中受俯沖板片流體組分具有較高的w(Ba)、w(Pb)、Ba/La和Ba/Th值,而遠洋沉積物熔體交代應該具有較高的w(Th)、Th/Yb和Nb/Y值。在Th/Yb-Ta/Yb、Ba/Th-La/Sm、Ba/Yb-Th/Yb和w(Ba)-Nb/Y等判別圖解(圖17)中,我們可以明顯得出伊東林場金多金屬礦床中與成礦關系密切的火山-次火山巖形成于活動大陸邊緣(圖17a),受俯沖板片流體交代作用的影響(圖17b—d)。
中生代以來,受古太平洋板塊持續俯沖作用的影響,小興安嶺地區發生了大規模的巖漿作用。祁進平等認為東北地區中生代大規模成礦作用發生在130 Ma左右,且該區處于古亞洲洋閉合后的陸陸碰撞中的擠壓-伸展轉變期構造背景下;韓世炯等認為早白堊世末—晚白堊世初(110~90 Ma),中國東北地區的淺成低溫熱液型金礦的構造背景為古太平洋板塊向亞洲大陸由正北向俯沖轉入IzanagiFarallon板塊西南俯沖的構造轉換期,處于板塊俯沖引起巖石圈板塊拆沉減薄的伸展構造背景下;Ouyang等也認為115~110 Ma期間(早白堊世晚期階段),中國東北地區成礦作用與古太平洋板塊俯沖方向的變化導致軟流圈上涌,從而引起巖石SHO. 橄欖巖玄粗巖;CA. 鈣堿性系列; TH. 拉斑系列;E-MORB."" 富集大洋玄武巖;NMORB. 正常大陸玄武巖;OIB. 洋島玄武巖;PM." 原始地幔。a據文獻;b,c,d據文獻;陰影部分引自文獻。
眾多學者在對中國東北地區中生代成巖成礦動力學背景及成礦作用的認識中,普遍認為早白堊世
成礦作用及相關巖漿作用是在伸展背景下形成的。伊東林場金多金屬礦床為淺成低溫熱液型金礦床,與成礦密切相關的火山-次火山巖的成巖時代集中在100~98 Ma,綜合分析認為該套火山-次火山巖形成于活動大陸邊緣背景下的陸緣弧環境,受俯沖板片流體交代作用的影響。該礦床成礦時代為早白堊世晚期,應該與區域上眾多早白堊世淺成低溫熱液型金礦床共同形成于區域性伸展環境,與古太平洋板塊俯沖回撤的動力學背景有關。
6 結論
1)伊東林場金多金屬礦床與成礦關系密切的閃長玢巖和英安巖的成巖年齡分別為(99.60±0.62)Ma(MSWD=0.87)和(98.50 ± 0.50)Ma (MSWD=0.51),均形成于早白堊世晚期。結合主成礦期方解石的Sm-Nd測試結果((97.5±2.2) Ma),揭示伊東林場金多金屬礦床成巖成礦時代為早白堊世晚期,是小興安嶺地區到目前為止發現的最年輕的淺成低溫熱液型金礦床。
2)伊東林場金多金屬礦床早白堊世火山-次火山巖的初始巖漿起源于受俯沖洋板片脫水釋放的流體交代上覆地幔楔發生部分熔融的產物,巖漿在上升演化過程中受到地殼物質的強烈混染。
3)伊東林場金多金屬床與成礦密切相關的火山-次火山巖形成的構造環境為活動大陸邊緣背景下的陸緣弧環境,與區域上眾多早白堊世淺成低溫熱液型金礦床可能共同形成于區域性伸展環境,與古太平洋板塊俯沖回撤的動力學背景有關。
參考文獻(References):
王立佳. 黑龍江省伊東林場東部地質-地球化學特征及金成礦遠景評價. 長春: 吉林大學,2018: 4,30-33,46.
Wang Lijia. GeologicalGeochemical CharacteriStics and Gold Mineralization Prospects in Eastern Yidong Forest Farm, Heilongjiang Province. Changchun: Jilin University, 2018: 4, 30-33, 46.
劉旭光,呂軍,王興,等. 物化探綜合找礦方法成功應用:以伊春市伊東林場金礦床的發現為例. 礦產與地質,2019,33(6): 1047-1056.
Liu Xuguang, Lü Jun, Wang Xing, et al. The Successful Application of Integrated Geophysical and Geochemical Prospecting Methods: An Example of Yidong Forest Farm Gold Deposit in Yichun City. Mineral Resources and Geology, 2019, 33(6): 1047-1056.
徐東海,王興,劉旭光,等. 伊東林場金礦區物化探異常特征及應用. 物探化探計算技術,2020,42(4): 550-555.
Xu Donghai, Wang Xing, Liu Xuguang, et al. Geophysical and Geochemical Anomaly Characteristics and Application in Yidonglinchang Gold Mine. Computing Techniques for Geophysical and Geochemical Exploration, 2020, 42(4): 550-555.
毛景文,謝桂青,張作衡,等. 中國北方中生代大規模成礦作用的期次及其地球動力學背景. 巖石學報,2005,21(1): 169-188.
Mao Jingwen, Xie Guiqing, Zhang Zuoheng, et al. Metallogenic LargeScale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 2005, 21(1): 169-188.
祁進平,陳衍景,Franco Pirajno. 東北地區淺成低溫熱液礦床的地質特征和構造背景. 礦物巖石,2005,25(2): 47-59.
Qi Jinping, Chen Yanjing,Franco Pirajno. Geological Characteristics and Tectonic Setting of the Epithermal Deposits in the Northeast China. Mineralogy and Petrology, 2005, 25(2): 47-59.
韓世炯,孫景貴,邢樹文,等. 中國東北部陸緣內生金礦床成因類型、成礦時代及地球動力學背景. 吉林大學學報(地球科學版),2013,43(3): 716-733.
Han Shijiong, Sun Jinggui, Xing Shuwen, et al. Genetic Types, Metallogenic Epoch and Geodynamic Settings of Endogenetic Gold in the Continental Margin, Northeast China. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 716-733.
許文良,王楓,裴福萍,等. 中國東北中生代構造體制與區域成礦背景: 來自中生代火山巖組合時空變化的制約. 巖石學報,2013,29(2): 339-353.
Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional OreForming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 2013, 29(2): 339-353.
孟凡超,劉嘉麒,崔巖,等. 中國東北地區中生代構造體制的轉變: 來自火山巖時空分布與巖石組合的制約. 巖石學報,2014,30(12): 3569-3586.
Meng Fanchao, Liu Jiaqi, Cui Yan, et al. Mesozoic Tectonic Regimes Transition in the Northeast China: Constriants from TemporalSpatial Distribution and Associations of Volcanic Rocks. Acta Petrologica Sinica, 2014, 30(12): 3569-3586.
Wang G, Li R, Carranza E J M, et al. 3D Geological Modeling for Prediction of Subsurface Mo Targets in the Luanchuan District, China. Ore Geology Reviews, 2015, 71(3): 592-610.
Ouyang H G, Mao J W, Santosh M, et al. Geodynamic Setting of Mesozoic Magmatism in NE China and Surrounding Regions: Perspectives from SpatioTemporal Distribution Patterns of Ore Deposits. Journal of Asian Earth Sciences, 2013, 78(12): 222-236.
Zhang Z, Mao J, Wang Y, et al. Geochemistry and Geochronology of the Volcanic Rocks Associated with the Dong’an AdulariaSericite Epithermal Gold Deposit, Lesser Hinggan Range, Heilongjiang Province, NE China: Constraints on the Metallogenesis. Ore Geology Reviews, 2010, 37(3/4): 158-174.
馬芳芳,孫豐月,李碧樂,等. 黑龍江東安金礦床鋯石U-Pb年齡及其地質意義. 地質與資源,2012,21(3): 277-280.
Ma Fangfang, Sun Fengyue, Li Bile, et al. Zircon U-Pb Ages of Dong’an Gold Deposit in Heilongjiang Province: Geological Implication. Geology and Resources, 2012, 21(3): 277-280.
Sun J G, Han S J, Zhang Y, et al. Diagenesis and Metallogenetic Mechanisms of the Tuanjiegou Gold Deposit from the Lesser Xing’an Range, NE China: Zircon U-Pb Geochronology and Lu-Hf Isotopic Constraints. Journal of Asian Earth Sciences, 2013, 62(10): 373-388.
Wang Y, Zeng Q, Liu J. Rb-Sr Dating of GoldBearing Pyrites from Wulaga Gold Deposit and Its Geological Significance. Resource Geology, 2014, 64(3): 262-270.
Liu J, Bai X, Zhao S, et al. Geology of the Sandaowanzi Telluride Gold Deposit of the Northern Great Xing’an Range, NE China: Geochronology and Tectonic Controls. Journal of Asian Earth Sciences, 2011, 41(2): 107-118.
Zhai D G, Liu J J, Ripley E M, et al. Geochronological and He-Ar-S Isotopic Constraints on the Origin of the Sandaowanzi GoldTelluride Deposit, Northeastern China. Lithos: An International Journal of Mineralogy, Petrology, and Geochemistry, 2015, 212/213/214/215(11): 338-352.
Zhao Z H, Sun J G, Li G H, et al. Age of the Yongxin Au Deposit in the Lesser Xing’an Range: Implications for an Early Cretaceous Geodynamic Setting for Gold Mineralization in NE China. Geological Journal, 2019, 54(4): 2525-2544.
Zhao Z H, Sun J G, Li G H, et al. Early Cretaceous Gold Mineralization in the Lesser Xing’an Range of NE China: the Yongxin Example. International Geology Review, 2019, 61(12): 1522-1549.
Zhao Z H, Sun J G, Li G H, et al. Zircon U-Pb Geochronology and Sr-Nd-Pb-Hf Isotopic Constraints on the Timing and Origin of the Early Cretaceous Igneous Rocks in the Yongxin Gold Deposit in the Lesser Xing’an Range, NE China. Geological Journal, 2020, 55(4): 2684-2703.
趙忠海. 小興安嶺西北部永新大型金礦成因、成礦地質模式與深部三維成礦預測. 長春: 吉林大學,2019: 79-100.
Zhao Zhonghai. Ore Genesis, Metallogenic Geological Mode and Deep Metallogenic Prediction of the Yongxin Large Au Deposit Based on 3D Digital Model in the Northwestern Lesser Xing’an Range. Changchun: Jilin University, 2019: 79-100
李成祿,徐文喜,于援幫,等. 小興安嶺西北部與永新金礦有關巖漿巖的年代學和地球化學及成礦構造環境. 現代地質,2017,31(6): 1114-1130.
Li Chenglu, Xu Wenxi, Yu Yuanbang, et al. Geochronology and Geochemistry of the OreRelated Magmatic Rocks from the Yongxin Gold Deposit, Northwest Xiao Hinggan Mountains and Their OreForming Tectonic Implication . Geoscience, 2017, 31(6): 1114-1130.
鄭硌,顧雪祥,章永梅,等. 黑龍江高松山金礦床地質地球化學特征及礦床成因. 礦物巖石地球化學通報,2014,33(5): 733-741.
Zheng Ge, Gu Xuexiang, Zhang Yongmei, et al. GeologicalGeochemical and Genesis of the Gaosongshan Gold Deposit in Heilongjiang Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(5): 733-741.
Liu Y, Chu X, Sun J, et al. Early Cretaceous Bimodal Magmatism Related Epithermal Mineralization: A Case Study of the Gaosongshan Gold Deposit in the Northern Lesser Xing’an Range, NE China. Ore Geology Reviews, 2020, 121(18): 103563.
Zhang C P, Wang E D, Bi Z W, et al. Geochronology and Isotope Geochemistry Studies of an Epithermal Gold Deposit in the Northern Lesser Khingan Range, NE China: The Gaosongshan Example. Ore Geology Reviews, 2019, 105(1): 356-374.
譚成印. 黑龍江省主要金屬礦產構造-成礦系統基本特征. 北京: 中國地質大學,2009: 213-216,214.
Tan Chengyin. General Characteristics of the TectonicMetallic System of Main Ore Deposits in Heilongjiang Province, Northeast China. Beijing: China University of Geosciences, 2009: 213-216,214.
Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.
Cui P L, Sun J G, Han S J, et al. Zircon U-Pb-Hf Isotopes and BulkRock Geochemistry of Gneissic Granites in the Northern Jiamusi Massif, Central Asian Orogenic Belt: Implications for Middle Permian Collisional Orogeny and Mesoproterozoic Crustal Evolution. International Geology Review, 2013, 55(9): 1109-1125.
Ren L, Sun J, Han J, et al. Magmatism and Metallogenic Mechanisms of the Baoshan CuPolymetallic Deposit from the Lesser Xing’an Range, NE China: Constraints from Geology, Geochronology, Geochemistry, and Hf Isotopes. Ore Geology Reviews, 2017, 88(5): 270-288.
毛景文,李曉峰,張作衡,等. 中國東部中生代淺成熱液金礦的類型、特征及其地球動力學背景. 高校地質學報,2003,9(4): 620-637.
Mao Jingwen, Li Xiaofeng, Zhang Zuoheng, et al. Geology, Distribution, Types and Tectonic Setting of Mesozoic Epithermal Gold Deposits in East China. Geological Journal of China Universities, 2003, 9(4): 620-637.
Hao Y J, Ren Y S, Duan M X, et al. Metallogenic Events and Tectonic Setting of the Duobaoshan Ore Field in Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 2015, 97(8): 442-458.
黑龍江省地質礦產局. 黑龍江省區域地質志. 北京: 地質出版社,1993.
Bureau of Geology and Mineral Resoures of Heilongjiang Province. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House, 1993.
曲關生. 黑龍江省巖石地層. 武漢: 中國地質大學出版社,1997.
Qu Guansheng. Petrostratigraphy of Heilongjiang Province. Wuhan: China University of Geosciences Press, 1997.
李永飛,卞雄飛,郜曉勇,等. 大興安嶺北段龍江盆地中生代火山巖激光全熔40Ar/39Ar測年. 地質通報,2013,32(8): 1212-1223.
Li Yongfei, Bian Xiongfei, Gao Xiaoyong, et al. Laser 40Ar/39Ar Chronology of the Mesozoic Volcanic Rocks from Longjiang Basin in Northern Great Xing’an Mountains . Geological Bulletin of China, 2013, 32(8): 1212-1223.
李永飛,郜曉勇,卞雄飛,等. 大興安嶺北段龍江盆地中生代火山巖LA-ICP-MS鋯石U-Pb年齡、地球化學特征及其地質意義. 地質通報,2013,32(8): 1195-1211.
Li Yongfei, Gao Xiaoyong, Bian Xiongfei, et al. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of the Mesozoic Volcanic Rocks from Longjiang Basin in Northern Great Xing’an Mountains and Their Geological Implications. Geological Bulletin of China, 2013, 32(8): 1195-1211.
丁秋紅,陳樹旺,商翎,等. 大興安嶺東部地區下白堊統龍江組新認識. 地質與資源,2014,23(3): 215-221.
Ding Qiuhong, Chen Shuwang, Shang Ling, et al. New Understanding of the Lower Cretaceous Longjiang Formation in the Eastern Great Xing’an Mountains Region. Geology and Resources, 2014, 23(3): 215-221.
Gao S, Xu H, Zang Y, et al. Late Mesozoic Magmatism and Metallogeny in NE China: The SandaowanziBeidagou Example. International Geology Review, 2016, 59(11): 1413-1438.
王蘇珊,劉佳宜,季洪偉,等. 黑龍江三道灣子金礦區龍江組安山巖的年代學與地球化學. 巖石學報,2017,33(8): 2604-2618.
Wang Sushan, Liu Jiayi, Ji Hongwei, et al. Geochronology and Geochemistry of the Andesites of Longjiang Formation in the Sandaowanzi Gold Deposit, Heilongjiang Province. Acta Petrologica Sinica, 2017, 33(8): 2604-2618.
張超,吳新偉,張渝金,等. 大興安嶺北段龍江盆地光華組堿流巖LA-ICP-MS鋯石U-Pb年齡及其地質意義. 地質通報,2017,36(9): 1531-1541.
Zhang Chao, Wu Xinwei, Zhang Yujin, et al. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of the Pantellerite of Guanghua Formation from Longjiang Basin in Northern Great Xing’an Mountains and Their Geological Implications. Geological Bulletin of China, 2017, 36(9): 1531-1541.
常景娟,李碧樂. 東安金礦光華組酸性火山凝灰巖地球化學、鋯石U-Pb年齡和Hf同位素特征及其地質意義. 礦產保護與利用,2015,35(6): 12-21.
Chang Jingjuan, Li Bile. Geochemistry, U-Pb Geochronology and Hf Isotopic Characteristics and Geological Significance of the Tuff from Dong’an Gold Deposit, Lesser Khingan Mountains, NE China. Conservation and Utilization of Mineral Resources, 2015, 35(6): 12-21.
Liu Y, Hu Z, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.
Liu Y S, Hu Z C,Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
Liu Y, Gao S, Hu Z, et al. Continental and Oceanic Crust RecyclingInduced MeltPeridotite Interactions in the TransNorth China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1/2): 537-571.
Ludwig K R. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 2003, 39(1): 91-445.
Wu F Y, Yang Y H,Xie L W, et al. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 2006, 234(1/2): 105-126.
Winchester J A, Floyd P A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 1977, 20(1): 325-343.
Hastie A R, Kerr A C, Pearce J A, et al. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 2007, 48(12): 2341-2357.
Sun S S, Mc Donough" W F S. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, 1989, 42(1): 313-345.
Wang Y, Zeng Q, Zhou L, et al. The Sources of OreForming Material in the LowSulfidation Epithermal Wulaga Gold Deposit, NE China: Constraints from S, Pb Isotopes and REE Pattern. Ore Geology Reviews, 2016, 76(1): 140-151.
Hoskin P,Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis . Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
高燊. 黑龍江省黑河北部中生代金成礦系統研究. 北京: 中國地質大學,2017: 57,77-125.
Gao Shen. Study on Mesozoic Gold Metallogenic System, Northern Heihe, Heilongjiang Province . Beijing: China University of Geosciences, 2017: 57, 77-125.
Gao R,Xue C, Lü X, et al. Genesis of the Zhengguang Gold Deposit in the Duobaoshan Ore Field, Heilongjiang Province, NE China: Constraints from Geology, Geochronology and S-Pb Isotopic Compositions. Ore Geology Reviews, 2017, 84(12): 202-217.
吳福元,李獻華,鄭永飛,等. Lu-Hf同位素體系及其巖石學應用.巖石學報,2007,23(2): 185-220.
Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf Isotopic Systematics and Their Applications Inpetrology. Acta Petrologica Sinica, 2007, 23(2): 185-220.
Kinny P D, Maas R. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 327-341.
Wu F Y, Sun D Y, Li H, et al. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 2002, 187(1/2): 143-173.
Sun X, Deng J, Zhao Z, et al. Geochronology,Petrogenesis and Tectonic Implications of Granites from the Fuxin Area, Western Liaoning, NE China. Gondwana Research, 2010, 17(4): 642-652.
Jahn B, Wu F, Lo C H, et al. CrustMantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from PostCollisional MaficUltramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 1999, 157(1/2): 119-146.
Wu F, Jahn B, Wilde S, et al. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 2000, 328(1/2): 89-113.
王永彬,劉建明,孫守恪,等. 黑龍江省烏拉嘎金礦賦礦花崗閃長斑巖鋯石U-Pb年齡、巖石成因及其地質意義. 巖石學報,2012,28(2): 557-570.
Wang Yongbin, Liu Jianming, Sun Shouke, et al. Zircon U-Pb Geochronology, Petrogenesis and Geological Implication of OreBearing Granodiorite Porphyry in the Wulaga Gold Deposit, Heilongjiang Province . Acta Petrologica Sinica, 2012, 28(2): 557-570.
Hu X, Ding Z, Yao S, et al. Geochronology and Sr-Nd-Hf Isotopes of the Mesozoic Granitoids from the Great Xing’an and Lesser Xing’an Ranges: Implications for Petrogenesis and Tectonic Evolution in NE China. Geological Journal, 2016, 51(1): 1-20.
Hu X L, Yao S Z, He M C, et al. Geochemistry, U-Pb Geochronology and Sr-Nd-HfIsotopes of the Early Cretaceous Volcanic Rocks in the Northern Da Hinggan Mountains. Acta Geologica Sinica, 2015, 89(1): 203-216.
Zhang L, Zhou X, Ying J, et al. Geochemistry and Sr-Nd-Pb-Hf Isotopes of Early Cretaceous Basalts from the Great Xinggan Range, NE China: Implications for Their Origin and Mantle Source Characteristics. Chemical Geology, 2008, 256(1): 12-23.
Gu A L, Sun J G, Bai L A, et al. Petrogenesis and Geodynamic Significance of the Ganhe Formation Lavas, Eastern Great Xing’an Range, China: Evidence from Geochemistry and GeochroNology. Island Arc, 2016, 25(2): 87-110.
Allegre C J, Minster J F. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
范蔚茗,郭鋒,高曉峰,等. 東北地區中生代火成巖Sr-Nd同位素區劃及其大地構造意義. 地球化學,2008,37(4): 361-372.
Fan Weiming, Guo Feng, Gao Xiaofeng, et al. Sr-Nd Isotope Mapping of Mesozoic Igneous Rocks in NE China: Constraints on Tectonic Framework and Crustal Growth. Geochimica, 2008, 37(4): 361-372.
劉晨,孫景貴,邱殿明,等. 大興安嶺北段東坡小莫爾可地區中生代火山巖成因及其地質意義: 元素、Hf同位素地球化學與鋯石U-Pb同位素定年. 吉林大學學報(地球科學版),2017,47(4): 1138-1158.
Liu Chen, Sun Jinggui, Qiu Dianming, et al. Genesis and Geological Significance of Mesozoic Volcanic Rocks in Xiaomoerke, Northern Slope of Great Khingan Range: Hf Isotopic Geochemistry and Zircon U-Pb Chronology. Journal of Jilin University (Earth Science Edition), 2017, 47(4): 1138-1158.
陳軍強,孫景貴,樸壽成,等. 金廠溝梁金礦區暗色脈巖的成因和意義: 主要和微量元素地球化學證據. 吉林大學學報(地球科學版),2005,35(6): 29-35.
Chen Junqiang, Sun Jinggui, Piao Shoucheng, et al. Genesis and Significance of Dark Dikes in the Jinchanggouliang Mine Area, Inner Mongolia: Evidences from Geochemistry of the Major and Trace Elements. Journal of Jilin University (Earth Science Edition), 2005, 35(6): 29-35.
Martin H.Effect of Steeper Archean Geothermal Gradient on Geochemistry of SubductionZone" Magmas. Geology, 1986, 14(9): 753-756.
Defant M J, Drummond M S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 1990, 347: 662-665.
Pearce J A,Harris N B W, Tindle A G. Trace Element DiscrimInation Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25(4): 956-983.
Pearce J A. Role of the Subcontinental Lithosphere in Magma Genesis at Active Continental Margins. Continental Basalts and Mantle Xenoliths, 1983, 317: 253-266.
Labanieh S, Chauvel C, Germa A, et al. Martinique: A Clear Case for Sediment Melting and Slab Dehydration as a Function of Distance to the Trench. Journal of Petrology, 2012, 53(12): 2441-2464.
宮昀迪,李碧樂,李治華,等. 大興安嶺北段小柯勒河花崗斑巖脈成因及地質意義: 鋯石U-Pb年齡、巖石地球化學及Hf同位素制約. 吉林大學學報(地球科學版), 2021, 51(6): 1753-1769.
Gong Yundi, Li Bile, Li Zhihua, et al. Petrogenesis and Geological Significance of Granite Porphyry Dike from Xiaokelehe in North Da Hinggan Mountains: Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotopic Composition. Journal of Jilin University (Earth Science Edition), 2021, 51(6): 1753-1769.
王碩,孫豐月,王冠,等. 黑龍江省四平山金礦床成礦作用及礦床成因:來自礦床地質、地球化學、鋯石U-Pb年代學及H-O-S同位素的制約.吉林大學學報(地球科學版), 2022, 52(5): 1626-1648.
Wang Shuo, Sun Fengyue, Wang Guan, et al. Mineralization and Genesis of Sipingshan Gold Deposit, Heilongjiang, China: Evidence from Ore Deposit Geology, Geochemistry, Zircon U-Pb Ages, and H-O-S Isotopes. Journal of Jilin University (Earth Science Edition), 2022, 52(5): 1626-1648.
宋維民,王建恒,楊佳林等.蒙古-鄂霍茨克洋閉合時限:來自大興安嶺突泉地區下白堊統與下伏地質體之間角度不整合關系的約束.地質通報,2022,41(7):1202-1213.
Song Weimin, Wang Jianheng, Yang Jialin, et al. Closure Time of the MongolOkhotsk Ocean: Constraints from the Angular Unconformity Between the Lower Cretaceous and the Lower Geological Body in Tuquan Area of the Greater Hingan Mountains. Geological Bulletin of China,2022,41(7):1202-1213.