












摘 要:【目的】研究陸地棉GHWAT1-35基因在棉花纖維發育過程中的作用。
【方法】選用陸地棉系9花后不同時期的纖維為材料,克隆GHWAT1-35基因的全長cDNA序列,并進行生物信息學、實時熒光定量(qRT-PCR)分析及亞細胞定位。
【結果】該基因全長1 125 bp,編碼374個氨基酸,相對分子量為40.231 kDa,理論等電點為8.74。GHWAT1-35蛋白與亞洲棉親緣關系最近。GHWAT1-35基因在開花后15 d表達量顯著升高,亞細胞定位預測表明該蛋白定位于細胞質膜上。將GHWAT1-35基因與pCAMIA1300-35S-YFP載體重組,構建融合表達載體,利用凍融法轉化農桿菌,注射到煙草后觀察到GHWAT1-35蛋白定位在細胞質膜上。
【結論】陸地棉系9 GHWAT1-35基因在開花后15和20 DAP的表達量顯著高于其他時期,pC1300∷35S-WAT-YFP融合蛋白定位于細胞質膜上。
關鍵詞:陸地棉;WAT1;基因克??;生物信息學;亞細胞定位
中圖分類號:S562"" 文獻標志碼:A"" 文章編號:1001-4330(2024)06-1310-08
0 引 言
【研究意義】棉花纖維品質高低直接影響棉紡織品的質量[1, 2]。纖維發育是棉花生長發育過程中至關重要的環節,其中涉及了多個基因的調控和作用[3]。因此,棉花質量也成為原棉競爭力的關鍵要素。研究陸地棉GHWAT1-35基因在棉花纖維發育過程中的作用,對挖掘棉花纖維發育相關基因具有重要意義。【前人研究進展】Walls Are Thin 1(WAT1)是一種植物特異性蛋白,其功能早在擬南芥中已被揭示[4]。Ranocha等[5]研究發現,WAT1是一種液泡膜上的轉運蛋白,在擬南芥各個組織器官中均有表達,在莖和下胚軸表達量最高,這些組織均具有相對較高比例的次生壁細胞。NAC轉錄因子NST1和NST3是植物次生壁合成的關鍵調節因子,其參與轉錄級聯的激活,促進次生壁的生物合成[6]。在擬南芥WAT1突變體中轉錄因子SND1和NST1的表達下調,其靶基因KNAT7和MYB103表達量也顯著降低,該2個轉錄因子在植物纖維次生壁合成過程中發揮著至關重要的作用。擬南芥WAT1是液泡膜上的轉運蛋白,可促進生長素進入植物液泡中,從而維持植物內部生長素的平衡。擬南芥WAT1突變體植株木質素含量降低、莖纖維次生細胞壁厚度降低、生長素運輸受阻、莖中生長素含量顯著降低[7]。彭方林等[8]發現,At1g01070基因位于擬南芥的細胞質膜上,超表達該基因篩選得到純和株系,發現其參與調控擬南芥的開花時間,可促進擬南芥幼株株高增加和幼根生長。Ju等[9]發現,WAT1參與陸地棉果枝發育過程,在魯棉研28號和新陸中77號2個品種之間植株結構差異顯著,前者果枝節間距較長,株型疏松;后者果枝節間距較短,株型緊湊。RNASeq和qRT-PCR結果表明,生長素信號轉導在魯棉研28號中是正調控的,但在新陸中77號中受到負調控,魯棉研28號的生長素明顯含量高于新陸中77號。Tang等[10]在GhWAT123沉默的陸地棉中發現,水楊酸(SA)相關基因的表達顯著上調,導致水楊酸含量升高。木質部發育受到抑制,造成木質素沉積[11, 12]。Hanika等[13]利用VIGS技術瞬時沉默番茄植株中的SlWAT1基因,對經過SlWAT1基因沉默的植株進行篩選,并測試其對番茄黃萎病病原體的抗病性。結果表明,沉默后的番茄植株的萎縮程度顯著降低,SlWAT1在番茄中作為黃萎病感病因子發揮著重要作用。在鹽、干旱、低溫環境脅迫下,香蕉中MaWAT1s表達量顯著上調[14]。WAT1蛋白可通過參與生長素、水楊酸等激素的代謝過程調控植物生長發育與抗逆反應[15]?!颈狙芯壳腥朦c】由于WAT1蛋白在植物生長發育中發揮重要作用,而在陸地棉纖維發育過程中,WAT1蛋白的作用機制鮮有報道,需要進一步克隆和分析WAT1蛋白相關基因?!緮M解決的關鍵問題】以陸地棉系9的纖維組織為材料,克隆得到GHWAT1-35基因,對其進行生物信息學和亞細胞定位分析,分析GHWAT1-35的功能,為深入探究該基因在棉花纖維發育過程中的作用提供參考。
1 材料與方法
1.1 材 料
選擇陸地棉系9(簡稱系9)開花后(DPA)不同發育階段(0、5、10、15、20、25和30 DPA)的棉纖維組織及本氏煙草葉片。
1.2 方 法
1.2.1 總RNA 的提取與克隆
采集陸地棉系9不同發育時期的纖維組織,并立即用液氮進行速凍后,置于-80℃冰箱保存,備用。使用RNAprep Pure多糖多酚植物總RNA提取試劑盒(TIANGEN)提取纖維樣品中的總RNA,并檢測RNA的濃度以確保質量合格。以提取的總RNA作為模板,根據FastKing cDNA第一條鏈合成試劑盒說明書進行反轉錄實驗,并將反轉錄產物置于-20℃冰箱保存待用。在CottonFGD數據庫中,下載GHWAT1-35基因CDS序列。以反轉錄合成的cDNA作為PCR模板,進行PCR擴增,擴增產物用1%瓊脂糖凝膠電泳檢測擴增條帶的特異性。
1.2.2 生物信息學
利用ExPAXSy-ProtParam在線工具(https://web.expasy.org/protparam/)對目的蛋白GHWAT1-35的理化性質進行分析,并使用TMHMM-2.0(https://services.healthtech.dtu.dk/services/TMHMM-2.0/)和SignaIP(https://services.healthtech.dtu.dk/services/SignalP-6.0/)在線工具對蛋白是否存在跨膜區和信號肽進行預測。使用InterPRO(https://www.ebi.ac.uk/interpro/search/sequence/)對GHWAT1-35蛋白的功能結構域進行預測。使用NCBI網站BlastP工具對GHWAT1-35進行分析,得到多個物種的WAT1同源蛋白序列,利用GeneDoc軟件進行氨基酸序列比對,利用MEGA5軟件構建系統發育進化樹。運用PSIPRED(http://bioinf.cs.ucl.ac.uk/psipred/)和SWISS-MODEL(https://swissmodel.expasy.org/interactive)同源建模方法預測分析蛋白質的二級和三級結構。利用WoLF PSORT網站(https://wolfpsort.hgc.jp/)進行亞細胞定位預測。使用PlantCARE(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/)在線網站預測GHWAT1-35的啟動子順式作用元件。
1.2.3 GHWAT1-35實時熒光定量表達
以系9開花后0、5、10、15、20、25和30 DPA的纖維組織為材料,提取總RNA后反轉錄得到cDNA。以棉花GhUBQ7作為熒光定量的內參基因,設計qRT-PCR引物,根據ChamQ Universal SYBR qPCR Master Mix(Vazyme)說明書進行qRT-PCR。采用2-ΔΔct法計算基因相對表達量[16],并用GraphPad Prism 9繪圖。
1.2.4 融合表達載體的構建
使用EcoRI和SpeI限制性內切酶對pC1300-35S-YFP載體進行雙酶切,并使用ClonExpress II One Step Cloning Kit同源重組試劑盒,將目的片段GHWAT1-35構建至線性化的pC1300-35S-YFP載體中,獲得的重組產物轉化至大腸桿菌(DH5α)感受態細胞[17]。挑取重組反應轉化平板上的單克隆進行菌落PCR瓊脂糖凝膠電泳檢測,將條帶大小符合的產物送至上海生工生物有限公司進行測序,獲得重組質粒pC1300∷35S-GHWAT1-35-YFP,在驗證正確的菌液中加入50%的甘油,置-80℃冰箱保存備用。
活化凍存的農桿菌(GV3101)感受態細胞,通過質粒液氮凍融法將重組質粒pC1300∷35S-GHWAT1-35-YFP轉化至農桿菌感受態細胞中[18],將菌液涂布于含卡那和利福平霉素抗生素的LB固體培養基上,28℃暗培養,待長出單克隆后鑒定陽性克隆,在陽性菌液加入等體積50%的甘油,置于-80℃冰箱保存備用。
將含有重組融合表達載體pC1300∷35S-GHWAT1-35-YFP的農桿菌進行過夜培養后,加入提前制備的懸浮液(10 mmol/L MgCl2、10 mmol/L MES,100 μmol/L AS),室溫下避光靜置3 h,用于后續試驗侵染[19]。
選取4~5葉期長勢好的本氏煙草葉片,用注射器吸取懸浮液,注射到煙草葉片下表皮細胞中[20]。以轉入空載體的煙草葉片作為陰性對照,注射后培養72 h,取樣并使用激光共聚焦熒光顯微鏡觀察葉片中YFP熒光蛋白信號分布[21]。
2 結果與分析
2.1 系9 GHWAT1-35基因的克隆
研究表明,以系9總RNA反轉錄合成的cDNA為模板,利用特異性引物進行PCR擴增得到GHWAT1-35基因。獲得條帶清晰、條帶大小為1125 bp的cDNA片段,擴增產物序列與陸地棉GHWAT1-35基因序列一致,GHWAT1-35基因克隆成功。圖1
2.2 GHWAT1-35基因的生物信息學
研究表明,該蛋白質的分子式為C1842H2900N458O498S25,編碼374個氨基酸,分子量為40.23 kDa,理論等電點為8.74。其中,Gly占氨基酸總數的含量最多(10.3%),14個殘基帶負電荷(Asp+Glu)和24個殘基帶正電荷(Arg+Lys)。不穩定系數為20.03,為穩定蛋白,脂肪系數為68.47。在14位的疏水性值最強為2.367(max),在337位親水性值最強為-2.233(min),親疏水性總平均值為-0.978,屬于親水性蛋白。預測該蛋白共有22個磷酸化位點,其中絲氨酸(Ser)15個,蘇氨酸(Thr)5個,酪氨酸(Tyr)2個。在該蛋白質中存在9個跨膜區,但不存在信號肽。圖2~5
與亞洲棉、雷蒙德氏棉、海島棉、橡膠樹、榴蓮、可可、黃麻的相似性分別為99.73%、98.67%、88.50%、84.2%、82.38%和74.18%。系9 GHWAT1-35蛋白與亞洲棉和雷蒙德氏棉的親緣關系較近,與黃麻、可可親緣關系較遠。該蛋白質序列中存在2個EamA保守結構域,分別位于第16~第148和第184~第322氨基酸處,屬于EamA like轉運蛋白家族。在二級結構中,α螺旋占52.14%,β轉角占3.74%,無規則卷曲占25.13%,延伸鏈占18.98%。圖6~10
GHWAT1-35擁有CGTCA-motif(參與MeJA反應的順式調節元件)、MBS(MYB結合位點,干旱誘導響應元件)、GT1-motif(光響應元件)、P-box(赤霉素響應元件)、ARE(厭氧誘導所必需的順式調節元件、O2-site(玉米醇溶蛋白代謝調節的順式作用元件)等順式作用元件。表1
2.3 "GHWAT1-35基因表達
研究表明,檢測基因在開花后0、5、10、15、20、25和30 DPA的纖維組織的表達水平。在開花后不同時期的纖維組織中,該基因均有表達,并且在第15、20 DPA的表達量相對較高,具有顯著差異。GHWAT1-35基因可能在棉花胚珠及纖維發育中發揮重要作用。圖11
2.4 亞細胞定位
研究表明,推測GHWAT1-35蛋白定位于細胞質膜。將構建的GHWAT1-35基因與pC1300-35S-YFP載體重組,并將其瞬時轉化到煙草細胞中,該基因在細胞核中無表達,呈現光滑的連續信號,可能定位于細胞膜。加膜marker共同注射后觀察,加入膜marker并進行質壁分離后,35S∷GhWAT1-35-YFP信號和mCherry的紅色信號一樣質壁分離后內縮進胞內;而未質壁分離時35S∷GhWAT1-35-YFP信號和mCherry信號基本吻合。GhWAT1-35定位于細胞質膜。圖12
3 討 論
3.1
WAT1蛋白是植物生長素運輸的關鍵蛋白,生長素在促進木質素纖維分化過程中起到重要作用[7, 22,23]。研究從系9中克隆到GHWAT1-35基因,全長1 125 bp,編碼374個氨基酸。陸地棉WAT1蛋白與亞洲棉、雷蒙德氏棉中的WAT1蛋白高度同源,其與亞洲棉相似度最高。WAT1蛋白含有EamA保守結構域,含有該結構域的蛋白可能具有內在膜蛋白的生物特性[24]。擬南芥WAT1蛋白參與生長素的運輸,維持植物體內生長素的動態平衡。擬南芥WAT1突變體莖中生長素轉運受阻,生長素含量降低,莖部纖維次生細胞壁厚度降低。而噴施外源生長素后,WAT1突變體可生長素運輸和次生壁厚度恢復到正常水平。香蕉MaWAT1s基因在不同組織器官和亞細胞的表達均存在差異,在不同時期噴施生長素后的MaWATs表達量顯著高于對照組。在棉花和番茄中同時瞬時WAT1同源基因可增強植株對黃萎病的抗性[25]。說明WAT1蛋白在不同物種和組織中可能具有不同的功能[26, 27],基因結構對基因編碼蛋白的進化和功能具有重要影響[28]。
3.2
棉花纖維發育大致可分為4個相互重疊的時期:起始、伸長、次生壁加厚、脫水成熟[29]。棉纖維的伸長始于開花期,而絨毛纖維的伸長始于開花后5~10 d,生長時間持續約20 d。棉纖維次生壁加厚階段是發育的關鍵時期,始于棉花開花后15 d,在這一階段,細胞主要合成并沉積纖維素[30]。分析發現GHWAT1-35在纖維發育的各個時期均有表達,但其在不同時期表達量具有差異性,在15、20 DAP表達量顯著高于其他時期。
GHWAT1-35基因定位于細胞質膜上,與前人研究擬南芥At1g01070基因的亞細胞定位結果一致[8]。
4 結 論
克隆陸地棉系9 GHWAT1-35基因,GHWAT1-35的CDS區序列全長為1125bp,編碼374個氨基酸,為穩定親水性蛋白。GHWAT1-35的序列上有兩個EamA保守結構域,無信號肽。系9GHWAT1-35基因在開花后15和20 DAP的表達量顯著高于其他時期,其在纖維發育中發揮重要作用。pC1300∷35S-WAT-YFP融合蛋白定位于細胞質膜上。
參考文獻(References)
[1]喻樹迅, 范術麗, 王寒濤, 等. 中國棉花高產育種研究進展[J]. 中國農業科學, 2016, 49(18): 3465-3476.
YU Shuxun, FAN Shuli, WANG Hantao, et al. Progresses in research on cotton high yield breeding in China[J]. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476.
[2] 丁玉, 何安華, 汪麗華. 我國棉花產業供求現狀與趨勢[J]. 重慶社會科學, 2012,(7): 80-85.
DING Yu, HE Anhua, WANG Lihua. The current situation and trend of the supply and demand of the cotton industry[J]. Chongqing Social Sciences, 2012,(7): 80-85.
[3] 郭三堆, 王遠, 孫國清, 等. 中國轉基因棉花研發應用二十年[J]. 中國農業科學, 2015, 48(17): 3372-3387.
GUO Sandui, WANG Yuan, SUN Guoqing, et al. Twenty years of research and application of transgenic cotton in China[J]. Scientia Agricultura Sinica, 2015, 48(17): 3372-3387.
[4] Busov V B, Johannes E, Whetten R W, et al. An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein[J]. Planta, "2004, 218(6): 916-927.
[5] Ranocha P, Denancé N, Vanholme R, et al. Walls are thin?1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers[J]. The Plant Journal, "2010, 63(3): 469-483.
[6] Mitsuda N, Iwase A, Yamamoto H, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J]. The Plant Cell, 2007, 19(1): 270-280.
[7] Ranocha P, Dima O, Nagy R, et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis[J]. Nature Communications, 2013, 4: 2625.
[8] 彭方林. 擬南芥類結瘤素基因At1g01070的表達模式及功能的初步研究[D]. 新鄉: 河南師范大學, 2015.
PENG Fanglin. Preliminary Study on Expression Pattern and Function of Nodoid Gene At1g01070 in Arabidopsis thaliana[D].Xinxiang: Henan Normal University, 2015.
[9] Ju F Y, Liu S D, Zhang S P, et al. Transcriptome analysis and identification of genes associated with fruiting branch internode elongation in upland cotton[J]. BMC Plant Biology, 2019, 19(1): 415.
[10] Tang Y, Zhang Z N, Lei Y, et al. Cotton WATs modulate SA biosynthesis and local lignin deposition participating in plant resistance against Verticillium dahliae[J]. Frontiers in Plant Science, 2019, 10: 526.
[11] 王海霞, 崔大勇. 陸生植物生長素合成的主要途徑及調控[J]. 生物學教學, 2015, 40(9): 2-5.
WANG Haixia, CUI Dayong. Main ways and regulation of auxin synthesis in terrestrial plants[J]. Biology Teaching, 2015, 40(9): 2-5.
[12] 賀新強, 崔克明. 植物細胞次生壁形成的研究進展[J]. 植物學通報, 2002,(5):513-522.
HE Xinqiang, CUI Keming. Progress in study of secondary wall formation in plants[J]. Chinese Bulletin of Botany, 2002,(5):513-522.
[13] Hanika K, Schipper D, Chinnappa S, et al. Impairment of tomato WAT1 enhances resistance to vascular wilt fungi despite severe growth defects[J]. Frontiers in Plant Science, 2021, 12: 721674.
[14] 劉嘉鵬, 屈蒙蒙, 孫雪麗, 等. 香蕉WAT1基因的鑒定及表達分析[J]. 果樹學報, 2020, 37(5): 645-658.
LIU Jiapeng, QU Mengmeng, SUN Xueli, et al. Identification and expression analysis of WAT1 genes in banana[J]. Journal of Fruit Science, "2020, 37(5): 645-658.
[15] Ladwig F, Stahl M, Ludewig U, et al. Siliques are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques[J]. Plant Physiology, 2012, 158(4): 1643-1655.
[16] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
[17] 孔佑賓, 王冰, 張華, 等. 植物蛋白融合HA標簽通用載體構建與應用[J]. 中國農業科技導報, 2017, 19(6): 131-137.
KONG Youbin, WANG Bing, ZHANG Hua, et al. Construction and amplification of protein fusion HA tag universal expression vector in plant[J]. Journal of Agricultural Science and Technology, 2017, 19(6): 131-137.
[18] 張邊江, 陳全戰. 質粒導入不同種農桿菌凍融法的探討[J]. 湖北農業科學, 2007, 46(3): 329-331.
ZHANG Bianjiang, CHEN Quanzhan. Study on the freeze-thaw method of transforming plasmid DNA into two different Agrobacterium tumefaciens[J]. Hubei Agricultural Sciences, 2007, 46(3): 329-331.
[19] 馬春泉, 孫培琳, 李海英. BvM14-GAI基因的克隆及亞細胞定位[J]. 中國農學通報, 2020, 36(16): 28-33.
MA Chunquan, SUN Peilin, LI Haiying. BvM14-GAI gene: cloning and subcellular localization[J]. Chinese Agricultural Science Bulletin, 2020, 36(16): 28-33.
[20] 孫蔓莉, 孟玉玲, 張強, 等. 農桿菌介導的煙草瞬時表達影響因素研究[J]. 西北農業學報, 2015, 24(1): 161-165.
SUN Manli, MENG Yuling, ZHANG Qiang, et al. Optimization of Agrobacterium-mediated transient assay of gene expression in Nicotiana tobacum[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(1): 161-165.
[21] Nelson B K, Cai X, Nebenführ A. A multicolored set of in?vivo organelle markers for co-localization studies in Arabidopsis and other plants[J]. The Plant Journal, "2007, 51(6): 1126-1136.
[22] 李濯雪, 陳信波. 植物誘導型啟動子及相關順式作用元件研究進展[J]. 生物技術通報, 2015, 31(10): 8-15.
LI Zhuoxue, CHEN Xinbo. Research advances on plant inducible promoters and related Cis-acting Elements [J]. Biotechnology Bulletin, "2015, 31(10): 8-15.
[23] Farquharson K L. Probing the role of auxin in wood formation[J]. The Plant Cell, "2008, 20(4): 822.
[24] Sousa C, Johansson C, Charon C, et al. Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex[J]. Molecular and Cellular Biology, 2001, 21(1): 354-366.
[25] 王晶晶. 棉花類結瘤素基因GhMtN21-31棉花黃萎病抗性中的功能研究[D].南京:南京農業大學, 2022.
WANG Jingjing. Functional analysis of a nodulin-like gene ghmtn21-31 in cotton resistance against verticillium wilt [D]. Nanjing: Nanjing Agricultural University, 2022.
[26] 邢浩然, 劉麗娟, 劉國振. 植物蛋白質的亞細胞定位研究進展[J]. 華北農學報, 2006, 21(S2): 1-6.
XING Haoran, LIU Lijuan, LIU Guozhen. Advancement of protein subcellular localization in plants[J]. Acta Agriculturae Boreali-Sinica, "2006, 21(S2): 1-6.
[27] 張松, 夏學峰, 沈金城, 等. 基于序列保守性和蛋白質相互作用的真核蛋白質亞細胞定位預測[J]. 生物化學與生物物理進展, 2008, 35(5): 531-535.
ZHANG Song, XIA Xuefeng, SHEN Jincheng, et al. Eukaryotic protein subcellular localization prediction based on sequence conservation and protein-protein interaction[J]. Progress in Biochemistry and Biophysics, 2008, 35(5): 531-535.
[28] 謝宏, 李舒文, 董迪, 等. 蒺藜苜蓿MtDWF1基因克隆、亞細胞定位及表達特征分析[J]. 草地學報, 2023, 31(4): 984-991.
XIE Hong, LI Shuwen, DONG Di, et al. Cloning, subcellular localization and expression pattern of MtDWF1 gene in Medicago truncatula[J]. Acta Agrestia Sinica, 2023, 31(4): 984-991.
[29] Mansoor S, Paterson A H. Genomes for jeans: cotton genomics for engineering superior fiber[J]. Trends in Biotechnology, 2012, 30(10): 521-527.
[30] 上官小霞, 曹俊峰, 楊琴莉, 等. 棉花纖維發育的分子機理研究進展[J]. 棉花學報, 2022, 34(1): 33-47.
SHANGGUAN Xiaoxia, CAO Junfeng, YANG Qinli, et al. Research progress on the molecular mechanism of cotton fiber development[J]. Cotton Science, 2022, 34(1): 33-47.
Cloning and subcellular localization of the GHWAT1-35 gene in Gossypium hirsutum
Abstract:【Objective】 To explore the role of GHWAT1-35 gene in the development of cotton fibers.
【Methods】 "In this study, the fiber at different developmental stages post-anthesis of Gossypium hirsutum variety Xi9 were used as materials.The full-length cDNA sequence of the GHWAT1-35 gene was successfully cloned and subjected to bioinformatics analysis, real-time fluorescence quantitative (qRT-PCR) analysis, and subcellular localization.
【Results】 "The length of the GHWAT1-35 gene was 1125 bp, encoding 374 amino acids, with a relative molecular weight is 40.23 kDa and a theoretical isoelectric point of 8.74.Protein multiple sequence alignment and construction of a systematic evolutionary tree analysis showed that the GHWAT1-35 protein was most closely related to the Gossypium arboreum.The expression of the GHWAT1-35 gene significantly increased at 15 days after flowering, and subcellular localization predicted that the protein was located on the cytoplasmic membrane.The GHWAT1-35 gene was recombined with the pCAMIA1300-35S-YFP vector to construct a fusion expression vector, which was then transformed into Agrobacterium using the freeze-thaw method and after being injected into tobacco.The GHWAT1-35 protein was observed to be located on the cytoplasmic membrane.
【Conclusion】 The GHWAT1-35 gene plays an important role in fiber development, providing a foundation for further exploration of its biological function in Gossypium hirsutum.
Key words:Gossypium hirsutum; WAT1; gene cloning; bioinformatics; subcellular localization