








摘" "要:古生代以來,西秦嶺地區經歷了復雜地質演化過程,本文對5件古生—中生代碎屑巖樣品進行磷灰石裂變徑跡年代學分析,以反演西秦嶺地區經歷的構造熱事件。磷灰石的裂變徑跡年齡分199~155 Ma、94~64 Ma兩組,西秦嶺地區經歷的4個階段熱演化:第一階段(200~120 Ma)反映了侏羅紀華南、華北板塊的俯沖-碰撞事件;第二階段(120~65 Ma)反映了白堊紀一次較快的冷卻事件;第三階段(65~20 Ma)反映了古近紀青藏高原東北部隆升活動;第四階段(20 Ma至今)反映了中新世青藏高原向NE向的增生作用。
關鍵詞:青藏高原東北緣;西秦嶺;裂變徑跡;磷灰石;熱演化史
西秦嶺位于昆侖-祁連-秦嶺中央造山帶中段,北部為華北板塊,南部為松潘-甘孜濁積巖地體,中—晚三疊世阿尼瑪卿-勉略古特提斯洋碰撞閉合后,西秦嶺進入陸內演化階段,直至新生代印度板塊與歐亞板塊碰撞匯聚,使西秦嶺卷入青藏高原構造系統[1-8]。磷灰石等礦物裂變徑跡低溫熱年代學分析技術日趨成熟,巖石時間-溫度熱演化歷史可提供地表至下地殼演化的關鍵信息,在地質熱事件及地質熱演化歷史反演的研究中取得了很多新進展[9-11]。本文對西秦嶺地區陽坡-大草灘一線的古生—中生代中-細碎屑巖典型樣品開展磷灰石裂變徑跡分析,探討西秦嶺地區經歷的地質熱事件、隆升剝蝕過程及熱演化歷史。
1" 地質背景與采樣
秦嶺造山帶是中二疊—中侏羅世華北、華南板塊碰撞形成的,徽成盆地、佛坪穹隆將其分為東秦嶺和西秦嶺造山帶[12-15]。西秦嶺造山帶西面以共和盆地與東昆侖及柴達木毗連,北面與祁連-北秦嶺造山帶相鄰,南面以阿尼瑪卿-勉略縫合帶為界,東面以寶成鐵路為界與東秦嶺相連[1,6-7]。西秦嶺造山帶自北向南包括中秦嶺隆起、洮河坳陷和白龍江隆起3個次級構造單元(圖1)[3,16-18]。中秦嶺隆起下伏元古界變質基底,與上古生界海相地層覆蓋的揚子板塊基底相似;洮河坳陷主要由濁積巖組成,其時代存在爭議,范圍從早三疊世至晚三疊世;白龍江隆起下伏元古界綠片巖相變質基底,上覆古生界沉積蓋層[16-17]。太古宙—古元古代(3.0~2.6 Ga)西秦嶺基底形成以來,歷經商丹原特提斯洋、阿尼瑪卿-勉略古特提斯洋的演化,三疊紀阿尼瑪卿-勉略古特提斯洋盆關閉,歷經南側古、中、新特提斯洋盆演化的影響,直至新生代印度板塊持續向北俯沖造成西秦嶺地區的陸內變形和青藏高原東北部的隆升[2-3,19-20]。
研究區處于青海、四川、甘肅三省交界處,位于西秦嶺中部,主要沿陽坡郭家山組-大草灘組一線剖面開展野外調查。郭家山組主要由粉砂質板巖和粉砂巖組成,另有砂巖和灰巖構成的復理石沉積建造,沉積特征表明其屬陸棚內緣斜坡相和陸棚邊緣盆地相[21]。大草灘組為一套紫紅色陸相碎屑巖建造,其鋯石206Pb/238U年齡為405~375 Ma [22]。本文采集5件古生—中生代碎屑巖樣品,每件樣品重量均大于2 kg,以保證樣品分析時能分選出足夠數量的磷灰石顆粒(表1,圖2)。
2" 磷灰石裂變徑跡分析方法
對所有樣品磨制探針薄片,在徠卡顯微鏡下進行巖礦鑒定(圖2)。將樣品粉碎研磨至60目,運用常規方法對粉碎研磨后的樣品進行粗選及自然晾干,然后運用磁選法、常規重液分離法及介電選等手段,結合雙目鏡分選提純,每件樣品精選出磷灰石單礦物超100粒。
將磷灰石顆粒鑲嵌在環氧樹脂上,研磨和拋光,露出顆粒內表面。在21 ℃下將磷灰石顆粒用5.5 M HNO3溶液刻蝕20 s,以揭示礦物自發徑跡,達到利用專業光學顯微鏡可觀測的程度,用CN-5標準鈾玻璃測定磷灰石顆粒的中子注量。將低鈾白云母作為外探測器與礦物一同放入核反應堆進行輻照,后將外探測器拆下,在25 ℃下用40%HF溶液蝕刻20 min,以揭示出礦物誘發徑跡。在徑跡分析中,選擇平行c軸的柱面,用AUTOSCAN系統測量自發徑跡和誘發徑跡密度,以及水平圍限徑跡長度[23-24],年齡通過IUGS推薦的標準裂變徑跡方程和Zeta常數標定法計算[25]。
本文磷灰石裂變徑跡分析測試在中國科學院高能物理研究所完成,實驗獲得磷灰石Zeta常數為353±18 a/cm2。據Galbraith檢測法數理統計參數χ2值進行判別所測單顆粒是否屬同一年齡組[26],利用礦物單顆粒自發和誘發裂變徑跡數計算P(χ2),若P(χ2)≥5%,表示礦物顆粒屬同一年齡組,其表觀年齡用池年齡表示,指示某一特定地質熱事件[27-28];若P(χ2)lt;5%,表示礦物顆粒屬混合年齡組,其表觀年齡用中心年齡表示 [29]。
3" 磷灰石裂變徑跡熱年代學
3.1" 實驗測試結果
磷灰石裂變徑跡年齡為(199±16)~(64±5)Ma(表2)。利用Radial Plotter軟件對磷灰石裂變徑跡年齡進行分析(圖3),樣品X-11-2、X-11-3、X-11-6的P(χ2)≥5%,屬同一年齡組,具單個年齡峰值;樣品X-11-4、X-11-7的P(χ2)<5%,屬混合年齡組,可反映物源區信息。
磷灰石裂變徑跡平均長度為(12.0±1.8)~(12.7±1.6) μm,變化范圍相對較窄,長度值偏小,表明樣品在磷灰石裂變徑跡部分退火帶溫度區間內停留時間較長,部分樣品裂變徑跡長度分布呈雙峰型,具兩個相對集中區間,代表發生過熱重疊。此外只有樣品X-11-4測試的磷灰石顆粒數目小于20粒,其余樣品均大于20粒。所有樣品圍限徑跡測試條數均超過50條,表明樣品數據質量較好。
3.2" 西秦嶺地區隆升與剝蝕恢復結果
新近紀西秦嶺研究區海拔高度約2 500 m,由于樣品磷灰石裂變徑跡年齡較大(≥39 Ma),因此取古地表高程為1 500 m[1,30-31]。隆升量U計算公式如下[32]:
[U=ΔH+D+Δs.l.]" " " " " " " " " " (1)
式(1)中:ΔH代表現今地表與古地表高程差,D代表剝蝕量,Δs.l.代表海平面變化幅度,磷灰石裂變徑跡封閉溫度對應的埋藏深度等于D+Δs.l.。本文磷灰石裂變徑跡封閉溫度取100 ℃,造山帶平均地溫梯度取35 ℃/km[33],則D+Δs.l.=2 860 m。從而有:
[U=ΔH+2 860]" " " " " " " " " " " (2)
式(2)中:2 860 m代表剝蝕的部分,U代表樣品從磷灰石裂變徑跡封閉溫度冷卻至現今地表溫度的隆升量。隆升速率VU的計算公式如下:
[VU=U/Δt]" " " " " " " " " " " " " (3)
式(3)中:Δt為樣品實測年齡以來發生隆升的時間間隔,即樣品磷灰石裂變徑跡年齡。
取現今地表平均溫度15 ℃,磷灰石封閉溫度(TA)至現今地表溫度(Tsurf)階段冷卻速率Cr(℃/Ma)計算公式如下[34-35]:
[Cr =(TA-Tsurf)/tm]" " " " " " (4)
式(4)中:tm為現今出露地表樣品的年齡,即磷灰石裂變徑跡年齡。剝蝕速率為冷卻速率與地溫梯度比值。
所得樣品平均隆升量為3 927.8 m,平均隆升速率為0.038 mm/a,平均冷卻速率為0.83 ℃/Ma,平均剝蝕速率為0.024 mm/a(表3)。
3.3" 熱反演模擬結果
本文基于多維Markov Chain Monte-Carlo(MCMC)迭代方法,據實驗獲得的磷灰石退火參數,結合研究區地質背景(樣品地層沉積初始年齡與地表溫度),使用動態溫度差值(Temp.offset)或定量最大(最小)溫度差值算法進行有效限定,結合隨機選擇和迭代算法(約100 000次)得到與觀測數據限定的樣品熱史相似的可能模型熱史[36]。一般模擬最終時間與溫度差值評價參數為0.2~0.5,裂變徑跡退火為0.8~0.95,表明所得模型熱史結果較佳[37]。
運用QTQt軟件對研究區P(χ2)≥5%的3件樣品X-11-2、X-11-3、X-11-6進行的熱演化歷史反演,起始溫度定在高于磷灰石裂變徑跡退火帶底部溫度的120 ℃,終止溫度定為西秦嶺現今地表溫度10 ℃。模擬結果顯示:洮河凹陷兩件樣品X-11-2、X-11-3熱史模擬結果類似,在120~65 Ma保持較快冷卻速率(平均冷卻速率約為1.47 ℃/Ma),而在65~20 Ma之后冷卻速率變緩慢(平均冷卻速率為0.22 ℃/Ma)(圖4-a,b);中秦嶺隆起樣品X-11-6在200~105 Ma保持較快冷卻速率(平均冷卻速率約為0.74 ℃/Ma),而在105~20 Ma表現為一次比較平緩的冷卻甚至再加熱過程(平均冷卻速率為-0.08 ℃/Ma)(圖4-c)。3件樣品在約20 Ma后發生一次快速冷卻過程(平均冷卻速率為2.75 ℃/Ma)。
4" 討論
樣品磷灰石裂變徑跡年齡小于所處地層年代,說明樣品經歷了完全退火作用。磷灰石裂變徑跡年齡可分為199~155、94~64 Ma兩組,指示研究區所經歷的地質熱事件。其中199~155 Ma年齡段指示侏羅紀期間金沙江、雙湖古特提斯洋的關閉及班公湖-怒江中特提斯洋底高原的俯沖增生事件;94~64 Ma時間段指示了晚白堊世—古新世發生的一次較快隆升冷卻事件,與班公湖-怒江中特提斯洋盆的關閉有關[16-18,38]。
磷灰石裂變徑跡年齡表現出自北而南、自東而西變小趨勢(圖5-a,b),說明研究區東北部大草灘區域先于西南部陽坡區域發生隆升,這種區域差異性隆升可能是由于白堊紀構造活動的活躍造成[39-40]。研究區磷灰石裂變徑跡年齡與高程呈正相關關系(圖5-c),說明研究區所經歷的長期復雜隆升剝蝕運動是連續且整體的,未遭受其他地質熱事件影響。其中3件大草灘碎屑巖樣品(X-11-4、X-11-6、X-11-7)的裂變徑跡年齡之間存在差異,可能是源區不斷隆升剝蝕過程所致;也可能是該區域整體發生不均勻受力形變,不同部位受力不同,因此導致某些部位活動發生了停滯。
據磷灰石裂變徑跡劃分4個熱演化階段:第一階段(200~120 Ma),侏羅—白堊紀華北、華南板塊發生俯沖、碰撞,古特提斯洋盆閉合,海水退出,最終形成西秦嶺造山帶[3,13,15,41]。其中,中侏羅—早白堊世(約170~135 Ma)可能主要由拉薩地體沿班公-怒江縫合帶與歐亞大陸的碰撞所記錄[37];第二階段(120~65 Ma),早白堊世(120~100 Ma)發生了一次較快的區域性隆升冷卻事件,該事件也被眾多近期研究的AFT數據記錄[4,19,39,42-45],可能與西秦嶺北緣的隆升有關[19,39,42]。此外,該事件在北祁連山、阿爾金山、南祁連山、酒西盆地北緣、天山、西秦嶺乃至整個中國西部地區均有記錄[46-50],因此也可能是由于華北板塊自北而南,揚子板塊自南而北相向朝秦嶺造山帶之下發生陸內俯沖,造成白堊紀秦嶺造山帶區域性陸內造山隆升作用[45-46, 51]。早白堊世該次構造事件可能是新生代構造事件的觸發因素,導致青藏高原東北緣長期處于繼承性巖石圈薄弱帶[46,50]。之后從白堊紀開始一直持續至古近紀(100~65 Ma),鄂爾多斯地體、揚子地塊發生反向旋轉,加之拉薩地體、羌塘地體向NE向推擠,最終形成了現今西秦嶺地質-地貌景觀[6,15,41,52];第三階段(65~20 Ma),顯示出的冷卻降溫過程與阿爾金主斷裂在65~28 Ma的隆升剝露冷卻過程[53],以及祁連山地體在約60~45 Ma的構造剝露事件相對應[46],可能由于新特提斯洋發生閉合,印度板塊向北繼續俯沖,始新世早—中期青藏高原東北部發生了變形及地表隆起[4,39];第四階段(20 Ma至今),中新世時期,青藏高原向NE向的增生作用擴展至西秦嶺北緣地區。東昆侖造山帶擴張及西寧盆地、臨夏盆地和循化盆地的沉陷表明了NE向的擠壓應力,而西秦嶺東段的張性斷陷盆地則代表了NW向拉張應力。這些現象共同證明了在高原整體的擠壓環境下,松潘-甘孜地塊向東擠出的現象。在中新世晚期(~10 Ma),祁連山地區廣泛存在隆升剝露冷卻過程,與北祁連山逆沖斷層構造活動有關[46]。同時,拉脊山地區經歷了明顯的隆升過程,整體地勢上差異不明顯[54-55]。
5" 結論與認識
(1) 磷灰石裂變徑跡年齡分為199~155 Ma、94~64 Ma兩組,反映了三疊紀末以來西秦嶺地區經歷的構造熱事件。
(2) 研究區5件樣品的隆升量分別為3 769 m、" " " 4 154 m、4 132 m、3 942 m、3 642 m,平均隆升量為" " " 3 927.8 m,平均隆升速率為0.038 mm/a。
(3) 據磷灰石裂變徑跡進行熱反演模擬,結果可劃分為200~120 Ma、120~65 Ma、65~20 Ma、20 Ma至今四個階段,分別反映了西秦嶺地區所經歷的四期熱演化歷史。
參考文獻
[1] 甘肅省地質礦產局.甘肅省區域地質志[M].北京:地質出版社,1991:224-287.
[2] 張國偉,孟慶任.秦嶺造山帶的造山過程及其動力學特征[J].中國科學(D輯),1996,26(3):193-200.
[3] 馮益民,曹宣鐸,張二朋,等.西秦嶺造山帶的演化、構造格局和性質[J].西北地質,2003,36(1):1-10.
[4] Yang Z,Shen C B,Ratschbacher L,et al.Sichuan Basin and beyond: Eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau,Qinling,and Daba Shan[J].Journal of Geophysical Research Solid Earth,2017,122(6):4712-4740.
[5] 郭進京,王凱旋,韓文峰,等.西秦嶺臨潭-岷縣-宕昌斷裂帶新生代運動學歷史及動力學分析[J].西北地質,2018,51(3):80-92.
[6] Xiong X,Zhu L,Zhang G,et al.Petrogenesis and tectonic implications of indosinian granitoids from western Qinling orogen,China: Products of magma-mixing and fractionation[J].Geoscience Frontiers,2020,11(4):1305-1321.
[7] Yan Z,Fu C,Aitchison J C,et al.Triassic turbidites in the west Qinling mountains,NW China:Part of the collisional Songpan-Ganzi basin or an active forearc basin?[J].Journal of Asian Earth Sciences,2020(194):104366.
[8] Hao M,Li Y,Wang Q,et al.Present-day crustal deformation within the western Qinling mountains and its kinematic implications[J].Surveys in Geophysics,2020,42(1):1-19.
[9] Ketcham R A,Donelick R A,Carlson W D.Variability of apatite fission-track annealing kinetics;III,Extrapolation to geological time scales[J].American Mineralogist,1999,84(9):1224-1234.
[10] Ketcham R A,Carter A,Donelick R A,et al.Improved measurement of fission-track annealing in apatite using c-axis projection[J].American Mineralogist,2007,92(5-6):789-798.
[11] 田朋飛,袁萬明,楊曉勇.熱年代學基本原理、重要概念及地質應用[J].地質論評,2020,66(4):975-1004.
[12] Meng Q R,Zhang G W.Timing of collision of the north and south China blocks: Controversy and reconciliation[J].Geology,1999,27(2):123-126.
[13] Ratschbacher L,Hacker B R,Calvert A,et al.Tectonics of the Qinling (Central China):Tectonostratigraphy,geochronology,and deformation history[J].Tectonophysics,2003,366(1):1-53.
[14] Craddock W H,Kirby E,Zheng D W,et al.Tectonic setting of Cretaceous basins on the NE Tibetan Plateau:Insights from the Jungong basin[J].Basin Research,2012,24(1):51-69.
[15] Dong Y,Santosh M.Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt,Central China[J].Gondwana Research,2016,29(1):1-40.
[16] Zhang Y X,Tang X C,Zhang K J,et al.U-Pb and Lu-Hf isotope systematics of detrital zircons from the Songpan-Ganzi Triassic ?ysch,NE Tibetan Plateau:Implications for provenance and crustal growth[J].International Geology Review,2014,56(1):29-56.
[17] Zhang Y X,Zeng L,Zhang K J,et al.Late Palaeozoic and early Mesozoic tectonic and palaeogeographic evolution of central China: Evidence from U-Pb and Lu-Hf isotope systematics of detrital zircons from the western Qinling region[J].International Geology Review,2014,56(3):351-392.
[18] Zhang Y X,Zeng L,Li Z W,et al.Late Permian-Triassic siliciclastic provenance,palaeogeography,and crustal growth of the Songpan terrane,eastern Tibetan Plateau:Evidence from U-Pb ages,trace elements,and Hf isotopes of detrital zircons[J].International Geology Review,2015,57(2):159-181.
[19] Lease R O,Burbank D W,Clark M K,et al.Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J].Geology,2011,39(4):359-362.
[20] Wang C S,LI Y,Dai J,et al.Propagation of the deformation and growth of the Tibetan-Himalayan orogen:A review[J].Earth-Science Reviews,2015,143:36-61.
[21] 李通元.基于地質環境下的區域地層研究[J].云南化工,2019,46(9):33-34+38.
[22] 陳義兵,張國偉,裴先治,等.西秦嶺大草灘群的形成時代和構造意義探討[J].沉積學報,2010,28(3):579-584.
[23] Green P F, Duddy I R,Gleadow A,et al.Thermal annealing of fission tracks in apatite 1.a qualitative description[J].Chemical Geology:Isotope Geoscience section,1986(59):237-253.
[24] Gleadow A J W.Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis[J].Contributions to Mineralogy amp; Petrology,1986,94(4):405-415.
[25] Hurford A J,Green P F.A Users' guide to fission track dating calibration[J].Earth amp; Planetary Science Letters,1982,59(2):343-354.
[26] Galbraith R F.On statistical models for fission track counts[J].Journal of the International Association for Mathematical Geology,1981,13(6):471-478.
[27] Burchart J.Evaluation of uncertainties in fission-track dating:Some statistical and geochemical problems[J].Nuclear Tracks Methods Instruments amp; Applications,1981,5(1-2):87-92.
[28] Green P F.A new look at statistics in fission-track dating[J].Nuclear Tracks,1981,5(1-2):77-86.
[29] Galbraith R F,Laslett G M.Statistical models for mixed fission track ages[J].Nuclear Tracks amp; Radiation Measurements,1993,21(4):459-470.
[30] 郭進京,韓文峰,李雪峰.西秦嶺新生代以來地質構造過程對青藏高原隆升和變形的約束[J].地學前緣,2009,16(6):215-225.
[31] 袁萬明,楊志強,張招崇,等.安徽省黃山山體的隆升與剝露[J].中國科學:地球科學,2011,41(10):1435-1443.
[32] England P,Molnar P.Surface uplift,uplift of rocks, and exhumation of rocks[J].Geology,1990,18(12):1173
[33] Pichon X L,Henry P,Goffé B.Uplift of Tibet: From eclogites to granulites-Implications for the Andean Plateau and the Variscan belt[J].Tectonophysics,1997,273(1):57-76.
[34] Zeitler P K,Tahirkheli R,Naeser C W,et al.Unroofing history of a suture zone in the Himalaya of Pakistan by means of fission-track annealing ages[J].Earth amp; Planetary Science Letters,1982,57(1):227-240.
[35] Singh R.Dordrecht: Kluwer academic publishers[J].Geological Journal,1992,26(2):139-147.
[36] Gallagher K.Transdimensional inverse thermal history modeling for quantitative thermochronology[J].Journal of Geophysical Research:Solid Earth,2012,117(B2).
[37] 朱訓璋,劉棟梁,李海兵,等.班公湖-怒江縫合帶東段八宿地區花崗巖體差異性隆升:來自鋯石和磷灰石裂變徑跡證據[J].地質學報,2023,97(10):3252-3264.
[38] Zhang Y X,Jin X,Zhang K J, et al. Newly discovered late Triassic Baqing eclogite in central Tibet indicates an anticlockwise west–east Qiangtang collision[J].Scientific Reports,2018,8(1):19-22.
[39] Zattin M,Wang X.Exhumation of the western Qinling mountain range and the building of the northeastern margin of the Tibetan plateau[J].Journal of Asian Earth Sciences,2019,177(15):307-313.
[40] 王珂,袁萬明,馮星,等.東昆侖埃坑地區磷灰石裂變徑跡年代學及構造意義[J].原子能科學技術,2018,52(1):186-192.
[41] Dong Y,Zhang G,Neubauer F,et al.Tectonic evolution of the Qinling orogen, China:Review and synthesis[J].Journal of Asian Earth Sciences,2011,41(3):213-237.
[42] 鄭德文,張培震,萬景林,等.西秦嶺北緣中生代構造活動的40Ar/39Ar、FT熱年代學證據[J].巖石學報,2004,20(3):697-706.
[43] Enkelmann E,Ratschbacher L,Jonckeere R,et al.Cenozoic exhumation and deformation of northeastern Tibet and the Qinling:Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J].Geological Society of America Bulletin,2006,118(5-6):651-671.
[44] Chen H,Hu J,Wu G,et al.Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China[J].Journal of Asian Earth Sciences,2015,114:649-673.
[45] 楊忠虎,李楠,張良,等.西秦嶺陽山金礦帶成礦熱年代學:鋯石和磷灰石裂變徑跡研究[J].地學前緣,2019,26(5):174-188.
[46] 張懷惠,張志誠,李建鋒,等.青藏高原東北緣中新生代構造演化:來自磷灰石和鋯石裂變徑跡的證據[J].地球物理學報,2021,64(6):2017-2034.
[47] Jolivet M,Brunel M,Seward D,et al.Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints[J].Tectonophysics,2001,343(1-2):111-134.
[48] Pan B T,Li Q Y,Hu X F,et al.Cretaceous and Cenozoic cooling history of the eastern Qilian Shan,north-eastern margin of the T ibetan Plateau:evidence from apatite fission-track analysis.Terra Nova,2013,25(6):431-438.
[49] Yin J,Chen W,Hodges K V,et al.The thermal evolution of Chinese central Tianshan and its implications:Insights from multi-method chronometry.Tectonophysics,2018,722:536-548.
[50] An K,Lin X,Wu L,et al.An immediate response to the Indian-Eurasian collision along the northeastern Tibetan Plateau:Evidence from apatite fission track analysis in the Kuantan Shan-Hei Shan. Tectonophysics,2020,774:228-278.
[51] 沈傳波,梅廉夫,徐振平,等.大巴山中-新生代隆升的裂變徑跡證據[J].巖石學報,2007,23(11):2901-2910.
[52] 亓亮.西秦嶺中新生代的造山作用及隆升[D].中國地質大學(北京),2007.
[53] 孫岳,陳正樂,陳柏林,等.阿爾金北緣EW向山脈新生代隆升剝露的裂變徑跡證據[J].地球學報,2014,35(1):67-75.
[54] 徐增連,駱滿生,張克信,等.青藏高原循化、臨夏和貴德盆地新近紀沉積充填速率演化及其對構造隆升的響應[J].地質通報,2013,32(1):91-104.
[55] 劉善品.青藏高原東北緣新生代隆升的時空演化[D].蘭州大學,2015.
Fission Track Analyses of Detrital Apatite: A Case Study of Jurassic-Cenozoic
Thermal Evolution in the Northeastern Margin of the Qinghai-Tibet Plateau
Wu Jinxu1, Xu Qinqi2, Pan Quanyong2, Yang Peilin3, Jin Xin4
(1.College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing,100049,China;
2.Chin Sinopec Northwest China Petroleum Bureau,Urumqi,Xinjiang,830011,China;
3.College of Petroleum and Natural Gas Engineering,Chongqing University of Science and Technology,Chongqing,401331,China;4.Institute of Intelligent Earth Systems,Department of Ocean Exploration and Technology,
Zhejiang Ocean University,Zhoushan,Zhejiang,316022,China)
Abstract: The West Qinling has experienced a complex geological evolution process since the Paleozoic. In this study, apatite from five clastic rock samples were analyzed to resolve the tectonic thermal events of the West Qinling. The fission track ages of apatite are divided into two groups: 199~155 Ma, 94~64 Ma. The thermal evolution of the West Qinling can be divided into four stages: the first stage (200~120 Ma) reflects the subduction collision events of South China plate and North China plate during the Jurassic; the second stage (120~65 Ma) reflects a rapid cooling event during the Cretaceous; the third stage (65~20 Ma) reflects the uplift activities of the northeastern Tibetan Plateau since Paleogene; the fourth stage (20 Ma to present) reflects the north-eastward thrusting of the Tibetan Plateau during the Oligocene.
Key words: the Qinghai-Tibet Plateau; the West Qinling; Fission track; Detrital apatite; Thermal evolution