999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Novel Clutter Suppression Algorithm for Low-Slow-Small Targets Detecting Based on Sparse Adaptive Filtering

2024-03-18 09:00:06ZeqiYangShuaiMaNingLiuKaiChangXiaodeLyu
Journal of Beijing Institute of Technology 2024年1期

Zeqi Yang, Shuai Ma, Ning Liu, Kai Chang, Xiaode Lyu

Abstract: Passive detection of low-slow-small (LSS) targets is easily interfered by direct signal and multipath clutter, and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper, a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint, and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time, the step size and penalty factor are brought into the adaptive iteration process, and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation, which improves the robustness to parameters such as step size, reduces the weight error of the filter and has a good clutter suppression performance.

Keywords: passive radar; interference suppression; sparse representation; adaptive filtering

1 Introduction

In recent years, the rapid development of small aircraft, such as unmanned aerial vehicles, has brought potential threats to the surveillance of low-altitude areas and air traffic safety, and the research on the detecting, tracking and positioning system of low-slow-small (LSS) targets has gradually become a hot topic [1].The echoes of LSS targets are vulnerable to ground clutter and multipath interference due to their low flying altitude, slow flying speed and small radar cross section (RCS), and the Doppler frequency is small, and the target echo is weak, so it is necessary to detect weak targets in strong clutter environment.It is of great significance to develop the passive detection technology for the efficient detection of LSS targets [2].Passive radar usually uses the third-party non-cooperative radiation sources such as digital television (TV) signals and communication base station signals to detect targets.Illuminators of opportunity are various and widely distributed, which has the advantages of anti-interference, low cost and no occupation of spectrum resources.It is an effective method to detect low-altitude targets by using illuminators of opportunity [3,4].

In the passive radar detection of LSS targets, due to the complex low-altitude environment and the small RCS of targets, the echo of LSS targets is weak, and it is more vulnerable to interference from ground buildings.The echo of coherent targets is covered by direct signal and multipath clutter, which makes it difficult to detect targets.Therefore, clutter suppression before target detection is an important means to improve the detection performance of the system[5].The commonly used clutter suppression algorithm is mainly adaptive filtering algorithm, and the adaptive filter achieves the best filtering performance by iteratively adjusting the coefficients of the filter.Widrow et al.[6] proposed an adaptive filter represented by least mean square(LMS), which suppresses the clutter signal in the received signal through multiple iterations, with slow convergence rate and poor clutter suppression performance; The extensive cancellation algorithm (ECA) and its improved algorithm proposed in [7,8] complete the interference suppression of direct signal by taking the interference signal as an orthogonal projection matrix,which has high computational complexity and is not conducive to practical application.Reference[9] adopts recursive least square (RLS) algorithm, and its convergence rate is restricted by forgetting factor.The frequency-domain block least mean square filter (FBLMS) [10,11] has the characteristics of fast convergence and real-time processing, and has been widely used in clutter suppression of passive radar.However, the traditional LMS algorithm has the contradiction between step size and convergence rate.To solve this problem, many improved adaptive filtering algorithms have been proposed.For example,variable step size LMS algorithm (VSS-LMS).Previous scholars focused on using the error signal in the adaptive process, trying to adjust the step size by using the relationship between the error signal and the step size [12].In recent years, Baydin et al.[13,14] introduced the idea of super-optimization to adjust the step size parameters, optimized the step size while optimizing the model parameters, and incorporated the optimization of the step size parameters into the filtering operation.This method improved the convergence rate and increased the robustness of the algorithm to the selection of initial super-parameters.At the same time, compared with the traditional adaptive filtering algorithm, it does not need additional gradient calculation, and the calculation and storage efficiency are higher.Rubio et al.[15] analyzes the convergence of the supergradient descent algorithm, and the simulation proves its advantages in practice.

In many application scenarios, the radar echo signal is sparse in a certain transform domain.In recent years, inspired by the sparse signal processing theory of compressive sensing, a series of penalty LMS algorithms have appeared,which use norm to add sparsity constraints to the criterion function of updating filter weight coefficients, so that the filter coefficients approach zero and improve the convergence rate of the algorithms, such as ZA-LMS [16], RZA-LMS [17],l0-LMS [18] and so on.This kind of algorithm is affected by random gradient noise in the process of convergence, so fast convergence and small steady-state error cannot be achieved at the same time.When the adaptive process convergences,the algorithm exerts too much attraction on the small coefficient near the zero point, which leads to the increase of the misalignment error.

In this paper, an LSS passive detection system based on sparse adaptive filtering is proposed.Firstly, a hypergradient descentl0-LMS adaptive filtering model with sparse representation is established.Based on the sparsity of the distance dimension of the target after matched filtering, the results of pulse compression operation between reference signal and error signal in iterative process is constrained by sparsity to construct a new cost function.In the iteration, it improves the filter’s weight updating criterion by restricting the sparsity of the target distance dimension, and obtains a purer echo signal.At the same time, the step parameters and balance factors are brought into the adaptive loop process, and the input data is used to drive the adaptive changes of parameters such as step size.Its convergence and steady-state error are analyzed theoretically.Compared with the traditional clutter suppression algorithm, the improved algorithm with sparse super-optimization idea has better clutter suppression performance and stronger robustness to step parameters and input data.Then the range and velocity information of the target is estimated by piecewise range Doppler processing [19,20].

2 Algorithm

2.1 Adaptive Filtering Algorithm for Sparse Representation

The echo signal model received by the surveillance channel of passive radar is defined as

wheres(t) is a direct signal;Ad,Ai,Birepresent signal amplitude;τiandτdirepresent multipath delay and target delay respectively;M1andM2represent multipath number and target number respectively;fdirepresents Doppler frequency of target;ns(t) represents zero mean noise, and is independent of the signal.

The signal received by the reference channel is defined as

whereArrepresents signal amplitude;nr(t) represents zero mean noise of the reference channel.

Direct signal and multipath clutter in echo signals are clutter signals to be cancelled.Passive detection systems based on illuminators of opportunity usually use pulse compression operation to coherently accumulate the echo signals received by the main channel and the direct signal received by the auxiliary channel.The target echo signals obtained after correlation processing are only distributed in a few distance points under ideal conditions, which is sparse.However,the signal intensity of interference such as direct signal and multipath clutter in the echo signal received by the main channel is much greater than the echo signal of the target, so it is necessary to suppress clutter first and establish an adaptive filtering algorithm model with sparse representation.Adaptive filter is shown in Fig.1.

Fig.1 Schematic diagram of adaptive filter

Let the input vector of the filter beS(t)=[Sref(t),Sref(t-1),···,Sref(t-M+1)]Tand the tap weight vector beW? (t)=[w?0(t),w?1(t),···,w?M-1(t)]T.Mis the filter order andtis the response time.The output of the adaptive filter is

In the echo signal, the interference of direct signal and multipath clutter with strong amplitude will affect the detection of LSS targets.Ideally, the pulse compression result |R(τ)| of signale(t) and reference signalSref(t) after the direct signal and multipath clutter are filtered by adaptive filtering in the echo signal has a nonzero value only where the target exists, which is sparse.

whereTis the length of the integration time, *indicates the complex conjugate form of the signal, andτis the time-delay variable in the function.The time-domain data after coherent accumulation of the two signals are constrained by sparsity, and the cost function of the filter is constructed.The cost function of the adaptive clutter suppression algorithm defined in this paper is

whereris the penalty factor,‖*‖0is thel0norm, andnis the discrete time.

l0norm is the number of non-zero elements in the vector.l0norm makes the values of most mutual ambiguity functions converge to zero in the iterative process, thus ensuring the sparsity of the solution.Its numerical solution is NP-hard problem, andl0norm is not derivable.Reference[16] gives the approximate value ofl0norm of a typical sparse system, namely,

whereRi(n) is thei-th pulse compression result attdiscrete time,βis the expansion coefficient.

The approximate value ofl0norm is brought into the cost function of this paper, and it is concluded that

Derivation ofwis

where

Letfβ(Ri(n))be

Update criteria for obtaining weights is

whereμis the step size parameter,κ=μ×ris the balance factor between the constraint term and the estimation error.

By adding sparsity constraint, the adaptive filter can suppress clutter components better.The algorithm is affected by random gradient noise in the convergence process, which makes it impossible to possess both fast convergence and small steady-state error.The convergence rate is related to the step size and the eigenvalue of the input data correlation matrix.When the adaptive process convergences, the algorithm exerts too much attraction on the small coefficient near the zero point, which leads to the increase of the misalignment error.Therefore, based on the idea of super-optimization, this paper iteratively updates the step size parameterμand the penalty factorrin the adaptive loop, and brings the step size and the penalty factor into the filtering operation to obtain information from the data, thus adjusting the super-parameters.Namely,

By adjusting the step size and penalty factor, the convergence rate is not affected by the initial value of step size.And this process can exploit the results of the last iteration without increasing the amount of calculation.If the initial value of the step size is large, the algorithm is iteratively updated with a larger step size to improve the convergence rate of the algorithm.When the step size is close to the steady state,the step size update criterion keeps the step size smaller, and the penalty factor update criterion reduces the constraint on the weight vector near the steady state, thus maintaining a smaller steady-state error.If the initial step size is small,the algorithm will adaptively adjust to the appropriate step size for iteration.

The updated formula of step size parameter and penalty factor is as follows

And weight vector updating formula

In order to reduce the calculation amount of the proposed algorithm, this paper adopts the method of fast calculation in frequency domain,blocks the data and calculates it by fast Fourier transform (FFT).The specific calculation flow is shown as follows.

Algorithm 1 Optimal power allocation algorithm based on Lagrangian dual method ?w0, μ0,r0, α,γ,Initialization: weight vector step size penalty factor hyperparametric learning rate filter order M, k is the k-th block of data Input:diag{FFT[s(kM -M),···s(kM +M -1)]}S(k)=d(k)=[d(kM),···d(kM +M -1)]T ?w0=zeros (2M,1)Adaptive filtering:y(k) [y(kM),···y(kM +M -1)]T =IFFT[S(k) ?W(k)]T=e(k) [e(kM),···e(kM +M -1)]T =d(k)-y(k)=]FFT[0 e(k)E(k)=Step 1:Φ(k) first M elements of IFFT[S*(k)E(k)]=?wξ(k) -2Φ(k)-rfβ(Ri(k))Rss(i),i=0,1,···,M -1=?μξ(k) -?wξ(k)·?wξ(k-1)=?rξ(k) ?wξ(k)μ(k)·fβ(Ri(k-1))Rss(i)=Step 2:μ(k+1) μ(k)+α?ξ(k)·?ξ(k-1)=r(k+1) r(k)-γμ(k)?ξ(k)·fβ(Ri(k-1))Rss(i)=Step 3:?W (k+1) ?W (k)+μ(k+1)FFT]=[Φ(k)0+μ(k+1)r(k+1) FFT[fβ(Ri(k))Rss(i)]·?w(n+1) IFFT[?W (k)]=

2.2 Convergence Analysis

Letε(n)=wopt-w?(n),woptis the optimal weight vector of adaptive filtering, then

When the step size is small, the solution ofε(n+1)can be replaced by the solution after the expectation of the above formula.

Sincefβ(Ri(n))Rss(i) is bounded, the unitary similarity transformation is applied to the correlation matrixR:QHRQ=Λ.WhereQis a unitary matrix, its columns are eigenvectors related to the eigenvalues ofR, and Λ is a diagonal matrix composed of eigenvalues.

Assuming that the step size is very small,the instantaneous value can be used instead of the set average value.

Thus, the convergence condition can be obtained

2.3 Steady State Error Analysis

Su et al.[21] put forward two indexes to evaluate the steady-state performance.

1) Instantaneous mean square deviation(MSD): defined as the square of 2 norm based on the weight error vector, i.e.

2) Excess mean square error (EMSE):

When the step size is small, the cost function of the algorithm will approach a minimum value with the increase ofn.Because the value ofμ(n+1)r(n+1)is small, it is assumed to be close to 0.

Therefore, the steady-state error is related to the upper limit of step size and the eigenvalue of input matrix.Because at this time

Whenn →∞, the steady-state error of the learning curve is

Then

The steady-state MSD is

whereLis the filter length andNis the number of rows of the correlation matrix.

3 Simulation Results

The following simulation analysis is carried out.It is assumed that the echo channel contains the target signal, multipath clutter and direct signal,and the reference channel contains the purified direct signal.The system parameters used in the simulation are shown in Tab.1.The simulation parameters of the echo channel are shown in Tab.2.

Fig.2 shows the time delay-Doppler diagram before clutter suppression, and compares the clutter suppression performance of the proposed algorithm, FBLMS algorithm,l0-LMS algo-rithm, NLMS algorithm, ECA-B algorithm and VSS-LMS algorithm [22].For adaptive filtering algorithms, when the initial step size is large, the step size is set to 5.5×10-3, and the time delaydoppler diagram filtered by several algorithms is shown in Fig.3.

Tab.1 The system parameters used in the simulation

Tab.2 The simulation parameters of the echo channel

Fig.2 Time delay-Doppler diagram without clutter suppression

Fig.3 Time delay-Doppler diagram after clutter suppression: (a) before processing; (b) the proposed algorithm; (c) FBLMS algorithm; (d) l0-LMS algorithm; (e) NLMS algorithm; (f) ECA-B algorithm; (g) VSS-LMS algorithm

As can be seen from Fig.3, when the step size is large, several algorithms can detect strong target.At the same time, the proposed algorithm can also detect weak target, and ECA-B algorithm produced false peaks.The step size of VSS-LMS algorithm changes with the iterative process.In the initial stage, a larger step size is adopted to speed up the convergence, and in the later stage, a smaller step size is adopted to reduce the steady-state error.However, the stability of the algorithm is easily affected by input noise, and the step size range needs to be limited,so there is still a small amount of clutter energy residual after clutter suppression.The SNR of the proposed algorithm, FBLMS,l0-LMS, NLMS,ECA-B and VSS-LMS after clutter suppression are 9.07 dB, 5.32 dB, 7.76 dB, 7.74 dB, 9.02 dB,8.93 dB, respectively.The proposed algorithm has a good clutter suppression effect, and the step change curve at this time is shown in Fig.4.

Fig.4 Step size change curve

When the step size is small, the step size is set to 1×10-6, the clutter suppression performance of several algorithms is shown in Fig.5.FBLMS algorithm,l0-LMS algorithm and NLMS algorithm fail to detect the target, and the noise floor is only reduced by 3 dB compared with the time delay-doppler diagram without clutter suppression.However, the proposed algorithm has sparsity constraints, and the step size is adjusted adaptively in the filtering process, so the clutter suppression effect is better.The noise floor is reduced by 24 dB.The SNR is 10.37 dB after clutter suppression.

At this point, the adaptive change curve of step size as Fig.6.

Fig.6 Step size change curve

By comparing the weights obtained by iteration of the algorithms with the optimal weights,it can be seen from Fig.7 that the proposed algorithm is close to the true values of the weights,and the clutter suppression effect is better.

Fig.7 Comparison between the weights obtained by six algorithms and the optimal weights

Fig.8 is the SNR comparison diagram of the several algorithms before and after clutter suppression.It can be seen that the algorithm in this paper has certain advantages, no matter whether it is a big step or a small step, and the SNR after clutter suppression is the highest.Especially under the condition of small step size, the proposed algorithm can still show good clutter suppression result when other algorithms fail.

Fig.8 Comparison of clutter suppression effects of algorithms with different step sizes

Comparing the computational complexity of the proposed algorithm with other classical algorithms, the proposed algorithm is implemented in frequency domain.It is the same as the highest power of the multiplication times required by FBLMS, and the computational complexity is low.When the filter order isMand the data length isN(M <N), the computational complexity of several algorithms is shown in Tab.3.

Tab.3 Comparison of computational complexity of algorithms

4 Conclusion

The sparse adaptive filtering algorithm proposed in this paper adds sparsity constraint to the cost function and incorporates the step size into the adaptive filtering process, improving the robustness of the traditional clutter suppression algorithm.

Through simulation analysis, compared with the traditional clutter suppression algorithm, the proposed algorithm can use the sparsity of the target in the distance dimension to obtain a purer echo signal, thus achieving better clutter suppression performance.At the same time,through adaptive iteration of the step size and other parameters, the algorithm can enhance the robustness of the input data without increasing the computational complexity.The ability of passive radar to detect LSS targets in strong clutter scenario is improved.


登錄APP查看全文

主站蜘蛛池模板: 亚洲婷婷六月| 久久国语对白| 91精品久久久久久无码人妻| 久久无码av三级| 97青草最新免费精品视频| 国产精品va| 欧美亚洲日韩中文| 国产久操视频| 欧美va亚洲va香蕉在线| 中文字幕人成人乱码亚洲电影| 欧美福利在线观看| 欧美成人影院亚洲综合图| 91亚洲精选| 有专无码视频| 国产成人无码综合亚洲日韩不卡| 中文纯内无码H| 一级爆乳无码av| 国产在线一区视频| 亚洲91精品视频| 麻豆国产原创视频在线播放| 综合久久五月天| 4虎影视国产在线观看精品| 丰满人妻久久中文字幕| 国产一区二区三区精品欧美日韩| 男人的天堂久久精品激情| 免费人成在线观看视频色| 国产va在线| 一级爱做片免费观看久久 | 伊在人亚洲香蕉精品播放| 日韩午夜伦| 久久香蕉国产线看精品| 91久久国产热精品免费| 国产性生大片免费观看性欧美| 色婷婷天天综合在线| 国产精品毛片一区| 国产在线啪| 久久国产精品波多野结衣| 亚洲人成网站日本片| 国产人成网线在线播放va| 久久精品国产亚洲麻豆| 免费全部高H视频无码无遮掩| 欧美自慰一级看片免费| 亚洲大尺码专区影院| 日韩小视频在线观看| 一本大道香蕉中文日本不卡高清二区| 国产成人精品18| 理论片一区| 黄色国产在线| 亚洲精品桃花岛av在线| 国语少妇高潮| 日本精品视频| 在线观看国产精品日本不卡网| 国产精品林美惠子在线播放| 九九视频免费在线观看| 性色一区| 日韩在线1| 伊人丁香五月天久久综合| 国产女人水多毛片18| 国产一级二级在线观看| 夜夜操国产| 国产精品内射视频| 无码中文字幕乱码免费2| 成人午夜精品一级毛片| 色偷偷综合网| 欧美成人午夜影院| 91极品美女高潮叫床在线观看| 在线播放精品一区二区啪视频| 午夜日b视频| 国产本道久久一区二区三区| 伊人久久综在合线亚洲2019| 黄片在线永久| 乱系列中文字幕在线视频| 五月婷婷激情四射| 美女免费黄网站| 亚洲人成成无码网WWW| 99久久精品久久久久久婷婷| 九九这里只有精品视频| 国产精品极品美女自在线看免费一区二区| 亚洲一区二区日韩欧美gif| 国产成人1024精品| 成人中文在线| 美女一级免费毛片|