999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

藍莓不同硬度果實VcPLs基因克隆和功能研究

2024-04-29 00:44:03李曉誼陸曉瑩黃巧玉李永強宗宇徐麗珊郭衛(wèi)東
果樹學報 2024年1期

李曉誼 陸曉瑩 黃巧玉 李永強 宗宇 徐麗珊 郭衛(wèi)東

收稿日期:2023-10-15 接受日期:2023-11-22

基金項目:浙江省農業(yè)新品種選育重大科技專項(2021C02066-9);浙江省科技廳重點研發(fā)計劃項目(2018C02007);浙江省大學生科技創(chuàng)新活動計劃暨新苗人才計劃(2021R404079)

作者簡介:李曉誼,在讀碩士研究生,研究方向為果樹遺傳育種。E-mail:lixiaoyi0328@163.com

*通信作者 Author for correspondence. E-mail:yzong@zjnu.cn;E-mail:xls@zjnu.cn

DOI:10.13925/j.cnki.gsxb.20230427

摘? ? 要:【目的】探究果膠裂解酶基因在藍莓硬肉品種和軟肉品種果實硬度差異中的作用,為選育高硬度藍莓品種提供參考。【方法】以藍莓硬肉品種Star和軟肉品種ONeal不同發(fā)育時期的果實為材料,測定果實硬度、細胞壁物質含量和果膠裂解酶活力,分析比較果肉細胞解剖結構,克隆果膠裂解酶基因并研究其表達模式,轉化番茄驗證VcPL的功能。【結果】S4(膨大期)到S6(紅果期)時期是果實硬度快速下降關鍵時期,果肉細胞在發(fā)育初期細胞壁輪廓清晰,Star果肉細胞出現(xiàn)結構破損的時期晚于ONeal,果實硬度與可溶性果膠含量、果膠裂解酶活力均呈極顯著負相關,VcPL41和VcPL65編碼區(qū)序列長度分別為1230 bp和1209 bp,Star和ONeal中VcPL65氨基酸序列完全相同,VcPL41的序列在品種間有4個氨基酸差異。2個基因在Star中快速上調表達的時期晚于ONeal。超表達VcPL41和VcPL65的番茄果實硬度顯著小于對照組,可溶性果膠含量顯著高于對照組。【結論】藍莓硬肉品種Star和軟肉品種ONeal果實硬度差異受果膠裂解酶活力和可溶性果膠含量影響,VcPL41和VcPL65能夠加速果實成熟軟化進程。

關鍵詞:藍莓;果實硬度;果膠;果膠裂解酶;VcPLs;基因克隆

中圖分類號:S663.9 文獻標志碼:A 文章編號:1009-9980(2024)01-0001-11

Gene cloning and function analysis of VcPLs genes in blueberries with different fruit firmness

LI Xiaoyi1, LU Xiaoying1, HUANG Qiaoyu1, LI Yongqiang1, 2, ZONG Yu1, 2*, XU Lishan1, 2*, GUO Weidong1, 2

(1College of Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; 2Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, Zhejiang, China)

Abstact: 【Objects】 Fruit firmness is an significant classification indicator of fruit quality, which directly affects fruit mechanical harvesting, transportability, storage and processing. This study aimed to explore the function of the pectin lyase genes on fruit firmness between firm-flesh and soft-flesh blueberry cultivars in order to enrich the molecular mechanism of fruit firmness alteration, and to provide a reference for breeding high-firmness blueberry cultivars. 【Methods】 The blueberry fruits at six developmental stages from S3 (fruit setting) to S8 (maturation) of firm-flesh cultivar Star and soft-flesh cultivar ONeal were used as materials for the study. The fruit firmness, cell wall components including cellulose, hemicellulose and soluble pectin were measured. The activity of pectin lyase were analyzed and the correlation between the fruit firmness and physiological and biochemical indicators were calculated. The fruit anatomical structures at six developmental stages were compared between two cultivars with firm and soft flesh. We screened two pectin lyase (PL) genes according to transcript abundance in the fruits at these six stages. The two PL genes were cloned and their expression patterns at six stages were studied using quantification PCR. The functions of VcPLs genes were checked through inducing over-expression in the tomato fruits. 【Results】 The fruit firmness of the two blueberry cultivars showed a downward trend as fruit development. They decreased rapidly from S4 to S6 stages, and then showed a gentle decrease trend. Both Star and ONeal reached the maximum value of fruit firmness at the S4 stage. The critical stage for rapid decline of the fruit firmness happened from stages S4 to S6. At the early stages of the fruit development (S3 and S4), the flesh cells closed to the fruit skin were intact and tightly arranged without structure collapse. The boundary of the flesh cells was clear. The flesh cell structures of ONeal and Star gradually became disordered as the fruit expansion. But the changes occured earlier in the fruits of ONeal than those of Star. The contents of cellulose and hemicellulose generally showed a downward trend during the process of the fruit firmness reduction, and the content of hemicellulose showed few changes both in ONeal and Star. The significant differences of the hemicellulose content were observed only at the S4 and S5 stages between ONeal and Star cultivars. The soluble pectin contents showed an increased trend as the fruit softening progress, which raised quickly from the S5 stage. The upward trend in the fruits of ONeal was greater than those of Star, and the soluble pectin content in the mature fruits of ONeal was significantly higher than that in the Star fruits. The alteration trend of the pectin lyase activity at S3 and S4 stages were similar to the changes pattern of the soluble pectin content. The enzyme activity started to increase from S5 stage, and upward change in the fruits of ONeal was more obvious than those of Star. The correlation analysis results showed that there were extremely significant negative correlations between the fruit firmness, soluble pectin content and pectin lyase activity. The coding sequence lengths of the VcPL41 and VcPL65 were 1230 and 1209 base pairs, respectively. The amino acid sequences of VcPL65 in the fruits of Star and ONeal were the same. But VcPL41 has four amino acid differences between those two cultivars, namely amino acids at positions of 3, 92, 181 and 221, of which the alteration at position of 221 occured in the conserved domain Motif 1. The period of rapid up-regulation expression of the two genes in the fruits of Star was later than those of ONeal. The VcPL41 and VcPL65 genes were induced to express using estradiol from green stage of tomato fruits due to possible perish caused by cell wall construction failure when tomato seedlings were young. The color break time of tomato was earlier in the VcPL41 and VcPL65 overexpression tomato lines than those in the control. In addition, the sepal edges of the fruit in overexpression lines dried up, and this phenotype was more noticeable in the VcPL65 transgenic lines. The fruit firmness of the tomato overexpression lines was significantly smaller than that of the control, and the soluble pectin content was dramatically higher than that of the control. 【Conclusion】The pivotal difference of fruit firmness between the firm-flesh blueberry cultivar Star and the soft-flesh cultivar ONeal occurred at stages S4 to S6. The cell layer near the fruit skin was loose and the intercellular spaces were enlarged during the fruit softening. Both the pectin lyase enzyme activity and the soluble pectin content were increased. The physiological and biochemical indicators closely related to the decrease of fruit firmness showed significant differences between Star and ONeal cultivars. The alteration in the soft-flesh cultivar ONeal were generally earlier and more noticeable than that in the firm-flesh cultivar Star. There was a significant positive correlation between the soluble pectin content and pectin lyase activity and significant negative correlations between the fruit firmness and pectin lyase activity and soluble pectin content. Our results indicated that the VcPL41 and VcPL65 genes probably would have the function of accelerating the fruit softening and ripening process in blueberry.

Key words: Blueberry; Fruit firmness; Pectin; Pectin lyase; VcPLs; Gene cloning

硬度是果實品質分級的重要指標,直接影響果實機械采收、運輸、貯藏加工等過程[1-2]。藍莓(Vaccinium spp.)不同品種的果實硬度存在差異,硬肉品種在機械采收和長距離運輸方面比軟肉品種更有優(yōu)勢[3]。消費者對鮮食藍莓的喜好程度與果實硬度呈顯著正相關[4],高硬度果實有更高的脆度和彈性反饋力[5],更受消費者歡迎,培育高硬度果實品種對藍莓產業(yè)健康可持續(xù)發(fā)展至關重要[3,6]。目前關于藍莓果實硬度的報道集中在采后貯藏環(huán)節(jié)[4,7-8],關于發(fā)育時期果實硬度的報道較少,但越來越多研究表明發(fā)育期具有更高硬度的果實在成熟時傾向于保持其硬度特征[9]。

果實硬度下降與細胞壁結構、組分含量變化密切相關[10-12],植物細胞壁一般由纖維素、半纖維素和果膠組成,隨著果實的發(fā)育、成熟或貯藏時間延長,細胞壁物質水解導致果實軟化[12-13]。已有研究表明果膠甲酯酶(pectin methylesterase,PME)與果實軟化無直接聯(lián)系[14];多聚半乳糖醛酸酶(polygalacturonase,PG)酶活力在硬肉葡萄果實軟化階段幾乎沒有變化[15],沉默PG基因不會改變番茄果實可溶性果膠含量[16]。但在沉默PL基因的番茄果實中,果膠可溶性和解聚度都會受到抑制。多個物種中報道了果膠裂解酶(pectin lyase,PL)參與果實軟化。香蕉(Musa acuminata)和草莓(Fragaria ananassa)果實成熟時期PL酶活力顯著增加[17-18],葡萄(Vitis vinifera)VvPL11在果實發(fā)育期高表達,過表達VvPL11基因的番茄果實相比對照果實硬度降低[15]。沉默SlPL基因可抑制果肉細胞胞間層果膠降解,減緩番茄果實硬度下降[16]。沉默PL基因的草莓(F. ananassa)果實硬度顯著高于對照果實[18]。果膠可溶性變化是藍莓果實軟化的主要原因之一,但其具體機制尚不完全清楚[19]。

筆者課題組前期采用優(yōu)化的方法測定了36個藍莓品種的果實硬度,篩選得到硬肉品種Star和軟肉品種ONeal,2個品種遺傳背景相似(ONeal為Star父本),果實硬度卻存在顯著差異[3],果膠裂解酶基因在果實硬度差異中發(fā)揮的作用尚不清晰。筆者在本研究中測定2個藍莓品種果實不同時期纖維素、半纖維素和果膠含量,比較果實不同發(fā)育時期的果肉細胞,分析細胞壁組分與果實硬度的相關性,基于果膠裂解酶基因全基因組鑒定和不同發(fā)育時期果實轉錄組數(shù)據,筆者課題組篩選到在藍莓不同硬度果實中存在表達豐度差異的2個VcPL基因,克隆VcPLs基因并進行番茄轉基因功能驗證,以期探明VcPL基因在藍莓硬肉品種和軟肉品種果實硬度差異中的作用,豐富果實硬度變化研究機制,為選育高硬度藍莓品種提供參考。

1 材料和方法

1.1 試驗材料

藍莓果實采自浙江師范大學藍莓種質資源圃。隨機選取同一區(qū)組的Star和ONeal藍莓樹各20株,參考沈朱俐等[3]對藍莓果實發(fā)育時期的劃分,依據大小和著色程度篩選6個發(fā)育時期(圖1)的足量(≥150個)果實,室溫條件下放置1 h去除田間熱,去除傷果和病果,選擇果實大小和發(fā)育狀態(tài)相似的100個果實。兩個品種分別隨機取60個果實進行硬度測定,取6個果實用于果肉細胞解剖結構觀察,剩余果實使用液氮速凍后放置在-80 ℃?zhèn)溆谩?/p>

1.2 果實硬度測定

使用Firmtech FT7果實硬度計(UP GmbH Firmensitz,德國),參照沈朱俐等[3]的方法測定藍莓不同發(fā)育時期果實的硬度。測量模式選擇形變閾值模式(Deflection threshold),形變閾值根據果實發(fā)育時期設置為1.0(S3,坐果期;S4,膨大期)和2.0 mm(S5,白綠期;S6,紅綠期;S7,紫果期;S8,成熟期)。將硬度計探頭垂直對準果實赤道面進行測量,使用FT7 Control軟件(UP GmbH Firmensitz,德國)記錄探頭擠壓的反饋質量并計算果實硬度。

1.3 果實解剖結構觀察

將新鮮藍莓果實縱向切開,切取邊長為5 mm左右的帶皮果肉小塊,快速置于FAA固定液中。充分固定后分別用梯度乙醇(75%、85%、95%、兩次100%乙醇)、透明劑、二甲苯浸泡,揮發(fā)二甲苯后使用液體石蠟浸泡兩次。用石蠟包埋果肉樣品,設置厚度6~11 ?m在切片機(Leica Biosystems RM2245)上切片,粘片和脫蠟后進行番紅固綠對染,中性樹膠封片置于顯微鏡下觀察。

1.4 果實細胞壁物質含量和果膠裂解酶活力測定

參考海龍飛等[20]的方法測定纖維素、半纖維素和可溶性果膠含量,使用光譜法試劑盒(蘇州科銘生物公司)測定果膠裂解酶活力,均設置3次生物學重復,使用Microsoft Excel 2021和SPSS 19.0軟件進行圖表制作和數(shù)據分析,采用Duncan新復極差法分析不同品種和發(fā)育時期之間的差異顯著性。

1.5 VcPL基因克隆和表達模式分析

采用改良CTAB法分別提取Star和ONeal藍莓不同發(fā)育時期的果實RNA,利用試劑盒(TaKaRa,大連)反轉錄成cDNA。以Draper藍莓轉錄本序列為模板設計基因克隆引物(表1),采用Oligo Calc檢查引物穩(wěn)定性,PCR擴增產物經割膠回收后連接到pMD-19T載體上,轉化DH5α大腸桿菌,菌液PCR檢測后送擎科生物技術有限公司(杭州,浙江)測序。使用Primer-BLAST設計Quantitative PCR(qPCR)引物(表1),由生工(上海)生物工程有限公司合成。以藍莓VcGAPDH為內參基因進行qPCR,反應體系10 μL包括:2× SYBR Green qPCR premix(TaKaRa,大連)5 μL,cDNA 模板1 μL,上、下游引物(10 μmol·L-1)各 1 μL,雙蒸水7 μL。反應程序為:94 ℃預變性3 min;94 ℃變性30 s,58 ℃退火30 s,72 ℃延伸30 s,30 個循環(huán);循環(huán)結束后 72 ℃ 10 min。每個樣品進行3次生物學重復,使用2?ΔΔCt法計算相對表達量。

1.6 VcPLs誘導表達載體構建

將克隆得到的基因連接到pMD19-T載體,用限制性核酸內切酶XhoⅠ和SpeⅠ(TaKaRa,大連)酶切VcPL-pMD19-T和pER8質粒,獲得相同的雙酶切位點。將目的片段連接到誘導表達載體pER8中,轉化大腸桿菌DH5α,進行菌液PCR和雙酶切驗證,將構建成功的載體轉化農桿菌GV3101。

1.7 VcPL轉基因功能驗證

將Micro-Tom種子進行消毒處理,在培養(yǎng)皿中暗培養(yǎng)3 d后移至光下,光照/黑暗周期為16 h/8 h培養(yǎng)4 d,黑暗和光照條件下的溫度均為24 ℃。將萌發(fā)的幼苗移栽到土壤中,待子葉完全展開后切除,保留2~3 cm下胚軸用于菌液侵染,將1 mL于1.6構建成功的載體轉化農桿菌GV3101菌液分多次滴加在切口平面處。暗培養(yǎng)1 d后進行光照(光照/黑暗為16 h/8 h)培養(yǎng),溫度均為24 ℃;同時以pER8空載為對照進行轉化。切口萌生新植株后提取基因組DNA,利用PCR鑒定轉基因陽性植株用于后續(xù)試驗。

待轉基因陽性植株進入花后20 d,選擇長勢一致、果實大小相似的綠果期番茄,在其果面均勻噴施雌二醇,48 h后觀察表型。使用Firmtech FT7測定番茄果實硬度,參考曹建康等[21]的方法對番茄果實中可溶性果膠進行提取和測定。利用CTAB法提取果實RNA,使用HiScript? Reverse Transcriptase Kit(Vazyme)反轉錄cDNA,以VcPLs基因引物進行qPCR,反應程序、反應體系、相對表達量計算方法同1.5。

2 結果與分析

2.1 不同發(fā)育時期果實硬度變化

2個藍莓品種的果實硬度總體表現(xiàn)為下降趨勢,但S3到S4時期有小幅度上升(圖2)。S4到S6時期果實硬度快速下降,之后降幅趨于平緩。Star和ONeal都在S4時期達到果實硬度最大值,果實硬度分別為1 061.5 g·mm-1和1 207.7 g·mm-1。Star和ONeal在S6時期的果實硬度已經下降到273.4 g·mm-1和227.1 g·mm-1,ONeal降幅遠大于Star。2個品種果實硬度最小值出現(xiàn)在S8時期,分別為217.0 g·mm-1和165.9 g·mm-1。

2.2 不同發(fā)育時期果實解剖結構觀察

對藍莓果實不同發(fā)育時期的果皮和果肉細胞結構進行觀察,結果表明軟肉品種ONeal和硬肉品種Star果肉細胞結構逐漸失序,ONeal中早于Star(圖3)。2個藍莓品種的果實在發(fā)育初期(S3和S4)近果皮處果肉細胞結構完整,排列緊密,細胞壁輪廓清晰。從S5時期開始ONeal果實近果皮處果肉細胞出現(xiàn)結構破損,而Star果實中的細胞結構仍較為完整。在S6到S8時期,大量果肉細胞結構逐漸趨于不完整,失序狀態(tài)嚴重,ONeal比Star更加突出。

2.3 果實細胞壁結構物質含量和果膠裂解酶活力

對果實纖維素、半纖維素、可溶性果膠等細胞壁結構物質含量和果膠裂解酶活力進行了測定,結果表明纖維素和半纖維素含量在果實硬度降低過程中總體均呈現(xiàn)下降趨勢(圖4-A、B)。除S4時期外,2個品種間的纖維素含量存在顯著差異,ONeal纖維素含量(w,后同)最大值在S3時期,為10.0 mg·g-1,Star出現(xiàn)在S4時期,為8.20 mg·g-1;2個品種纖維素含量最小值均出現(xiàn)在S8時期。果實發(fā)育期半纖維素含量變化較小,品種間僅在S4和S5兩個時期存在顯著差異(圖4-B)。可溶性果膠含量隨著果實軟化呈上升趨勢,從S5時期開始快速增加,ONeal漲幅大于Star,最大值分別出現(xiàn)在S7和S8兩個時期,ONeal果實中可溶性果膠含量顯著高于Star(圖4-C)。果膠裂解酶活力在S3和S4兩個時期變化較小,與可溶性果膠含量增加趨勢相似,酶活力從S5時期開始升高,ONeal中趨勢比Star更明顯。果膠裂解酶在ONeal S5到S8時期均保持在較高活力,且顯著大于Star。Star中酶活力從S6時期才開始保持在高水平(圖4-D)。

2.4 果實硬度與細胞壁結構物質含量、果膠裂解酶活力相關性分析

對細胞壁結構物質含量和果膠裂解酶活力與果實硬度進行相關性分析(表2),結果表明,纖維素和半纖維素含量與果實硬度呈顯著或極顯著正相關,相關系數(shù)分別為0.688和0.741。與可溶性果膠含量和果膠裂解酶活力均呈極顯著負相關,其相關系數(shù)分別為-0.742和-0.823,果膠裂解酶活力與果實硬度相關性最顯著。可溶性果膠含量與果膠裂解酶活力呈極顯著正相關,相關系數(shù)為0.727。

2.5 VcPL基因克隆和表達模式分析

克隆得到VcPL41和VcPL65的編碼區(qū)全長序列,長度為1230 bp和1209 bp(圖5),分別編碼409個和402個氨基酸,Star和ONeal中VcPL65氨基酸序列完全相同,VcPL41的序列相似度大于99%。VcPL41的氨基酸序列中包含果膠裂解酶保守結構域Motif 1(WIDH)、Motif 2(DGLIDAIMGSSAITISNNYM)和Motif 3(LVQRMPRCRHGYFHVVNN),在品種間有4個氨基酸差異,分別為第3、92、181和221位的氨基酸,其中第221位氨基酸變化發(fā)生在保守結構域Motif 1中。ONeal中氨基酸分別是蘇氨酸、纈氨酸、天冬氨酸和纈氨酸,在Star對應位置是丙氨酸、異亮氨酸、組氨酸和甲硫氨酸(圖6)。

基因VcPL41和VcPL65相對表達量在Star和ONeal果實發(fā)育期表現(xiàn)為先升高后降低的趨勢(圖7)。2個基因在S3和S4時期表達水平很低,其相對表達量在ONeal中從S5期開始快速增加,在S6期達到最大值,分別為76.1和13.1。Star中2個基因的相對表達量從S6時期快速上升,最大值也在S6時期,分別為85.6和12.1。VcPL41和VcPL65相對表達量在S6時期后下降,VcPL41降幅遠大于VcPL65,但VcPL65的相對表達量在S8時期出現(xiàn)了小幅度增加。

2.6 番茄轉基因功能驗證

構建了VcPL41和VcPL65的過表達載體,遺傳轉化番茄后分別得到10和14株轉基因植株,花后20 d利用雌二醇在番茄綠果中誘導VcPLs基因表達,結果表明VcPL41和VcPL65轉基因番茄果實轉色早于對照組(圖8)。轉基因番茄果實萼片邊緣干枯,且VcPL65轉基因番茄組更明顯(圖8-A)。番茄果實中VcPL41和VcPL65基因顯著上調表達,表明誘導表達效果良好(圖8-B),測定了對照組和轉基因株系番茄果實硬度、可溶性果膠含量,超表達VcPLs基因的番茄果實硬度均顯著小于對照組,可溶性果膠含量均顯著高于對照組,VcPL65表現(xiàn)更突出(圖8-C、D)。

3 討 論

3.1 細胞壁物質對果實硬度的影響

果實細胞壁是由纖維素、半纖維素和果膠為主形成的交聯(lián)結構,多種物質共同維持細胞壁穩(wěn)定[10-13]。葡萄果實開始軟化和著色時,細胞壁邊界逐漸模糊,伴隨著成熟加劇,大量出現(xiàn)細胞壁降解現(xiàn)象[15]。這與本研究結果相似,2個藍莓品種從S5時期開始出現(xiàn)細胞結構的差別,軟肉品種ONeal細胞排列和大小相比硬肉品種Star更加雜亂。果實硬度下降過程中細胞壁物質纖維素和半纖維素逐漸降解,果膠可溶性增強,影響果實硬度的細胞壁物質在不同果實或同類果實不同品種之間存在差異[20,22-23]。共價結合果膠和纖維素是影響蘋果品種秦冠果實硬度的主要組分,而半纖維素和水溶性果膠含量與富士果實硬度密切關聯(lián)[24]。隨著果實硬度的降低,一些蘋果品種水溶性果膠、離子結合型果膠和共價結合型果膠均呈現(xiàn)下降趨勢[25]。原果膠降解和纖維素水解是櫻桃果實軟化的關鍵因素[26],也有觀點認為半纖維素和果膠含量變化是導致硬肉櫻桃和軟肉櫻桃果實硬度差異的主要因素,硬肉櫻桃在全紅期的半纖維素和共價結合型果膠多于軟肉品種,水溶性果膠和離子結合型果膠少于軟肉品種[27]。筆者在本研究中發(fā)現(xiàn),藍莓果實軟化過程中,纖維素含量降低,同時期的2個品種呈現(xiàn)顯著差異;半纖維素含量也表現(xiàn)出逐漸降低的趨勢,但降幅較小,2個品種在S3、S6到S8共4個時期沒有顯著差異。藍莓硬肉品種Star可溶性果膠含量顯著低于軟肉品種ONeal,特別是S5到S8時期,同時期果膠裂解酶活力在品種之間也存在顯著差異,這表明果膠是影響藍莓果實硬度的主要細胞壁物質,與蘋果、櫻桃等果實中的研究結果不完全相同,暗示藍莓果實軟化和硬度差異形成機制可能有其特殊性。

3.2 超表達藍莓VcPL41和VcPL65促進番茄果實軟化

果膠裂解酶通過β?反式消除作用催化降解去甲酯化多聚半乳糖醛酸α?1,4?糖苷鍵,在非還原性末端產生含有不飽和半乳糖醛酸殘基的寡聚糖[28]。已有研究表明,PL主要參與植物花器官發(fā)育、果實成熟軟化、與病原微生物互作等過程[28]。抑制PL基因表達可以提高成熟期草莓果實硬度;在番茄中沉默SlPL基因可以降低可溶性果膠含量,使得采后果實表現(xiàn)出更強的抗病原體和抗腐爛能力[29];MiPel1參與杧果(Mangifera indica)果實成熟過程中的果膠降解從而促進果實軟化[30]。本研究中VcPL41和VcPL65兩個果膠裂解酶基因在果實發(fā)育后期上調表達,軟肉品種ONeal中上調表達早于硬肉品種Star,且VcPL41相對表達量變化大于VcPL65(圖7),VcPL41和VcPL65的差異化表達模式可能是引起藍莓果實硬度差別的原因之一,番茄[29]和歐洲甜櫻桃[27]中果膠裂解酶基因研究結果與本研究結果相似。超表達VcPLs基因的番茄果實比對照果實轉黃更早,還出現(xiàn)了萼片干枯表型,超表達番茄果實中可溶性果膠含量顯著高于對照果實,果實硬度顯著下降。這進一步表明VcPL41和VcPL65基因具有促進果實軟化的功能。

值得注意的是,2個品種VcPL41有4個氨基酸不同,而VcPL65氨基酸序列相同,這暗示VcPL41和VcPL65基因在品種間表達模式的差異很可能是因為受不同轉錄因子調控。果膠裂解酶基因可以響應生長素[28,31]、脫落酸[27]、乙烯[32-33]等植物激素,硬肉品種Star和ONeal果實同一時期的激素含量可能存在差別,導致PL對植物激素不同程度的響應,造成表達模式不同。對于藍莓是否屬于呼吸躍變型尚存在爭議,廣為接受的觀點是藍莓乙烯釋放量有品種特異性,目前已知大部分藍莓品種無乙烯釋放高峰。筆者課題組對Star和ONeal果實乙烯前體物質1-氨基環(huán)丙基-1-羧酸(ACC)的測定初步表明Star和ONeal均為非呼吸躍變型,脫落酸變化趨勢一致且同時期無顯著差異,吲哚乙酸(IAA)在品種間表現(xiàn)為顯著性差異(數(shù)據未發(fā)表)。將來可以使用外源IAA處理藍莓不同發(fā)育時期的果實,揭示生長素及其響應轉錄因子對果膠裂解酶基因的調控作用,進一步闡明藍莓硬肉品種和軟肉品種果實硬度差異的形成機制。

4 結 論

藍莓硬肉品種Star和軟肉品種ONeal果實硬度差異主要發(fā)生在S4到S6時期,近果皮處細胞層松散、細胞間隙增大、果膠裂解酶活力增強、可溶性果膠含量上升等與果實硬度下降緊密關聯(lián)的變化在2個品種間呈顯著差異。ONeal果實中各項變化一般早于Star且更為顯著。可溶性果膠含量與果膠裂解酶活力呈顯著正相關,果實硬度與果膠裂解酶活力和可溶性果膠含量呈顯著負相關,VcPL41和VcPL65能夠加速果實成熟軟化進程。

參考文獻 References:

[1] HU Y N,HAN Z Y,SUN Y Q,WANG S,WANG T,WANG Y,XU K N,ZHANG X Z,XU X F,HAN Z H,WU T. ERF4 affects fruit firmness through TPL4 by reducing ethylene production[J]. The Plant Journal,2020,103(3):937-950.

[2] LI R,SUN S,WANG H J,WANG K T,YU H,ZHOU Z,XIN P Y,CHU J F,ZHAO T M,WANG H Z,LI J Y,CUI X. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato[J]. Nature Communications,2020,11:5844.

[3] 沈朱俐,顧莉莉,李曉誼,李永強,宗宇,徐麗珊,郭衛(wèi)東. 基于形變距離和受壓質量混合模式測定藍莓果實硬度的方法建立和優(yōu)化[J]. 果樹學報,2023,40(1):169-179.

SHEN Zhuli,GU Lili,LI Xiaoyi,LI Yongqiang,ZONG Yu,XU Lishan,GUO Weidong. Foundation and optimization of protocol for blueberry fruit firmness measurement under mix mode of deflection distance and pressure weight[J]. Journal of Fruit Science,2023,40(1):169-179.

[4] GIONGO L,PONCETTA P,LORETTI P,COSTA F. Texture profiling of blueberries (Vaccinium spp.) during fruit development,ripening and storage[J]. Postharvest Biology and Technology,2013,76:34-39.

[5] CAPPAI F,BENEVENUTO J,F(xiàn)ERR?O L,MUNOZ P. Molecular and genetic bases of fruit firmness variation in blueberry:A review[J]. Agronomy,2018,8(9):174.

[6] 劉丙花,孫銳,王開芳,舒秀閣,孫蕾. 不同藍莓品種果實品質比較與綜合評價[J]. 食品科學,2019,40(1):70-76.

LIU Binghua,SUN Rui,WANG Kaifang,SHU Xiuge,SUN Lei. Comparison and comprehensive evaluation of fruit quality of different blueberry (Vaccinium spp.) varieties[J]. Food Science,2019,40(1):70-76.

[7] LOBOS G A,BRAVO C,VALD?S M,GRAELL J,LARA A I,BEAUDRY R M,MOGGIA C. Within-plant variability in blueberry (Vaccinium corymbosum L.):Maturity at harvest and position within the canopy influence fruit firmness at harvest and postharvest[J]. Postharvest Biology and Technology,2018,146:26-35.

[8] MONTECCHIARINI M L,SILVA-SANZANA C,VALDERRAMO L,ALEMANO S,GOLL?N A,RIVADENEIRA M F,BELLO F,V?ZQUEZ D,BLANCO-HERRERA F,PODEST? F E,TRIPODI K E J. Biochemical differences in the skin of two blueberries (Vaccinium corymbosum) varieties with contrasting firmness:Implication of ions,metabolites and cell wall related proteins in two developmental stages[J]. Plant Physiology and Biochemistry,2021,162:483-495.

[9] HUANG B W,HU G J,WANG K K,F(xiàn)RASSE P,MAZA E,DJARI A,DENG W,PIRRELLO J,BURLAT V,PONS C,GRANELL A,LI Z G,VAN DER REST B,BOUZAYEN M. Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes[J]. Nature Communications,2021,12:6892.

[10] ZEPEDA B,OLMEDO P,EJSMENTEWICZ T,SEP?LVEDA P,BALIC I,BALLADARES C,DELGADO-RIOSECO J,F(xiàn)UENTEALBA C,MORENO A A,DEFILIPPI B G,MENESES C,PEDRESCHI R,CAMPOS-VARGAS R. Cell wall and metabolite composition of berries of Vitis vinifera (L.) cv. Thompson Seedless with different firmness[J]. Food Chemistry,2018,268:492-497.

[11] CHEN Y Z,ZHANG S,LIN H T,LU W J,WANG H,CHEN Y H,LIN Y F,F(xiàn)AN Z Q. The role of cell wall polysaccharides disassembly in Lasiodiplodia theobromae-induced disease occurrence and softening of fresh Longan fruit[J]. Food Chemistry,2021,351:129294.

[12] BRUMMELL D A. Cell wall disassembly in ripening fruit[J]. Functional Plant Biology,2006,33(2):103-119.

[13] FORLANI S,MASIERO S,MIZZOTTI C. Fruit ripening:The role of hormones,cell wall modifications,and their relationship with pathogens[J]. Journal of Experimental Botany,2019,70(11):2993-3006.

[14] HUANG W J,CHEN M Y,ZHAO T T,HAN F,ZHANG Q,LIU X L,JIANG C Y,ZHONG C H. Genome-wide identification and expression analysis of polygalacturonase gene family in kiwifruit (Actinidia chinensis) during fruit softening[J]. Plants,2020,9(3):327.

[15] LI W X,HE C,WEI H L,QIAN J K,XIE J N,LI Z Q,ZHENG X B,TAN B,LI J D,CHENG J,WANG W,YE X,F(xiàn)ENG J C. VvPL11 is a key member of the pectin lyase gene family involved in grape softening[J]. Horticulturae,2023,9(2):182.

[16] ULUISIK S,CHAPMAN N H,SMITH R,POOLE M,ADAMS G,GILLIS R B,BESONG T M D,SHELDON J,STIEGELMEYER S,PEREZ L,SAMSULRIZAL N,WANG D D,F(xiàn)ISK I D,YANG N,BAXTER C,RICKETT D,F(xiàn)RAY R,BLANCO-ULATE B,POWELL A L T,HARDING S E,CRAIGON J,ROSE J K C,F(xiàn)ICH E A,SUN L,DOMOZYCH D S,F(xiàn)RASER P D,TUCKER G A,GRIERSON D,SEYMOUR G B. Genetic improvement of tomato by targeted control of fruit softening[J]. Nature Biotechnology,2016,34(9):950-952.

[17] MAR?N-RODR?GUEZ M C,SMITH D L,MANNING K,ORCHARD J,SEYMOUR G B. Pectate lyase gene expression and enzyme activity in ripening banana fruit[J]. Plant Molecular Biology,2003,51(6):851-857.

[18] BALDI P,ORSUCCI S,MOSER M,BRILLI M,GIONGO L,SI-AMMOUR A. Gene expression and metabolite accumulation during strawberry (Fragaria × ananassa) fruit development and ripening[J]. Planta,2018,248(5):1143-1157.

[19] CAPPAI F,AMADEU R R,BENEVENUTO J,CULLEN R,GARCIA A,GROSSMAN A,F(xiàn)ERR?O L F V,MUNOZ P. High-resolution linkage map and QTL analyses of fruit firmness in autotetraploid blueberry[J]. Frontiers in Plant Science,2020,11:562171.

[20] 海龍飛,栗溫新,李志謙,李猛,陳超陽,魏紅麗,鄒東方,何暢,馮建燦,葉霞. 軟/硬肉葡萄果實細胞壁結構、組分及降解酶活性的變化[J]. 果樹學報,2023,40(4):690-698.

HAI Longfei,LI Wenxin,LI Zhiqian,LI Meng,CHEN Chaoyang,WEI Hongli,ZOU Dongfang,HE Chang,F(xiàn)ENG Jiancan,YE Xia. Variations in cell wall microstructure and components and activities of their degradation enzymes in grapes with soft or hard textures[J]. Journal of Fruit Science,2023,40(4):690-698.

[21] 曹建康,姜微波,趙玉梅. 果蔬采后生理生化實驗指導[M]. 北京:中國輕工業(yè)出版社,2007.

CAO Jiankang,JIANG Weibo,ZHAO Yumei. Guidance of postharvest physiological and biochemical experiment of fruits and vegetables[M]. Beijing:China Light Industry Press,2007.

[22] 陳凱莉,許軻,張賢聰,王亞楠,汪志輝,王迅. 果實中果膠代謝相關酶基因的研究進展[J]. 園藝學報,2017,44(10):2008-2014.

CHEN Kaili,XU Ke,ZHANG Xiancong,WANG Yanan,WANG Zhihui,WANG Xun. Advances in genes information involved in pectin metabolism in fruit[J]. Acta Horticulturae Sinica,2017,44(10):2008-2014.

[23] 周鶴瑩,張瑋,張卿,沈元月,秦嶺,邢宇. 森林草莓‘Ruegen果膠裂解酶基因的克隆及熒光定量表達分析[J]. 園藝學報,2015,42(3):455-461.

ZHOU Heying,ZHANG Wei,ZHANG Qing,SHEN Yuanyue,QIN Ling,XING Yu. The cloning and quantitative expression analysis of pectate lyase gene in Fragaria vesca[J]. Acta Horticulturae Sinica,2015,42(3):455-461.

[24] 雷琴,任小林. 秦冠和富士蘋果果實成熟過程中的質地變化特性[J]. 西北農業(yè)學報,2007,16(1):213-216.

LEI Qin,REN Xiaolin. Characteristics of texture change with Qinguan and fuji apples during ripening[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2007,16(1):213-216.

[25] 高滋藝,范獻光,楊惠娟,蔣小兵,楊亞州,趙政陽,黨智宏. 蘋果發(fā)育過程中細胞壁代謝及果肉質地的變化[J]. 食品科學,2016,37(19):70-75.

GAO Ziyi,F(xiàn)AN Xianguang,YANG Huijuan,JIANG Xiaobing,YANG Yazhou,ZHAO Zhengyang,DANG Zhihong. Correlation among cell wall components,related enzyme activities and texture of developing fruits of different apple (Malus×domestica) cultivars[J]. Food Science,2016,37(19):70-75.

[26] 沈穎,李芳東,王玉霞,張序,李延菊,趙慧,張福興. 甜櫻桃果實發(fā)育過程中細胞壁組分及其降解酶活性的變化[J]. 果樹學報,2020,37(5):677-686.

SHEN Ying,LI Fangdong,WANG Yuxia,ZHANG Xu,LI Yanju,ZHAO Hui,ZHANG Fuxing. A study on the variation of cell wall components and activities of their degradation enzymes in sweet cherry during fruit development[J]. Journal of Fruit Science,2020,37(5):677-686.

[27] ZHAI Z F,XIAO Y Q,WANG Y Y,SUN Y T,PENG X,F(xiàn)ENG C,ZHANG X,DU B Y,ZHOU X,WANG C,LIU Y,LI T H. Abscisic acid-responsive transcription factors PavDof2/6/15 mediate fruit softening in sweet cherry[J]. Plant Physiology,2022,190(4):2501-2518.

[28] 陳樂天,王慧婷,韓靖鸞,欒瑩. 植物果膠裂解酶的研究現(xiàn)狀及展望[J]. 華南農業(yè)大學學報,2019,40(5):71-77.

CHEN Letian,WANG Huiting,HAN Jingluan,LUAN Ying. Research progress and perspective of plant pectin lysase[J]. Journal of South China Agricultural University,2019,40(5):71-77.

[29] YANG L,HUANG W,XIONG F J,XIAN Z Q,SU D D,REN M Z,LI Z G. Silencing of SlPL,which encodes a pectate lyase in tomato,confers enhanced fruit firmness,prolonged shelf-life and reduced susceptibility to grey mould[J]. Plant Biotechnology Journal,2017,15(12):1544-1555.

[30] CHOURASIA A,SANE V A,NATH P. Differential expression of pectate lyase during ethylene-induced postharvest softening of mango (Mangifera indica var. Dashehari)[J]. Physiologia Plantarum,2006,128(3):546-555.

[31] DOMINGO C,ROBERTS K,STACEY N J,CONNERTON I,RU?Z-TERAN F,MCCANN M C. A pectate lyase from Zinnia elegans is auxin inducible[J]. The Plant Journal,1998,13(1):17-28.

[32] 田嘉,曾斌,羅淑萍,李秀根,李疆. ‘庫爾勒香梨PsPL基因的克隆與表達分析[J]. 果樹學報,2015,32(6):1012-1019.

TIAN Jia,ZENG Bin,LUO Shuping,LI Xiugen,LI Jiang. Cloning and expression analysis of PsPL gene in‘Korla fragrant pear (Pyrus sinkiangensis Yu)[J]. Journal of Fruit Science,2015,32(6):1012-1019.

[33] 溫波,王亞蘭,何麗麗,張峰,BOON-EK Y,柳士勇. 桃果膠裂解酶編碼基因PpPL1的鑒定及其在果實成熟軟化過程中的表達[J]. 核農學報,2020,34(8):1681-1689.

WEN Bo,WANG Yalan,HE Lili,ZHANG Feng,BOON-EK Y,LIU Shiyong. Identification of peach pectate lyase coding gene PpPL1 and its expression during fruit ripening and softening[J]. Journal of Nuclear Agricultural Sciences,2020,34(8):1681-1689.

主站蜘蛛池模板: 免费看久久精品99| 999国内精品久久免费视频| 国产成人综合网在线观看| 久久亚洲国产最新网站| 国产精品福利导航| 欧美精品啪啪| 自慰网址在线观看| 国产日本欧美在线观看| 国产无码精品在线| 久久精品女人天堂aaa| 国产欧美精品一区二区| 国产理论最新国产精品视频| 91久久偷偷做嫩草影院电| 精品国产aⅴ一区二区三区| 国产日本一线在线观看免费| 成AV人片一区二区三区久久| 亚洲视频一区| 精品国产一二三区| 国产香蕉国产精品偷在线观看| 亚洲资源在线视频| 亚洲视频黄| 丁香六月激情综合| 精品午夜国产福利观看| www.av男人.com| 高清码无在线看| 911亚洲精品| 国产精品专区第一页在线观看| 中文字幕乱妇无码AV在线| 97se亚洲综合在线韩国专区福利| 精品91自产拍在线| 四虎影视永久在线精品| 久久熟女AV| 亚洲欧美精品在线| 秘书高跟黑色丝袜国产91在线 | 欧美综合区自拍亚洲综合天堂| 亚洲香蕉在线| 久久免费视频6| 欧美亚洲一二三区| www成人国产在线观看网站| 国产精品蜜臀| 亚洲精品桃花岛av在线| 这里只有精品国产| 在线免费不卡视频| 高清色本在线www| 直接黄91麻豆网站| 亚洲福利一区二区三区| 久久综合色天堂av| 欧美精品在线观看视频| 欧美一区二区自偷自拍视频| 男人天堂伊人网| 欧美性爱精品一区二区三区 | 综合成人国产| 在线播放精品一区二区啪视频| 亚洲综合专区| 91精品福利自产拍在线观看| av在线无码浏览| 久久综合激情网| 99久久精品免费看国产免费软件| 欧美色图第一页| 亚洲国产成人久久精品软件| 久久免费观看视频| 久久国产精品波多野结衣| 人妻少妇乱子伦精品无码专区毛片| 亚洲无码一区在线观看| 久久久无码人妻精品无码| 在线观看无码av免费不卡网站| 免费毛片全部不收费的| 毛片网站在线看| 亚洲va在线∨a天堂va欧美va| 秋霞国产在线| 亚洲欧美日韩中文字幕一区二区三区| 国产精品天干天干在线观看| 成人一区专区在线观看| 欧美三级视频在线播放| 男女精品视频| 日韩精品欧美国产在线| 亚洲欧美不卡视频| 国产一在线| 久久久久久久蜜桃| 亚洲性一区| 国内视频精品| 日韩精品成人在线|