








收稿日期: 2023-01-13
作者簡介: 聶敏鈴(1999-),女,廣東省肇慶市人,碩士研究生在讀,研究方向:有機化學。
摘""""" 要:用過渡金屬催化炔烴與有機硼試劑的加成反應,經過碳金屬化串聯環化可實現炔烴的不對稱官能團化。其中芳基硼酸因其高親電性、高穩定性和來源廣泛的特點最常被使用。主要綜述了近年來各種過渡金屬催化的炔烴與芳基硼酸的碳金屬化串聯環化反應研究進展。
關" 鍵" 詞:過渡金屬;炔烴;芳基硼酸;碳金屬化;串聯環化
中圖分類號:O621""""""" 文獻標識碼:A"""""" 文章編號:1004-0935(2024)02-0289-05
近年來,利用過渡金屬催化轉化構建碳碳鍵的方法已經被廣泛研究。特別是過渡金屬催化的串聯環化反應,可以從相對簡單的原料出發,使用單一的催化劑,“一鍋法”合成結構復雜的分子,具有效率高、原子經濟性好、對環境保護友好等優點,因此受到許多科研人員的關注[1]。用過渡金屬催化炔烴與有機硼試劑的加成反應,經過碳金屬化串聯環化可實現炔烴的不對稱官能團化。其中芳基硼酸因其具有高親電性、高穩定性和來源廣泛的特點最常被使用[2-4]。在過渡金屬的使用中,主要以鈀[5-11]、銠[12-19]等貴金屬催化為主,后期也逐漸發展了""" 鎳[20-25]、鈷[26]、銅[27]等廉價金屬催化的方法。本文主要從貴金屬催化和廉價金屬催化2個方面綜述近年來過渡金屬催化的炔烴與芳基硼酸碳金屬化串聯環化反應研究進展。
1" 貴金屬催化的炔烴與芳基硼酸碳金屬化串聯環化反應
2012年,陸熙炎[5]課題組報道了鈀(Ⅱ)催化的烯酮-炔與芳基硼酸的對映選擇性芳基化-環化反應,如圖1所示。該反應底物1.1經歷碳鈀化后先形成烯基鈀陽離子中間體1.2,然后發生分子內碳碳雙鍵插入得到中間體1.3,最后質子化得到產物1.4。值得注意的是,該反應是由鈀(Ⅱ)催化循環進行的,不需要金屬鈀進行氧化還原的過程。該反應的底物普適性良好,大部分產率能達到中等及以上水平,且ee值達80%以上,但存在反應時間較長的" 缺點。
2014年,LAM[29]課題組報道了銥催化的炔-酮1.5與芳基硼酸的碳金屬化串聯環化反應(圖2),合成了具有較高立體選擇性的復雜多環化合物。該反應經歷了芳基銥物種與底物1.5碳碳三鍵順式加成得到烯基銥中間體1.6,然后發生1,4-銥遷移得到芳基銥中間體1.7,再對羰基插入得氧銥中間體1.8,最后金屬質解得到產物1.9。值得注意的是,這是報道的首例實現1,4-銥遷移的例子。
2015年,DARSES[13]課題組報道了銠催化的高炔丙胺-烯酸酯1.10與芳基硼酸的碳金屬化串聯環化反應(圖3),合成具有手性的四氫吡咯衍生物1.12。該反應同樣需要經歷芳基銠物種與炔烴的碳金屬化,順式加成得到烯基銠中間體1.11,然后與碳碳雙鍵順式共軛加成并質子化后可得產物1.12,ee值可達89%以上。
2019年,DOU[14]課題組報道了銠催化的芳基炔丙醇1.13與芳基硼酸的碳金屬化串聯環化反應 (圖4),高效合成1,1-二取代茚衍生物1.16。該反應在碳金屬化后經過1,4-銠遷移得芳基銠中間體1.14,進一步與碳碳雙鍵插入后得中間體1.15,最后經過β-氧消除得產物1.16。值得注意的是,在過渡金屬催化中,碳金屬化后涉及β消除和1,4-金屬遷移的競爭反應時,通常發生β消除。這是報道的首例銠催化選擇性1,4-銠遷移β-氧消除的例子。
2020年,HASHIMOTO[19]課題組報道了銠催化的β-炔基酮與芳基硼酸碳金屬化串聯環化反應" (圖5),合成具有3~5個環的芳香化合物。以"""" β-炔基酮1.14-1為例,與苯硼酸1.15-1在銠催化下經過碳金屬化和1,4-銠遷移后得到銠中間體1.18,然后對羰基插入后發生環化、質子化過程得中間體1.19,進一步脫水芳構化后得到產物1.16-1。
2" 廉價金屬催化的炔烴與芳基硼酸碳金屬化串聯環化反應
2016年,LAM[20]課題組報道了1,3-二羰基高丙炔2.1與芳基硼酸的不對稱碳金屬化串聯環化反應(圖6)。該反應在碳金屬化后形成的烯基鎳中間體有Z式2.2和E式2.3兩種構型,順式加成的2.2可進行可逆化的E/Z異構化得反式加成的烯基鎳中間體2.3,插入羰基后質子化得產物2.4,同時環化使二者之間的平衡朝著E異構體的方向發展。值得注意的是,通常碳金屬化得到的是順式加成的產物,這是少有的報道得到反式加成產物的例子。此后,這種碳金屬化E/Z異構化串聯環化的反應模式得到進一步開發。該課題組在2017年發表的鎳催化" (Z)-烯丙基磷酸酯-炔與芳基硼酸的反式不對稱芳基化/環化反應同樣經歷了E/Z異構化串聯環化的過 程[21],合成一系列具有手性的1,4-二烯雜環(圖7)。
2018年鄭建鴻[26]課題組報道了鈷催化的鄰亞胺基芳基硼酸2.9與炔烴的對映選擇性[3+2]環化反應(圖8),合成1-氨基茚衍生物2.12。碳金屬化后形成的亞胺-烯基鈷中間體2.10因配體的苯環與R1基團間存在位阻使R1基團遠離噁唑骨架,所以可從Re面對亞胺進行插入得氮-鈷中間體2.11,金屬質解后得產物2.12。
2019年,CHO[22]課題組報道了鎳催化的酚"" 酯-炔2.13與芳基硼酸的碳金屬化串聯環化反應 (圖9),合成2,3-二取代苯并呋喃衍生物2.16。可能的機理是:順式碳金屬化后得到烯基鎳中間體2.14,然后與酯基插入得中間體2.15,質子化后得到產物2.16。
2020年,葉龍武[27]課題組報道了銅催化的亞 胺-炔酰胺與芳基硼酸的順式碳金屬化串聯環化反應(圖10),合成一系列2,3-二取代吲哚衍生物。該反應在50 ℃甲醇溶液中反應0.5 h即可完成,產率可達98%,底物普適性廣。反應中所使用的底物炔酰胺是一類特殊的炔烴,炔與連有吸電子基的氮原子相連,在路易斯酸的作用下形成高活性的烯酮亞胺中間體,隨后接受多種親核試劑的進攻得到相應的加成產物。該反應經歷了順式碳金屬化后得到烯基銅中間體2.18,碳金屬鍵對亞胺碳原子親核進攻串聯環化得胺基銅中間體2.19,質子化后得到產物2.20。
3" 結束語
過渡金屬催化的炔烴與芳基硼酸碳金屬化串聯環化反應是構建多元碳環、雜環的重要手段。在過渡金屬的使用中,主要以鈀、銠等貴金屬催化為主,近年來也逐漸發展出鎳、鈷、銅等廉價金屬催化的方法。在機理探究中發現,碳金屬化過程主要以順式加成為主,反式加成的例子報道較少,且主要是經歷了E/Z異構化過程。在今后的研究中,廉價金屬催化和反式碳金屬化是2個可發展的方向。
參考文獻:
[1] MIURA T,MURAKAMI M. Formation of carbocycles through sequential carborhodation triggered by addition of organoborons[J]. Chem. Commun.,2007, 217-224.
[2] YOUN S W. Rhodium-catalyzed tandem transformations with organo- boron reagents: sequential multiple C—C bond formations [J]. Eur. J. Org. Chem.,2009, 2597-2605.
[3] YANG X,KALITA S J,MAHESHUNI S,et al. Recent advances on transition-metal-catalyzed asymmetric tandem reactions with organo- boron reagents [J]. Coord Chem Rev, 2019, 392:35-48.
[4] CORPAS J,MAULEóN P,ARRAYáS R G,et al. Transition-metal- catalyzed functionalization of alkynes with organoboron reagents: new trends, mechanistic insights, and applications [J]. ACS Catal. 2021, 11: 7513-7551.
[5] SHEN K,HAN X, LU X. Cationic Pd(II)-catalyzed highly enantio- selective arylative cyclization of alkyne-tethered enals or enones initiated by carbopalladation of alkynes with arylboronic acids [J]. Org. Lett., 2012, 14:1756-1759.
[6] YAO X,SHAO Y,HU M, et al. Palladium-catalyzed cascade reaction of o-cyanobiaryls with arylboronic acids: synthesis of 5-arylidene-7-aryl- 5H-dibenzo[c,e]azepines [J]. Org. Lett.,2019, 21:7697-7701.
[7] XU T,CHENG N,MA Q Q, et al. Pd-catalyzed tandem reaction of 2-aminostyryl nitriles with arylboronic acids: synthesis of 2-arylquinolines [J]. J. Org. Chem., 2019, 84:13604-13614.
[8] XIONG W,HU K,LEI Y X, et al. Palladium-catalyzed cascade reactions of 2-(cyanomethoxy)chalcones with arylboronic acids: selective synthesis of emissive benzofuro[2,3-c]pyridines [J]. Org. Lett., 2020, 22:1239-1243.
[9] YU S,DAI L,SHAO Y, et al. Palladium-catalyzed tandem reaction of epoxynitriles with arylboronic acids in aqueous medium: divergent synthesis of furans and pyrroles [J]. Org. Chem. Front., 2020, 7: 3439-3445.
[10] RAKSHIT A,KUMAR P,ALAM T,et al. Visible-light-accelerated Pd-catalyzed cascade addition/cyclization of arylboronic acids to γ- and β-ketodinitriles for the construction of 3-cyanopyridines and 3-cyanopyrrole analogues [J]. J. Org. Chem.,2020, 85:12482-12504.
[11] CUI S Q,CHENG N,MA Q Q,et al. Palladium-catalyzed direct construction of oxazoline-containing polycyclic scaffolds via tandem addition/cyclization of nitriles and arylboronic acids [J]. Org. Chem. Front., 2022, 9:123-128.
[12] KEILITZ J,NEWMAN S G, LAUTENS M. Enantioselective Rh-catalyzed domino transformations of alkynylcyclohexadienones with organoboron reagents [J]. Org. Lett.,2013, 15:1148-1151.
[13] SERPIER F,FLAMME B,BRAYER J L,et al. Chiral pyrrolidines and piperidines from enantioselective rhodium-catalyzed cascade arylative cyclization [J]. Org. Lett.,2015, 17:1720-1723.
[14] LIU N,YAO J,YIN L,et al. Rhodium-catalyzed expeditious synthesis of indenes from propargyl alcohols and organoboronic acids by selective 1,4-rhodium migration over β-oxygen elimination [J]. ACS Catal.,2019, 9:6857-6863.
[15] SELMANI A,SERPIER F,DARSES S. From tetrahydrofurans to tetrahydrobenzo[d]oxepines via a regioselective control of alkyne insertion in rhodium-catalyzed arylative cyclization [J]. J. Org. Chem., 2019, 84: 4566-4574.
[16] MIWA T,SHINTANI R. Rhodium-catalyzed synthesis of silicon- bridged 1,2-dialkenylbenzenes via 1,4-rhodium migration[J]. Org. Lett., 2019, 21:1627-1631.
[17] SELMANI A, DARSES S. Enantioenriched 1-tetralones via rhodium- catalyzed arylative cascade desymmetrization/acylation of alkynylmalonates [J]. Org. Lett.,2019, 21:8122- 8126.
[18] O’BRIEN L,KARAD S N,LEWIS W,et al. Rhodium-catalyzed arylative cyclization of alkynyl malonates by 1,4-rhodium(I) migration [J]. Chem. Commun., 2019, 55:11366-11369.
[19] LI J,SUN J, HASHIMOTO M. Rhodium(I)-catalyzed arylative annulation of β-alkynyl ketones for preparation of fused aromatics [J]. Eur. J. Org. Chem., 2020, 3:306-310.
[20] CLARKE C,INCERTI-PRADILLOS C A,LAM H W. Enantioselective nickel-catalyzed anti-carbometallative cyclizations of alkynyl electrophiles enabled by reversible alkenylnickel E/Z isomerization [J]. J. Am. Chem. Soc.,2016, 138:8068-8071.
[21] YAP C,LENAGH-SNOW G M J,KARAD S N,et al. Enantioselective nickel-catalyzed intramolecular allylic alkenylations enabled by reversible alkenylnickel E/Z isomerization [J]. Angew. Chem., Int. Ed., 2017, 56:8216-8220.
[22] IQBAL N,IQBAL N, MAITI D,et al. Access to multifunctionalized benzofurans by aryl nickelation of alkynes: efficient synthesis of the anti-arrhythmic drug amiodarone [J]. Angew. Chem., Int. Ed.,2019, 58: 15808-15812.
[23] GREEN H,ARGENT S P, LAM H W. Enantioselective nickel- catalyzed anti-arylmetallative cyclizations onto acyclic ketones [J]. Chem. Eur. J.,2021, 27: 5897-5900.
[24] YAO L,WEI P,YING J, et al. Nickel-catalyzed carbonylative domino cyclization of arylboronic acid pinacol esters with 2-alkynyl nitroarenes toward N-aroyl indoles [J]. Org. Chem. Front., 2022, 9:2685-2689.
[25] TAMBE S D, KA C H,HWANG H S, et al. Nickel-catalyzed enantioselective synthesis of 2,3,4-trisubstituted 3-pyrrolines[J]. Angew. Chem., Int. Ed.,2022, 61:e202203494.
[26] CHEN M H,HSIEH J C,LEE Y H,et al. Controlled synthesis of enantioselective 1-aminoindenes via cobalt-catalyzed [3+2] annulation reaction [J]. ACS Catal.,2018, 8:9364-9369.
[27] WANG H R,HUANG E H,LUO C, et al. Copper-catalyzed Tandem cis-carbometallation/cyclization of imine-ynamides with arylboronic acids [J]. Chem. Commun.,2020, 56:4832-4835.
[28] LI Y,XU L,WEI Y. Synthesis of acridines via copper-catalyzed amination/annulation cascades between arylboronic acids and anthranils [J]. Org. Biomol. Chem., 2022, 20:9742-9745.
[29] PARTRIDGE B M,SOLANA G J, LAM H W. Iridium-catalyzed arylative cyclization of alkynones by 1,4-iridium migration [J]. Angew. Chem., Int. Ed.,2014, 53: 6523-6527.
Research Progress of Transition Metal-catalyzed Alkyne
Carbon- Metallization Tandem Cyclization Reaction
NIE Minling
(Wenzhou University, Wenzhou Zhejiang 325035, China)
Abstract: The asymmetric functionalization of alkynes can be achieved by the addition reaction of alkynes with organic boron reagents catalyzed by transition metals and carbon-metallization tandem cyclization. Among them, arylboronic acids are most commonly used because of their high electrophilicity, high stability and wide source. In this paper, the research progress of various transition metal-catalyzed carbon-metallization tandem cyclization reactions of alkynes and arylboronic acids in recent years was reviewed.
Key words: Transition metals; Alkynes; Arylboronic acid; Carbon-metallization; Tandem cyclization