唐伶俐 徐龍蘭 徐永陽 賀玉花 田小琴 張健 孔維虎 李文東 趙光偉



摘? ? 要:【目的】遺傳轉化是進行基因功能驗證的重要手段,構建較為完善、高效的厚皮甜瓜遺傳轉化體系,為基因功能驗證和厚皮甜瓜種質改良提供技術支撐。【方法】以厚皮甜瓜B8為材料,用攜帶植物雙元表達載體pQY002005的根癌農桿菌介導轉化B8子葉誘導再生,通過探究影響甜瓜遺傳轉化過程中的重要因子的作用,建立以B8為基礎的甜瓜遺傳轉化體系。【結果】以正常光周期培養3 d的無菌苗子葉節為外植體,對其進行微刷+ 10 s超聲處理可提高農桿菌侵染效率,熒光芽獲得率達29.6%;壓力85 kPa的2次5 min的抽真空侵染方式(間隔1 min)侵染效果較佳;4 mg·L-1的Basta較適宜篩選抗性植株。利用以上方法,單次轉化120個子葉節外植體,可獲得31個再生熒光芽,17株生根苗,通過PCR檢測確定8株陽性苗,陽性率達58.8%,陽性植株獲得率為6.7%。【結論】成功建立了以B8為材料的甜瓜高效遺傳轉化體系,為甜瓜關鍵基因功能驗證和種質精準改良提供技術支持。
關鍵詞:厚皮甜瓜;遺傳轉化;苗齡;侵染方式;抗性芽篩選
中圖分類號:S652 文獻標志碼:A 文章編號:1009-9980(2024)03-0533-10
Establishment of genetic transformation system mediated by Agrobacterium in muskmelon
TANG Lingli1, 2, XU Longlan1, XU Yongyang1, 2, HE Yuhua1, 2, TIAN Xiaoqin1, ZHANG Jian1, 2, KONG Weihu1, 2, LI Wendong3, ZHAO Guangwei1, 2*
(1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; 2National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, Hainan, China; 3Weifang Chuangke Seeds Co., Ltd., Changle 262400, Shandong, China)
Abstract: 【Objective】 Melon (Cucumis melo L.) is one of the worlds top ten fresh fruits and is loved by consumers all over the world. With the rapid development of biotechnology, plant breeding technology is changing from domestication breeding, hybrid breeding and molecular marker-assisted selection to artificial intelligence breeding relying on transgenic technology. Genetic transformation has been an important method for gene function verification. At present, the genetic transformation system of melon is not perfect, and the genetic transformation methods and efficiency between different melon genotypes or materials vary differently. To construct a genetic transformation system for muskmelon with a strong stability, good reproducibility and high efficiency, the present experiment was carried out, so as to provide technical support and theoretical basis for the verification of gene function and the improvement of germplasm resources. 【Methods】 In this study, the binary expressed vector pQY002005-GFP (Green Fluorescent Protein) was used to infect the explant from the cotyledons of B8 genotype (C. melo L. subsp. melo), and all explants that infected the Agrobacterium were used to induce buds regeneration. Key factors affecting the whole genetic transformation process, including the culture of seedlings, seedlings ages, treatment of explants, infection mode and positive buds screening way, were explored to establish the genetic transformation system based on B8. 【Results】 The explants were first cultured darkly and then treated by photoculture, which was not suitable for transformation. Fluorescent buds could be obtained by dark culture treatment alone, but with D2L0, D3L0 and D4L0 treatments, the metamorphosis rate of fluorescent buds reached 42.9%, 61.5% and 66.7%, respectively, which was significantly higher than that of other treatments and was not suitable for transformation. With D1L0 and D0L3 treatments, the fluorescent bud acquisition rate was relatively high up to 25.6% and 26.7%, respectively, and the fluorescent bud metamorphosis rate was relatively low. The above results showed that the longer the dark culture time, the higher the metamorphosis rate of regenerated buds. D0L3 or D1L0 was a suitable sterile seedling culture method under normal photoperiod. When the seedling age was consistent, the number of bud bushes, bud fluorescence rate and fluorescence bud rate in the non-invasive treatment group were significantly lower than those in other groups, indicating that trauma could promote Agrobacterium infection and increase the number of adventitious buds. The fluorescence bud rate increased significantly by ultrasound and microbrush + sonication treatment of D1L0 explants, but there were no significant differences in the number of bud bushes and fluorescent bud rates of 1.6, 18.4%, 1.8 and 23.3%, respectively, indicating that although microbrushing increased the trauma area of plants and promoted the infection of Agrobacterium infection, it may not improve the fluorescence bud rate due to cell damage. The number of bud plexuses of D0L3 were significantly higher than D1L0, so the best treatment for explants was microbrush + sonication. Furthermore, the degree of infection was high after 25 min immersion, but the number of bud plexes, the fluorescence rate of the bud plexus and the fluorescent bud rate were significantly lower than those of the vacuum pump 85 kPa for 5 min and the vacuum pump 85 kPa for 5 min twice with an interval of 1 min. While using the needle vacuum infection for 30 s, Agrobacterium could reach the deep cells, but the number of bud bushes and the acquisition rate of fluorescent buds were the lowest, being only 1.4 and 4.3%, which was significantly lower than that of the vacuum pump 85 kPa for 5 min, so the vacuum of the needle for 30 s was not suitable for infection. In comparison, vacuum pump 85 kPa for 5 min twice with an interval of 1 min treatment had the highest (64.8%) fluorescent bud rate, and the fluorescence area of explants was also greater than that of one vacuum treatment. Besides, the effect of Basta on budding status was observed in order to obtain a more suitable concentration. The analysis showed that without adding Basta, B8 had strong budding ability. When the concentration of Basta was 2 mg·L-1, the germination time was later and the budding amount was less than that without Basta, but the germination rate was still high up to 78.7%, so 2 mg·L-1 Basta could not strongly inhibit negative bud plexes. When the concentration of Basta was 4 mg·L-1, the budding rate of explants was late, the number of bud bushes was small, and the budding rate was 14.3%, which was lower than that of 2 mg·L-1 treatment, indicating that the addition of 4 mg·L-1 Basta could play a role in screening resistant adventitious buds. When the Basta concentration was much more than 6 mg·L-1, the effloration rate of explants was 5.5% lower, and it even caused death of explants. The above results showed that 4 mg·L-1 of Basta was a suitable concentration for screening resistant buds. 【Conclusion】 The results revealed that cotyledons from sterile seedling cultured for 3 days (under light condition) with microbrush and 10 seconds ultrasonic treatment, could improve the efficiency of Agrobacterium infection. The acquisition rate of fluorescence bud was 26.2%; the best infection system was vacuumed for 5 min twice with an interval of 1 min under the pressure of 85 kPa. The suitable concentration for screening resistant buds was 4 mg·L-1 Basta. Thirty-one regenerated fluorescent buds and 17 rooting seedlings were obtained in a single transformation of 120 explants, and 8 positive seedlings were identified by PCR reaction, with a positive transformation rate and seedlings rate of 58.8% and 6.7%, respectively. This study successfully established a relatively complete melon genetic transformation system on B8, which provided technical support and theoretical basis for key gene function verification and germplasm improvement.
Key words: Muskmelon; Genetic transformation; Seedling age; Infection pathway; Resistant bud selection
甜瓜(Cucumis melo L.)是世界十大鮮食水果之一,深受國內外消費者喜愛[1-2]。隨著生物技術的快速發展,植物育種技術正從馴化育種、雜交育種、分子標記輔助選擇到依賴于前沿生物技術的人工智能育種變革。轉基因育種、分子設計育種必將成為未來育種的重要手段。根癌農桿菌介導的植物遺傳轉化是驗證基因功能和分子設計育種最為直接的手段,已在擬南芥、煙草、番茄和黃瓜等模式植物中廣泛應用,其中黃瓜通過浸泡侵染25 min轉化率超過23%[3-5],且具有較高的基因編輯效率。盡管甜瓜與黃瓜進化關系較近,但甜瓜遺傳轉化方法發展相對滯后,仍缺乏較為完善、高效的遺傳轉化體系[6-8],使甜瓜重要性狀相關基因的功能研究受到嚴重制約[9]。Liu等[10]和Nonaka等[11]建立了甜瓜遺傳轉化和編輯體系,通過CRISPR/Cas9編輯CmNAC和CmACO1,使甜瓜果實成熟延遲,貨架期延長,且不影響果實質量,可實現甜瓜品質定向改良。以上說明甜瓜遺傳轉化體系建立的必要性。
無菌苗培養條件及苗齡、子葉節創傷方式、侵染方式和篩選劑濃度等都會影響甜瓜遺傳轉化的效率,因此,系統探究遺傳轉化關鍵影響因子對轉化效率的影響,對建立較為完善的遺傳轉化體系具有重要意義。不同生長環境及苗齡的無菌苗影響細胞分化程度、方向及子葉節外植體遺傳轉化能力。多項研究表明,正常培養3~5 d和暗培養1 d是甜瓜遺傳轉化最佳無菌苗的苗齡;正常培養3~5 d子葉顏色正由淡黃轉為淡綠色[12-16],光合作用為子葉節提供充足的能量[17-18];暗培養1 d能保持細胞的原始狀態、細胞分裂旺盛、分化程度低,可提高陽性率[19-22]。在細胞分裂過程中只有少數細胞分化為芽原基,通過創傷增大農桿菌與細胞的接觸范圍,可提高侵染效率[2,23-24]。對于甜瓜子葉節,目前常用的創傷方式有創傷、微刷和超聲,不同基因型和外植體類型應綜合考慮選擇恰當的創傷方式[7,25-27]。此外,侵染方式和時長對遺傳轉化效果影響較大,浸泡侵染和真空滲透均能取得良好效果,不同的基因型浸泡時間以15~25 min為宜[8,28]。一般真空侵染壓力以80 kPa為宜,時間一般為10 min左右,可提升侵染效果,提高陽性率,為防止子葉節因長時間處于高壓、缺氧造成損傷甚至死亡,真空侵染以分段進行為宜[12-13]。與侵染方式一樣重要的是篩選,為降低假陽性苗概率,甜瓜遺傳轉化過程中可以使用Kan及Basta為篩選劑,不同基因型篩選劑使用濃度不同[2,18,29]。前人研究認為,75 mg·L-1的Kan可用于篩選薄皮轉基因甜瓜苗,陽性率可高達84.2%[15],但對厚皮甜瓜效果并不理想。
總體而言,目前關于甜瓜的遺傳轉化體系尚不完善,不同基因型或材料間遺傳轉化體系和效率差別極大。筆者在本研究中以厚皮甜瓜B8為材料,以子葉節為外植體,構建甜瓜遺傳轉化體系;采用根癌農桿菌介導法,對影響遺傳轉化的無菌苗苗齡、子葉節創傷方式、侵染方式、篩選劑濃度等關鍵因素進行探究,以期建立一種穩定性較強、重復性較好、陽性率較高的厚皮甜瓜遺傳轉化體系,為甜瓜基因功能驗證和種質資源改良提供技術支撐和理論依據。
1 材料和方法
1.1 材料與培養基
試驗于中國農業科學院鄭州果樹研究所遺傳轉化實驗室進行。B8材料(甜瓜種厚皮亞種,多代自交系)由中國農業科學院鄭州果樹研究所甜瓜遺傳育種課題組提供。植物表達載體pBSE4011v-35S-eYGFPuv(pQY002005)受贈于青島清原農冠公司,載體攜帶GFP基因和BIPR基因(圖1)。
試驗所用不定芽誘導培養基為:MS + 1 mg·L-1 6-BA + 1 mg·L-1 ABA;伸長培養基為MS + 0.1 mg·L-1 6-BA;生根培養基為:1/2 MS + 0.5 mg·L-1 IAA(本文培養基pH值均為5.8);抑菌劑特美汀(Tim)及質量濃度為:300 mg·L-1。所有處理均設置3個重復,每個重復30個外植體。
1.2 試驗方法與處理
1.2.1 種子處理、消毒 挑選健康飽滿的B8種子,無菌水浸泡30 min后剝去外種皮,先用75%乙醇浸泡30 s,然后用2%的次氯酸鈉浸泡15 min,最后用無菌水沖洗4~5遍,無菌濾紙吸除多余水分。
1.2.2 無菌苗苗齡篩選 消毒后的種子種植于1/2 MS培養基上獲取無菌苗。設置1~5 d苗齡,黑暗和正常光周期組合(D代表暗培養,L代表正常光周期,光照16 h·d-1,黑暗8 h·d-1;如D1L0表示暗培養1 d,正常光周期培養0 d)分別用于培養無菌苗,觀察、統計外植體熒光芽率、變態率,確定適宜遺傳轉化的苗齡。
熒光芽率/%=(熒光芽數量/接種外植體個數)×100。
熒光芽變態率/%=(變態熒光芽數量/熒光芽數量)×100。
1.2.3 子葉節外植體獲取、培養及創傷方式篩選 將無菌苗去除生長點和胚根,選擇近胚軸端子葉節作為外植體。為探究創傷對侵染的影響,設置無創傷、超聲、微刷+超聲3種創傷方式,結合D1L0和D0L3無菌苗,共6個處理。超聲處理為100 Hz,處理10 s。微刷處理是用納米微刷輕刷子葉正面。無菌苗、子葉節外植體和不定芽培養均在光照16 h·d-1,黑暗8 h·d-1,26 ℃恒溫條件下進行。后期統計再生芽和芽叢熒光率以確定最佳處理。
芽叢熒光率/%=(芽叢熒光數/芽叢總數)×100。
1.2.4 侵染方式篩選 制備侵染菌液,侵染菌液OD為0.6,用手術刀在子葉節表面劃出兩道劃痕,按不同方式侵染。侵染結束后于28 ℃黑暗共培養3 d。設置4種處理,共培養7 d后觀察熒光情況,8周后觀察熒光芽狀態、統計芽叢數、芽叢熒光率及熒光芽率來確定最佳侵染方式。
芽叢獲得數=芽叢總數/外植體總數。
1.2.5 篩選劑濃度確定 以草銨膦(glufosinate ammonium,Basta)為抗性篩選劑,設置0、2、4、6、8、12 mg·L-1共6個質量濃度梯度,對外植體進行抗性篩選、誘導不定芽。通過統計外植體出芽率、黃化率和死亡率,確定適宜的篩選劑濃度。
出芽率/%=(出芽外植體個數/接種外植體個數)×100。
黃化率/%=(黃化外植體個數/接種外植體個數)×100。
死亡率/%=(死亡外植體個數/接種外植體個數)×100。
1.2.6 不定芽誘導、伸長及不定根誘導 切下芽叢,轉移至伸長培養基上進行伸長誘導。待不定芽伸長2~3 cm、具有3~4枚葉片時,進行不定根誘導。
1.2.7 陽性苗鑒定 利用Blak-Ray B-100AP,High Intensity UV Lamp(2.0 Amps,230V/50 Hz)紫外燈照射篩選GFP熒光苗。PCR擴增檢測目標條帶,檢測引物序列為eYGFP-F:CTACATGTCTCTTGGGGCGCT,eYGFP-R:ATGACAACCTTCAAAATCGAG-
TCCCG。通過PCR擴增確定轉化陽性苗,統計生根苗的陽性率。
陽性苗率/%=(生根陽性苗數量/總生根苗數量)×100。
熒光苗率/%=(生根熒光苗數量/接種外植體個數)×100。
1.3 數據統計
分別采用Excel Office 2016和SPSS Statistics 26進行數據統計和顯著性分析,同一列間進行差異分析,不同小寫字母代表兩組數據存在顯著差異(p<0.05)。
2 結果與分析
2.1 苗齡對遺傳轉化的影響
無菌苗的培養方式影響苗狀態和遺傳轉化,對無菌苗培養方式進行探究,以期達到高熒光芽獲得率、較低變態率。結果(表1)表明,子葉節先暗培養、再經光培養處理玻璃化較為嚴重,不適合作為轉化苗齡;僅進行暗培養處理均能獲得熒光芽,但D2L0、D3L0、D4L0處理下,熒光芽變態率分別達到42.9%、61.5%和66.7%,顯著高于其他處理,不適于轉化。D1L0和D0L3處理,熒光芽獲得率相對較高,分別為25.6%和26.7%,且熒光芽變態率相對較低。以上結果表明,暗培養時間越長,再生芽變態率越高;正常光周期下D0L3或D1L0是較合適的無菌苗培養方式。
2.2 創傷方式對遺傳轉化的影響
為了探究創傷對子葉節的影響,通過微刷和超聲結合不同方式培養的無菌苗來篩選能夠有效促進侵染的創傷方式。表2表明,苗齡一致時,無創傷處理的芽叢數、芽叢熒光率、熒光芽率均顯著低于其他處理,說明創傷可以促進農桿菌侵染,增加不定芽數目。超聲和微刷+超聲處理D1L0的子葉節,芽叢熒光率顯著提升,但二者芽叢數、熒光芽率分別為1.6和18.4%、1.8和23.3%,均無顯著差異,說明微刷盡管增加了植物的創傷面積,促進了農桿菌的侵染,但可能因細胞損傷最終未能提高熒光芽率。而D0L3超聲處理芽叢數為2.2,熒光芽率為29.6%,均顯著高于D1L0,因此確定子葉節最佳創傷處理為微刷+超聲處理。
2.3 侵染方式對遺傳轉化的影響
侵染方式影響遺傳轉化效率,因此利用不同侵染方式對外植體處理后進行觀察及統計,篩選相對高效的侵染方式。結果(表3)表明,浸泡25 min(圖2-A)外植體熒光面積相對較大,表明浸泡25 min侵染程度高,但芽叢數、芽叢熒光率、熒光芽率均顯著低于真空泵85 kPa抽真空5 min(圖2-C)和真空泵85 kPa抽真空5 min 2次,間隔1 min(圖2-D),且存在嵌合、變態、玻璃化等問題,說明浸泡侵染25 min農桿菌停留在外植體表層,影響外植體出芽,不適宜侵染。針管抽真空30 s(圖2-B)熒光面積較大,芽叢熒光率較高(55.9%),說明針管抽真空30 s農桿菌能到達深層細胞,但芽叢數、熒光芽獲得率最低,僅為1.4和4.3%,顯著低于真空泵85 kPa抽真空5 min,因此針管抽真空30 s不適合侵染。2次5 min有間隔的抽真空處理,芽叢熒光率達64.8%,顯著高于一次抽真空(33.2%),外植體熒光面積也大于一次抽真空處理,熒光芽長勢較好(圖3)。
綜上所述,對于B8子葉外植體,真空泵進行2次5 min,中間間隔1 min的真空負壓處理為較適宜的侵染方式。
2.4 抗性篩選劑濃度的明確
抗性篩選劑有助于篩選陽性苗,減輕鑒定工作量。因此,通過觀察、統計不同濃度的Basta對出芽狀況的影響,以期篩選到較適宜的Basta質量濃度。結果(表4)表明,不添加篩選劑,B8出芽能力較強;當Basta質量濃度為2 mg·L-1時,出芽時間較晚、出芽量少,出芽率仍高達78.7%,因此2 mg·L-1的Basta不能有效抑制陰性芽叢;當Basta質量濃度為4 mg·L-1時,外植體出芽晚、芽叢數量少、出芽率為14.3%,顯著低于2 mg·L-1處理,表明添加4 mg·L-1 Basta可有效篩選抗性不定芽,同時外植體黃化率和死亡率較低,分別為8.8%和3.3%;而當Basta質量濃度為6、8、12 mg·L-1時,外植體出芽率分別為5.5%、1.1%、0,顯著低于其他質量濃度處理,且外植體黃化率、死亡率較高,表明Basta質量濃度大于6 mg·L-1對外植體造成嚴重影響。以上結果表明,4 mg·L-1的Basta是較為合適的抗性芽篩選質量濃度。
2.5 遺傳轉化體系的建立及陽性苗鑒定
以上述最優結果進行試驗,通過侵染、再生和篩選(圖4)等過程,從120個外植體中獲得熒光芽31個,熒光芽獲得率達25.8%,生根無菌苗17株。對生根苗進行PCR檢測,發現8株陽性苗,其中紅色標記編號2、6、9、12、13、14、16、17為陽性苗(圖5),生根率為58.8%,陽性苗率達6.7%(600 bp大小條帶為GFP,最下面條帶為引物二聚體),成功創建了以厚皮甜瓜B8基因型為受體材料的較為完善、高效的遺傳轉化體系。
3 討 論
高效遺傳轉化體系是進行基因功能驗證最直接、最廣泛、最有效的方法。甜瓜遺傳轉化體系尚不完善,存在重復性差、轉化率低、基因型依賴性強等問題。筆者在本研究中通過對苗齡、創傷、侵染、篩選等影響甜瓜遺傳轉化的重要因素進行探究,建立了一個相對完善的甜瓜遺傳轉化體系,為基因功能驗證和種質精準改良提供技術支撐。
不同發育階段的子葉細胞全能性不同,不定芽出芽效率差異較大,無菌苗的培養條件及苗齡尤為重要。有學者認為,暗培養的無菌苗可降低細胞的光形態建成,保持細胞的未分化狀態,增高侵染后不定芽的誘導率[20]。也有研究表明,正常光周期生長3 d的無菌苗,子葉不定芽再生率較高,且能成功獲得陽性轉化植株[16,30-32]。相較之前的研究,筆者在本研究中發現對厚皮甜瓜B8進行暗培養在一定程度上增加陽性芽的數量,但暗培養時間越長不定芽變態率越高,暗培養1 d時,侵染效果相對較好。此外,正常光周期下培養3 d,待子葉由淡黃色轉淡綠色時獲取外植體,再生芽狀態好、變態率較低。筆者認為對甜瓜苗齡的選擇應該根據受體材料類型進行調整。另外,厚皮甜瓜種子較大,1 d苗齡子葉節外植體狀態較好;種子較小、子葉薄的薄皮甜瓜,建議培養至子葉黃轉綠時切割外植體,可有效減少對細胞的傷害,在保證再生苗陽性率的同時降低不定芽的變態率。
另外,適當的創傷可提高外植體不定芽再生率及遺傳轉化效率,而創傷過重則會降低陽性率[16,33-34]。人為創傷、微刷和超聲等方式在葫蘆科作物遺傳轉化中被廣泛應用[7,25,27,35],而筆者發現,人為創傷對外植體傷害較大,微刷+超聲10 s對子葉外植體的處理較為理想,且結合正常光周期3 d的苗齡能獲得更佳的侵染效果。相比之下,Wan等[35]使用微刷和超聲處理20 s,在-1.0 kPa下真空浸泡90 s,產生的綠色熒光蛋白信號較強,侵染效率較高,不同的受體材料,調整微刷+超聲時間都能取得較好的轉化效果。
此外,不同侵染方式影響不定芽的誘導率及陽性率。筆者在本研究中發現,浸泡侵染只能到達表層細胞,不定芽陽性率低,抽真空侵染可使農桿菌到達外植體的深層細胞,但壓力過大會損傷植物細胞,抑制不定芽的生長,在壓力為85 kPa的真空泵中抽真空2次,每次5 min,間隔1 min侵染B8子葉,結果與Hooghvorst等[12]的研究一致,具有較高的侵染效率。遺傳轉化除了創傷,不定芽的抗性篩選也尤為重要,再生芽的陽性篩選可大大減輕后續鑒定的工作量。篩選劑的使用主要由雙元載體上抗性基因決定,常用的篩選基因有NPTⅡ、BIPR和HYG,對應的篩選劑主要是Kan、Basta和Hyg。對于甜瓜,Kan的篩選通常有很高的假陽性率,并不能降低篩選難度[35-36]。Hyg的篩選假陽性率相對較低,但更容易導致不定芽畸形[37]。Basta篩選劑的使用對甜瓜不定芽生長影響較小,筆者在本研究中添加4 mg·L-1的Basta篩選效果較好,在其作用下能穩定進行甜瓜遺傳轉化,并且通過上述轉化方法,筆者課題組已成功獲得T1代株系,鑒定到GFP能夠穩定遺傳。
筆者在本研究中以厚皮甜瓜B8為材料,通過對苗齡、侵染方式等影響因素的篩選和驗證,建立了較為完善且高效的根癌農桿菌介導的厚皮甜瓜遺傳轉化體系。即以正常光周期下生長3 d子葉為外植體,對外植體進行微刷+10 s超聲處理;再經2次5 min壓力為85 kPa的抽真空侵染,其間間隔1 min之后共培養2 d,挑選狀態較好的外植體進行不定芽誘導和篩選,Basta篩選質量濃度為4 mg·L-1。生根苗陽性率為58.8%,陽性苗獲得率為6.7%,成功建立了較為完善、高效的厚皮甜瓜遺傳轉化體系,為重要性狀調控基因的功能驗證提供技術支撐和理論依據。
4 結 論
筆者在本研究中以厚皮甜瓜B8為材料,通過農桿菌介導轉化、侵染B8子葉并誘導再生,通過探究影響甜瓜遺傳轉化過程中的重要因子,建立以B8為基礎的甜瓜遺傳轉化體系。研究發現,以正常光周期培養3 d的無菌苗子葉為外植體,對其進行微刷+10 s超聲處理可提高農桿菌侵染效率,熒光芽獲得率達26.2%;壓力85 kPa的2次5 min的抽真空(其間間隔1 min)侵染效果較佳;4 mg·L-1的Basta較適宜篩選抗性植株。通過以上方法,轉化120個外植體,可獲得31個再生熒光芽,17株生根苗,通過PCR檢測確定8株陽性苗,陽性率達58.8%,陽性植株獲得率為6.7%。綜上所述,筆者在本研究中成功建立了以B8為材料的較為完善的甜瓜遺傳轉化體系,為關鍵基因功能驗證和種質改良提供技術支撐和理論依據。
參考文獻 References:
[1] HE Z Q,DUAN Z Z,LIANG W,CHEN F J,YAO W,LIANG H W,YUE C Y,SUN Z X,CHEN F,DAI J W. Mannose selection system used for cucumber transformation[J]. Plant Cell Reports,2006,25(9):953-958.
[2] VENGADESAN G,ANAND R P,SELVARAJ N,PERL-TREVES R,GANAPATHI A. Transfer and expression of NPT II and BAR genes in cucumber (Cucumis satavus L.)[J]. In Vitro Cellular & Developmental Biology-Plant,2005,41(1):17-21.
[3] 萬旭花,陳書霞,申曉青,陳為峰,張然然,成思瓊. 黃瓜高頻再生體系的建立[J]. 西北農林科技大學學報(自然科學版),2014,42(8):162-168.
WAN Xuhua,CHEN Shuxia,SHEN Xiaoqing,CHEN Weifeng,ZHANG Ranran,CHENG Siqiong. Establishment of a high-frequency regeneration system for cucumber[J]. Journal of Northwest A & F University (Natural Science Edition),2014,42(8):162-168.
[4] WANG S,TANG L,CHEN F. In vitro flowering of bitter melon[J]. Plant Cell Reports,2001,20(5):393-397.
[5] ZHAO Z Y,QI Y G,YANG Z M,CHENG L Y,SHARIF R,RAZA A,CHEN P,HOU D,LI Y H. Exploring the Agrobacterium-mediated transformation with CRISPR/Cas9 in cucumber (Cucumis sativus L.)[J]. Molecular Biology Reports,2022,49(12):11481-11490.
[6] FENG Q,XIAO L,HE Y Z,LIU M,WANG J F,TIAN S J,ZHANG X,YUAN L. Highly efficient,genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene[J]. Journal of Integrative Plant Biology,2021,63(12):2038-2042.
[7] TRICK H N,FINER J J. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue[J]. Plant Cell Reports,1998,17(6):482-488.
[8] 肖守華. 西瓜、甜瓜遺傳轉化體系的建立及轉基因植株的抗病性分析[D]. 泰安:山東農業大學,2006.
XIAO Shouhua. Establishment of watermelon and melon genetic transformation system and analysis of disease-resistance in transgenic plants[D]. Taian:Shandong Agricultural University,2006.
[9] 高鵬,劉識,崔浩楠,張泰峰,王學征,劉宏宇,朱子成,欒非時. 甜瓜基因組學、功能基因定位及基因工程育種研究進展[J]. 園藝學報,2020,47(9):1827-1844.
GAO Peng,LIU Shi,CUI Haonan,ZHANG Taifeng,WANG Xuezheng,LIU Hongyu,ZHU Zicheng,LUAN Feishi. Research progress of melon genomics,functional gene mapping and genetic engineering[J]. Acta Horticulturae Sinica,2020,47(9):1827-1844.
[10] LIU B,SANTO DOMINGO M,MAYOBRE C,MART?N-HERN?NDEZ A M,PUJOL M,GARCIA-MAS J. Knock-out of CmNAC-NOR affects melon climacteric fruit ripening[J]. Frontiers in Plant Science,2022,13:878037.
[11] NONAKA S,ITO M,EZURA H. Targeted modification of CmACO1 by CRISPR/Cas9 extends the shelf-life of Cucumis melo var. reticulatus melon[J]. Frontiers in Genome Editing,2023,5:1176125.
[12] HOOGHVORST I,L?PEZ-CRISTOFFANINI C,NOGU?S S. Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon[J]. Scientific Reports,2019,9:17077.
[13] HU B W,LI D W,LIU X,QI J J,GAO D L,ZHAO S Q,HUANG S W,SUN J J,YANG L. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system[J]. Molecular Plant,2017,10(12):1575-1578.
[14] 陶興林. 甜瓜高效再生體系、轉化體系的建立與優化[D]. 蘭州:甘肅農業大學,2005.
TAO Xinglin. Establisment and optimize of high effective regeneration system and transformation system in melons (Cucumis melo L.)[D]. Lanzhou:Gansu Agricultural University,2005.
[15] 肖守華,李國生,焦自高,王崇啟,董玉梅,李圣輝. 西瓜高效再生體系的建立[J]. 中國瓜菜,2010,23(3):11-14.
XIAO Shouhua,LI Guosheng,JIAO Zigao,WANG Chongqi,DONG Yumei,LI Shenghui. Establishment of high frequency regeneration system in watermelon[J]. China Cucurbits and Vegetables,2010,23(3):11-14.
[16] ZHANG Y Y,ZHANG D M,ZHONG Y,CHANG X J,HU M L,CHENG C Z. A simple and efficient in planta transformation method for pommelo (Citrus maxima) using Agrobacterium tumefaciens[J]. Scientia Horticulturae,2017,214:174-179.
[17] 王吉明,尚建立,李娜,周丹,馬雙武. 我國西瓜甜瓜種質資源收集、保存與利用研究進展[J]. 中國瓜菜,2018,31(2):1-6.
WANG Jiming,SHANG Jianli,LI Na,ZHOU Dan,MA Shuangwu. Collection,preservation,and utilization of germplasm resources of watermelon and melon in China[J]. China Cucurbits and Vegetables,2018,31(2):1-6.
[18] WANG S L,KU S S,YE X G,HE C F,KWON S Y,CHOI P S. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.)[J]. Journal of Integrative Agriculture,2015,14(3):469-482.
[19] AKASAKA-KENNEDY Y,TOMITA K O,EZURA H. Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.)[J]. Plant Science,2004,166(3):763-769.
[20] NANASATO Y,KONAGAYA K I,OKUZAKI A,TSUDA M,TABEI Y. Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks[J]. Plant Biotechnology Reports,2013,7(3):267-276.
[21] SU Y H,ZHOU C,LI Y J,YU Y,TANG L P,ZHANG W J,YAO W J,HUANG R F,LAUX T,ZHANG X S. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(36):22561-22571.
[22] WEHNER T C,LOCY R D. In vitro adventitious shoot and root formation of cultivars and lines of Cucumis sativus L.[J]. HortScience,1981,16(6):759-760.
[23] KARTHIK S,PAVAN G,PRASANTH A,SATHISH S,APPUNU C,MANICKAVASAGAM M. Improved in planta genetic transformation efficiency in bitter gourd (Momordica charantia L.)[J]. In Vitro Cellular & Developmental Biology-Plant,2021,57(2):190-201.
[24] SUBBAN P,KUTSHER Y,EVENOR D,BELAUSOV E,ZEMACH H,FAIGENBOIM A,BOCOBZA S,TIMKO M P,REUVENI M. Shoot regeneration is not a single cell event[J]. Plants,2020,10(1):58.
[25] CHEN X J,HE S T,JIANG L N,LI X Z,GUO W L,CHEN B H,ZHOU J G,SKLIAR V. An efficient transient transformation system for gene function studies in pumpkin (Cucurbita moschata D.)[J]. Scientia Horticulturae,2021,282:110028.
[26] XIN T X,TIAN H J,MA Y L,WANG S H,YANG L,LI X T,ZHANG M Z,CHEN C,WANG H S,LI H Z,XU J T,HUANG S W,YANG X Y. Targeted creation of new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants[J]. Horticulture Research,2022,9:uhab086.
[27] YAMADA T,WATANABE S,ARAI M,HARADA K,KITAMURA K. Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean[J]. Plant Biotechnology,2010,27(2):217-220.
[28] 鐘俐. 根癌農桿菌介導的雪花蓮凝集素基因轉入新疆甜瓜的研究[D]. 烏魯木齊:新疆農業大學,2001.
ZHONG Li. A study on transferring of snowdrop Galanthus nivalis agglutinin (GNA) gene in Cucumis melo L. of Xinjiang[D]. Urumqi:Xinjiang Agricultural University,2001.
[29] GABA V,ZELCER A,GAL-ON A. Cucurbit biotechnology-the importance of virus resistance[J]. In Vitro Cellular & Developmental Biology - Plant,2004,40(4):346-358.
[30] CHOI P S,SOH W Y,KIM Y S,YOO O J,LIU J R. Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens[J]. Plant Cell Reports,1994,13(6):344-348.
[31] GABA V,SCHLARMAN E,ELMAN C,SAGEE O,WATAD A A,GRAY D J. In vitro studies on the anatomy and morphology of bud regeneration in melon cotyledons[J]. In Vitro Cellular & Developmental Biology - Plant,1999,35(1):1-7.
[32] ZHANG H J,GAO P,WANG X Z,LUAN F S. An efficient regeneration protocol for Agrobacterium-mediated transformation of melon (Cucumis melo L.)[J]. Genetics and Molecular Research,2014,13(1):54-63.
[33] 李蕾,孟永嬌,張璐,婁群峰,李季,錢春桃,陳勁楓. 黃瓜遺傳轉化體系優化的研究[J]. 華北農學報,2015,30(5):115-121.
LI Lei,MENG Yongjiao,ZHANG Lu,LOU Qunfeng,LI Ji,QIAN Chuntao,CHEN Jinfeng. Study on optimization of Agrobacterium-mediated transformation system of cucumber[J]. Acta Agriculturae Boreali-Sinica,2015,30(5):115-121.
[34] 欒非時,白晶,朱子成,高鵬,劉識,吳川,樊超,呂雙雪. 農桿菌介導薄皮甜瓜遺傳轉化體系建立[J]. 東北農業大學學報,2019,50(1):11-18.
LUAN Feishi,BAI Jing,ZHU Zicheng,GAO Peng,LIU Shi,WU Chuan,FAN Chao,L? Shuangxue. Establishment of Agrobacterium mediated genetic transformation system of muskmelon[J]. Journal of Northeast Agricultural University,2019,50(1):11-18.
[35] WAN L L,WANG Z R,ZHANG X J,ZENG H X,REN J,ZHANG N,SUN Y H,MI T. Optimised Agrobacterium-mediated transformation and application of developmental regulators improve regeneration efficiency in melons[J]. Genes,2023,14(7):1432.
[36] DU C X,CHAI L A,LIU C,SI Y Y,FAN H F. Improved Agrobacterium tumefaciens-mediated transformation using antibiotics and acetosyringone selection in cucumber[J]. Plant Biotechnology Reports,2022,16(1):17-27.
[37] PARK S M,LEE J S,JEGAL S,JEON B Y,JUNG M,PARK Y S,HAN S L,SHIN Y S,HER N H,LEE J H,LEE M Y,RYU K H,YANG S G,HARN C H. Transgenic watermelon rootstock resistant to CGMMV (cucumber green mottle mosaic virus) infection[J]. Plant Cell Reports,2005,24(6):350-356.