黃晗羽 莫沙 陳夢(mèng)潔 唐育輝 王仁才 羅飛雄



摘? ? 要:【目的】研究授粉品種對(duì)軟棗獼猴桃湘獼棗坐果和果實(shí)品質(zhì)的影響,篩選出湘獼棗的最佳授粉品種?!痉椒ā窟x用軟棗獼猴桃雄株DWSR1、NER1、R2px2的花粉、美味獼猴桃花粉和長(zhǎng)葉獼猴桃雄株AASAH1花粉為湘獼棗授粉,研究授粉處理對(duì)湘獼棗不同時(shí)期子房?jī)?nèi)源激素含量、坐果率及果實(shí)品質(zhì)的影響?!窘Y(jié)果】AASAH1授粉處理落果嚴(yán)重,坐果率最低(9.68%~33.33%);其他授粉處理的坐果率均在40%以上,其中NER1和DWSR1授粉處理坐果率在70%以上。2023年,NER1和DWSR1授粉處理的果實(shí)單果質(zhì)量、果形指數(shù)、干物質(zhì)和可溶性固形物含量顯著高于其他授粉處理,且在貯藏期硬度下降速度和呼吸速率更慢。授粉后75 h,AASAH1授粉處理的子房中GA3含量、IAA含量、IAA/ABA、GA3/ABA和(GA3+IAA)/ABA均處于較低水平,而ABA含量較高。【結(jié)論】湘獼棗種內(nèi)授粉親和性好于種間授粉,NER1和DWSR1可配置為湘獼棗適宜授粉雄株。
關(guān)鍵詞:獼猴桃;授粉;果實(shí)品質(zhì);內(nèi)源激素
中圖分類(lèi)號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)04-0725-13
Effects of pollinizer cultivars on berry growth and quality of Xiangmizao kiwifruit
HUANG Hanyu1, MO Sha1, CHEN Mengjie1, TANG Yuhui2, WANG Rencai1*, LUO Feixiong1*
(1College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China; 2Yulin Fruit Production Professional Cooperative of Liuyang City, Liuyang 410308, Hunan, China)
Abstract: 【Objective】 Kiwifruit, a dioecious plant, must be effectively pollinated to obtain fruit quality and optimal yield because their complete flowers produce unviable pollens and their male flowers have abortive pistils. Besides, pollinizer cultivars confer “xenia” effect on the fruit, which affects a range of important traits including fruit set, berry size, berry shape, color, developmental timing, metabolites composition, etc. In kiwifruit vineyard, the ratio of male and female plants is generally recommended as 1∶8. Compatible male cultivars for Actinidia arguta production are lacking and more studies are needed to select compatible pollinizer cultivars for any specific kiwiberry female cultivars. For selecting a compatible male cultivar, its flowering time, amount of pollen in each flower and pollen viability need to be considered. There have been few studies investigating the effects of pollen parents on berry quality in kiwiberry. Xiangmizao (A. arguta) is a new kiwiberry cultivar, which was selected from the wild kiwifruit population growing in Dawei Mountain, Hunan Province. To grow this new cultivar properly, compatible pollinizer cultivars are needed. To select the best pollinating male cultivars compatible for Xiangmizao, four pollinizer cultivars were used to investigate pollen parent effect on fruit set, berry growth, berry quality, and berry storability of this new female cultivar. 【Methods】 Pollens from a tetraploid A. arguta male named DWSR1 collected from Dawei mountain (T1-22/23), a tetraploid A. arguta male named NER1 collected from Northeast China (T2-22/23), a tetraploid A. arguta male named R2px2 (T2-23), a tetraploid and a hexaploid A. deliciosa males (T3Ad-22) and a diploid A. hemsleyana male named AASAH1 (T4-23) were used to pollinate the female cultivar Xiangmizao. This study compared the differences in endogenous hormones in the ovaries at different developmental stages. Ovary samples were collected at different time points after pollination. Fruit set, berry growth, berry quality, and berry storability were recorded for the pollinated cultivar. 【Results】 T4-23 showed serious fruit drop after pollination and had the lowest fruit set rate in the end. Compared to T4-23, the other treatments had higher fruit set above 40%, with T1-22/23 and T2-22/23 having fruit set above 70%. Seventy-five hours after pollination, endogenous hormones and their ratios such as GA3, IAA, IAA/ABA, GA3/ABA and (GA3+IAA)/ABA were all at relatively lower levels in the ovaries of T4-23, while its ABA content was the highest, compared to the other treatments. In contrast to T4-23, except for ABA content, endogenous hormones and their ratios in ovaries collected from T1-23 and T2-23 were higher than those from the other two treatments. In 2022, average berry weight of T1-22 (12.18 g) and T3Ad-22 (11.78 g) was significantly higher than that of T2-22 (10.26 g). Fruit shape index was above 1.2 in all treatments, with T1-22 having significantly higher fruit shape index (1.40) than T2-22 (1.30) and T3Ad-22 (1.28). Fruit firmness of berries from T1-22 (43.21 N) was significantly higher than from the other treatments. T1-22 also had a higher titratable acid content (1.13 %), which was 79.37% higher than T3Ad-22, which had the lowest titratable acid (TA) content. Berry firmness of T3Ad-22 declined more slowly than the other two treatments, T1-22 and T2-22, and their total soluble solids (TSS) were consistently lower than that of T1-22. In 2023, average berry weight of both T1-23 and T2-23 was significantly higher than that in T3Aa-23, with T2-23 being 2.37 times higher than T3Aa-23. There was no significant difference in berry shape index between the T1-23 and T2-23, which both reached 1.4 and significantly higher than that of T3Aa-23 (1.16). Fruit dry matter content was higher than 20% in all treatments at harvest, with T3Aa-23 (21.03%) being the lowest. TSS contents of T1-23 (7.63%) and T2-23 (7.88%) were higher than that of T3Aa-23 (6.64%). Berry TA content of T1-23 (1.10%) was significantly (1.46 times) higher than that of T2-23 (0.75%) and also significantly (1.45 times) higher than that of T3Aa-23 (0.76%). Fruit firmness declined more rapidly in T1-23 and T2-23 than in T3Aa-23. Berry respiratory rate of T3Aa-23 was consistently higher than that of T1-23 and T2-23. 【Conclusion】Results from this study suggest both DWSR1 and NER1 could be used as suitable pollinizers for Xiangmizao fruit production.
Key words: Actinidia arguta; Pollination; Fruit quality; Endogenous hormones
獼猴桃屬(Actinidia)在全世界范圍內(nèi)有66種,在中國(guó)有62種且自然分布廣泛[1]。軟棗獼猴桃(A. arguta)是所有獼猴桃中分布最廣的種之一,在中國(guó)、俄羅斯遠(yuǎn)東區(qū)和日本均有發(fā)現(xiàn)[2]。獼猴桃為雌雄異株植物,雌株的花雖是完全花,但其花粉不具生活力;雄株的花雌蕊敗育,故需要配置授粉樹(shù)或進(jìn)行人工授粉[3]。目前在生產(chǎn)栽培時(shí),一般采用雌雄樹(shù)比例為8∶1的形式配置授粉樹(shù),軟棗獼猴桃配套的雄性品種混亂,選擇雄性品種時(shí)大多只考慮其花期是否相宜,而忽視其對(duì)果實(shí)品質(zhì)的影響。
花粉來(lái)源對(duì)果實(shí)品質(zhì)產(chǎn)生影響的現(xiàn)象廣泛存在于水果(蘋(píng)果[4]、葡萄[5]、柑橘[6]、藍(lán)莓[7]、梨[8])、蔬菜(黃瓜[9]、番茄[10])等農(nóng)作物中。陳慶紅等[11]首次在金魁獼猴桃上發(fā)現(xiàn)不同花粉授粉后,金魁的果形、單果質(zhì)量、可溶性固形物含量、維生素C含量、貯藏期等均有變化,后續(xù)諸多研究也顯示中華獼猴桃[12]、美味獼猴桃[13]、軟棗獼猴桃[14]等都存在此類(lèi)現(xiàn)象。
植物內(nèi)源激素在植物生長(zhǎng)發(fā)育過(guò)程中起重要作用,且不同激素之間也會(huì)相互作用,以相互促進(jìn)或相互拮抗的方式對(duì)植物的生長(zhǎng)發(fā)育過(guò)程進(jìn)行調(diào)控[15-16]。針對(duì)獼猴桃的內(nèi)源激素檢測(cè)方面的研究,目前對(duì)花蕾[17]、芽[18]、枝條[19]和果實(shí)[20-21]進(jìn)行了相關(guān)研究,而對(duì)授粉后子房?jī)?nèi)源激素的研究鮮少報(bào)道。
軟棗獼猴桃新品種湘獼棗是從湖南省瀏陽(yáng)市大圍山野生軟棗獼猴桃群體中選育而成的,果實(shí)風(fēng)味獨(dú)特,抗逆性強(qiáng)[22]。目前實(shí)際生產(chǎn)中面臨的主要問(wèn)題是缺少適宜的授粉樹(shù),導(dǎo)致產(chǎn)量低,果實(shí)品質(zhì)良莠不齊。筆者通過(guò)使用不同花粉對(duì)湘獼棗進(jìn)行授粉試驗(yàn),以探究其對(duì)坐果和果實(shí)品質(zhì)的影響,篩選出適宜的授粉品種以提高產(chǎn)量與品質(zhì),以期為生產(chǎn)上授粉樹(shù)的配置提供理論依據(jù)。
1 材料和方法
1.1 材料
試驗(yàn)于2022年5月—2023年5月在湖南省瀏陽(yáng)市大圍山進(jìn)行,供試雌性品種為軟棗獼猴桃新品種湘獼棗,均為10年生樹(shù),砧木為美味獼猴桃實(shí)生苗。授粉雄株包括軟棗獼猴桃NER1、DWSR1、AASAH1、美味獼猴桃(來(lái)源于商業(yè)花粉)和軟棗獼猴桃R2px2(來(lái)源于中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹(shù)研究所)。分別于授粉后20、30、45、55、75、100和120 h采集子房并迅速進(jìn)行液氮處理,存于-80 ℃以備內(nèi)源激素含量測(cè)定。
1.2 方法
1.2.1 試驗(yàn)處理 各授粉處理選擇3株樹(shù)勢(shì)一致的湘獼棗,在大蕾期將樹(shù)體不同方位的結(jié)果枝上進(jìn)行套袋處理并編號(hào),授粉一周后解開(kāi)套袋,每種花粉授粉花朵數(shù)均在300朵左右。授粉方式分別采用人工點(diǎn)授(2022年)和液體授粉(2023年),花粉液為10%蔗糖+0.1 g·L-1硼酸+0.2 g·L-1羧甲基纖維素鈉+1.0 g·L-1花粉+純水[23],授粉后立即套袋,記錄授粉花朵數(shù),并于授粉后15和30 d時(shí)統(tǒng)計(jì)各處理坐果率。
1.2.2 子房?jī)?nèi)源激素含量測(cè)定 采用高效液相色譜法測(cè)定吲哚乙酸(IAA)、赤霉素(GA3)和脫落酸(ABA)含量[24]。將樣品于液氮中研磨至粉碎,準(zhǔn)確稱(chēng)量適量試樣置于試管中,加入10倍體積乙腈溶液,并加入4 μL內(nèi)標(biāo)母液;4 ℃提取過(guò)夜,12 000 r·min-1離心5 min,取上清液;沉淀再次加入5倍體積乙腈溶液,提取兩次,合并所得上清液;加入200 mg C18填料,劇烈震蕩30 s,10 000 r·min-1離心5 min,取上清液;濃縮至干,以200 μL甲醇復(fù)溶,過(guò)0.22 μm有機(jī)相濾膜,放入-20 ℃冰箱待上機(jī)檢測(cè)。色譜條件為色譜柱WATERS ACQUITY UPLC HSS T3(2.1 mm×100 mm,1.8 ?m),柱溫為30 ℃,使用的流動(dòng)相A為0.1%甲酸水,流動(dòng)相B為乙腈,流速設(shè)置為0.3 mL·min-1,進(jìn)樣量為2 μL。
1.2.3 果實(shí)品質(zhì)指標(biāo)測(cè)定 授粉后14 d,每隔7 d追蹤測(cè)定12個(gè)果實(shí)的生長(zhǎng)情況,用游標(biāo)卡尺[MNT-150,上海美耐特實(shí)業(yè)(集團(tuán))有限公司,中國(guó)]測(cè)量果實(shí)縱徑和橫徑。果實(shí)采收后立即送至實(shí)驗(yàn)室內(nèi),分別置于25 ℃(2022年)和4 ℃(2023年)中貯藏,定期測(cè)定果實(shí)品質(zhì)。果實(shí)質(zhì)量采用電子天平(XY500C,常州市幸運(yùn)電子設(shè)備有限公司,中國(guó))測(cè)定;果實(shí)硬度采用數(shù)顯推拉力計(jì)(ZP-50,香港艾固儀器儀表有限公司,中國(guó))測(cè)定;果實(shí)可溶性固形物(TSS)含量使用數(shù)顯糖酸一體機(jī)(PAL-BX∣ACID8,Atago,日本)測(cè)定;干物質(zhì)含量參考劉磊等[25]的方法測(cè)定;可滴定酸(TA)含量參考張艷霞等[26]采用的酸堿滴定法測(cè)定;維生素C含量參考田彥龍等[27]采用的2,6-二氯靛酚法測(cè)定。
1.2.4 數(shù)據(jù)統(tǒng)計(jì)分析 采用Excel 2016進(jìn)行數(shù)據(jù)整理及統(tǒng)計(jì),采用SPSS 25進(jìn)行差異顯著性分析,采用Origin 2022作圖。
2 結(jié)果與分析
2.1 不同授粉品種處理的花粉活力和坐果率統(tǒng)計(jì)
2022年T1-22和T3Ad-22處理的坐果率分別比T2-22顯著提高34.84和25.52個(gè)百分點(diǎn)。2023年T1-23和T2-23的花粉活力顯著高于其他處理,且均在70%以上,其中T2-23的花粉活力相對(duì)更高,分別是T3Aa-23和T4-23的2.22倍和1.18倍;T1-23和T2-23間的坐果率差異不顯著,且均在70%以上,顯著高于T4-23,分別是T4-23處理的4.35倍和4.59倍;T3Aa-23的坐果率顯著高于T4-23,前者是后者的3.28倍;T4-23處理的植株落果率顯著高于其他處理,為78.85%,T1-23處理的落果率最低,僅有1.64%,前者落果率是后者的48.08倍(表1)。
2.2 不同授粉品種處理對(duì)湘獼棗授粉后子房?jī)?nèi)源激素含量的影響
授粉后30 h,T1-23和T4-23處理的子房GA3含量分別是授粉前的19.18倍和2.17倍,而T2-23和T3Aa-23處理的子房GA3含量分別下降了94.30%和78.51%。授粉后75 h,T1-23處理的子房GA3含量最高,是含量最低處理T4-23的10倍。授粉后120 h,T3Aa-23和T1-23處理的子房GA3含量均有不同程度的上升,此時(shí)各處理的子房GA3含量從高到低排序?yàn)門(mén)1-23>T3Aa-23>T2-23>T4-23,其中T1-23是T4-23的8.82倍(圖1-A)。
授粉后30 h,T4-23處理的子房IAA含量較授粉前上升了54.26%,而T2-23、T3Aa-23和T1-23處理的子房IAA含量分別下降了62.55%、31.70%和54.35%。授粉后75 h,T2-23處理的子房IAA含量最高,分別是T1-23、T4-23和T3Aa-23處理的1.52倍、3.22倍和8.61倍。授粉后120 h,各處理的子房IAA含量從高到低排序?yàn)門(mén)2-23>T4-23>T3Aa-23>T1-23,其中T2-23是T1-23的2.42倍(圖1-B)。
授粉后30 h,各處理的子房ABA含量均大幅下降,T1-23處理的子房ABA含量最高,是含量最低處理T4-23的5.31倍;此后T4-23處理的子房ABA含量逐漸上升且始終處于較高水平,而T3Aa-23處理與之相反。授粉后120 h,各處理子房ABA含量從高到低排序?yàn)門(mén)4-23>T2-23>T1-23>T3Aa-23,其中T4-23是T3Aa-23的7.17倍(圖1-C)。
2.3 不同授粉品種處理對(duì)湘獼棗授粉后子房?jī)?nèi)源激素比值的影響
授粉后30 h,T1-23處理的子房GA3/ABA比值遠(yuǎn)高于其他處理,分別是T4-23、T3Aa-23和T2-23的1.67倍、77.5倍和155倍。授粉后75 h,各處理的子房GA3/ABA比值均下降到較低水平,其中T1-23處理的比值最高,是最低的T4-23的33.75倍。授粉后120 h,各處理的GA3/ABA比值高低排序?yàn)門(mén)1-23>T3Aa-23>T2-23>T4-23,除T1-23外,其他處理的子房GA3/ABA比值均在0.1以下(圖1-D)。
授粉后30 h,T4-23處理的子房IAA/ABA比值遠(yuǎn)高于其他處理,其中T1-23最低,前者是后者的19.43倍。授粉后120 h,各處理的IAA/ABA比值從高到低排序?yàn)門(mén)3Aa-23>T1-23>T2-23>T4-23,其中T3Aa-23是T4-23的4.20倍(圖1-E)。
授粉后30 h,T4-23處理的子房(GA3+IAA)/ABA比值遠(yuǎn)高于其他處理,分別是T1-23、T3Aa-23和T2-23的1.42倍、15.27倍和25.44倍。授粉后75 h,T1-23處理的子房(GA3+IAA)/ABA比值最大,是比值最小處理T4-23的9.00倍。授粉后120 h,各處理的(GA3+IAA)/ABA比值從高到低排序?yàn)門(mén)3Aa-23>T1-23>T2-23>T4-23,其中T3Aa-23是T4-23的5.18倍(圖1-F)。
2.4 不同授粉品種處理對(duì)果實(shí)生長(zhǎng)發(fā)育的影響
2022年,各授粉處理的果實(shí)生長(zhǎng)發(fā)育曲線在各個(gè)時(shí)期基本一致,大致可分為三個(gè)時(shí)期,即快速膨大期(授粉后14~35 d)、緩慢生長(zhǎng)期(授粉后35~63 d)和生長(zhǎng)停滯期(授粉后63~77 d);授粉后第35天,T1-22、T2-22和T3Ad-22處理的果實(shí)縱徑相較于授粉后14 d分別增長(zhǎng)了78.86%、75.14%和45.03%,果實(shí)橫徑分別增長(zhǎng)了105.86%、84.98%和88.63%;果實(shí)緩慢生長(zhǎng)期較長(zhǎng),相較于授粉后第35天,第63天時(shí)T1-22、T2-22和T3Ad-22處理的果實(shí)縱徑分別增長(zhǎng)了6.73%、16.64%和19.90%,果實(shí)橫徑分別增長(zhǎng)了19.96%、13.92%和24.39%;授粉后第77天,T1-22、T2-22和T3Ad-22處理的果實(shí)縱徑、橫徑無(wú)顯著差異,果實(shí)縱徑均在30 mm以上,果實(shí)橫徑均在20 mm以上(圖2-A~B)。2023年,各授粉處理果實(shí)生長(zhǎng)發(fā)育曲線與2022年相似,即分為快速膨大期(14~42 d)、緩慢生長(zhǎng)期(42~70 d)和生長(zhǎng)停滯期(70~77 d)。T2-23處理的果實(shí)縱徑整體顯著大于T1-23和T3Aa-23;授粉后第42天,T1-23、T2-23和T3Aa-23處理的果實(shí)縱徑相較于授粉后第14天,增長(zhǎng)率分別為57.51%、93.52%和86.75%,果實(shí)橫徑增長(zhǎng)率分別為116.03%、116.50%和113.78%;授粉后第70天,相較于第42天,T1-23、T2-23和T3Aa-23處理的果實(shí)縱徑增長(zhǎng)率分別為5.36%、7.42%和10.00%,果實(shí)橫徑增長(zhǎng)率分別為9.38%、15.71%和15.93%;授粉后第77天,T2-23處理的果實(shí)縱徑分別顯著高出T1-23和T3Aa-23處理20.95%和25.91%,T2-23和T3Aa-23處理的果實(shí)橫徑顯著高出T1-23處理的13.44%和7.36%(圖2-C~D)。
2.5 不同授粉品種處理對(duì)采收時(shí)果實(shí)品質(zhì)的影響
2022年,T1-22和T3Ad-22處理的平均單果質(zhì)量顯著高于T2-22處理,其中T1-22的平均單果質(zhì)量最大,是T2-22的1.19倍;各授粉處理的果形指數(shù)均大于1.20,T1-22授粉處理的果形指數(shù)較T2-22顯著高出了7.69%,也較T3Ad-22授粉處理顯著高出了9.38%。T1-22處理的果實(shí)硬度和可滴定酸含量均顯著高于T2-22和T3Ad-22處理,其中T1-22處理的果實(shí)可滴定酸含量分別高出T2-22和T3Ad-22處理31.40%和79.37%;T3Ad-22處理的果實(shí)可溶性固形物含量顯著低于其他處理,T1-22和T2-22處理的果實(shí)可溶性固形物含量分別比T3Ad-22顯著提高59.34%和57.40%(表2)。2023年,T1-23和T2-23處理的平均單果質(zhì)量均顯著大于T3Aa-23,其中T2-23處理的平均單果質(zhì)量最大,是T3Aa-23處理的2.37倍;T1-23和T2-23處理的果形指數(shù)無(wú)顯著差異,均達(dá)到1.40,但兩者顯著高于T3Aa-23,分別高出26.72%和20.69%;T2-23和T3Aa-23處理的果實(shí)硬度顯著大于T1-23,其中T2-23處理的果實(shí)硬度最大,比T1-23提高11.27%。T1-23和T2-23處理的果實(shí)干物質(zhì)及可溶性固形物含量均顯著高于T3Aa-23,其中T2-23處理的果實(shí)干物質(zhì)和可溶性固形物含量比T3Aa-23分別提高1.93%和1.24%;T1-23處理的果實(shí)可滴定酸含量比T2-23和T3Aa-23分別顯著提高46.67%和44.74%(表2)。
2.6 不同授粉品種處理對(duì)貯藏期果實(shí)品質(zhì)的影響
2.6.1 不同授粉品種處理對(duì)貯藏期果實(shí)外觀形態(tài)的影響 2022年,T3Ad-22處理的果實(shí)最小且畸形;各授粉處理的果皮顏色隨貯藏時(shí)間由綠轉(zhuǎn)紅后逐漸加深至深紅色,色澤由明漸暗;果心均從果蒂端至果臍端逐漸轉(zhuǎn)紅;果肉顏色則是由翠綠色轉(zhuǎn)為深綠色,且果實(shí)軟化(圖3-A)。2023年,所有處理的果皮和果肉顏色的變化相較于2022年更為緩慢,但變化趨勢(shì)一致,其中T1-23處理的果皮顏色最早(貯藏后第8天)開(kāi)始變紅,T2-23果心在貯藏后第16天逐漸變紅;T3Aa-23處理的果實(shí)最小且大多為畸形果,缺乏商品性(圖3-B)。
2.6.2 不同授粉品種處理對(duì)貯藏期果實(shí)硬度的影響 兩年各授粉處理的果實(shí)在不同貯藏溫度下的硬度都隨時(shí)間變化呈先下降后趨于平緩的趨勢(shì)。2022年,T1-22和T2-22處理的果實(shí)室溫貯藏(25 ℃)2 d后,硬度分別下降了89.75%和87.38%;貯藏4 d后,T3Ad-22處理的果實(shí)硬度降低了90.85%,此時(shí)三者果實(shí)硬度無(wú)顯著差異;貯藏6 d后,T3Ad-22處理的果實(shí)硬度分別顯著高出T1-22和T2-22處理26.17%和36.17%(圖4-A)。2023年,各授粉處理的果實(shí)低溫貯藏(4 ℃),果實(shí)硬度在貯藏第4~24天中無(wú)顯著差異;貯藏24 d后,T2-23、T3Aa-23和T1-23處理的果實(shí)硬度相較于第0天分別降低了90.90%、89.74%和71.02%(圖4-B)。
2.6.3 不同授粉品種處理對(duì)貯藏期獼猴桃果實(shí)呼吸速率的影響 2023年,貯藏期各處理的果實(shí)呼吸速率隨時(shí)間呈“升-降-升-降”的變化趨勢(shì),其中T3Aa-23處理的果實(shí)呼吸速率始終高于T1-23和T2-23,T1-23和T2-23的呼吸速率相近;貯藏第24天,T1-23、T2-23和T3Aa-23處理的果實(shí)呼吸速率分別是第0天的1.61倍、1.46倍和3.24倍,T3Aa-23處理的果實(shí)呼吸速率分別高出T1-23和T2-23處理110.10%和152.39%(圖5)。
2.6.4 不同授粉品種處理對(duì)貯藏期果實(shí)可溶性固形物含量的影響 2022年貯藏期間,T1-22處理的果實(shí)TSS含量始終顯著高于T3Ad-22;貯藏第8天,T1-22處理的果實(shí)TSS含量分別比T2-22和T3Ad-22顯著提高21.94%和15.97%(圖6-A)。2023年貯藏第24天,T1-23、T2-23和T3Aa-23處理的果實(shí)TSS含量分別為16.67%、16.43%和16.73%,三者無(wú)顯著差異;分別是第0天的2.19倍、2.12倍和2.47倍(圖6-B)。
2.6.5 不同授粉品種處理對(duì)貯藏期果實(shí)維生素C和可滴定酸含量的影響 2023年貯藏期間各授粉處理果實(shí)的維生素C含量變化趨勢(shì)不一致。貯藏第24天,各授粉處理無(wú)顯著差異,相較于第0天,T1-23、T2-22和T3Aa-23處理的果實(shí)維生素C含量分別降低了25.86%、32.76%和39.68%(圖7-A)。
2023年貯藏期間各授粉處理果實(shí)的TA含量變化趨勢(shì)不一致。在貯藏第0、4、8和24天,T3Aa-23處理的果實(shí)TA含量顯著高于T2-23和T1-23。貯藏第24天,T1-23、T2-23和T3Aa-23處理的果實(shí)TA含量相較于第0天分別降低了34.14%、22.43%和37.41%(圖7-B)。
3 討 論
湘獼棗作為一個(gè)軟棗獼猴桃新品種,品質(zhì)優(yōu)良,風(fēng)味獨(dú)特,但目前還未配置授粉樹(shù),要求授粉樹(shù)與雌株花期相遇、花粉量大且親和性好,湘獼棗的廣泛推廣還需解決授粉樹(shù)配置問(wèn)題。筆者在本研究中的結(jié)果表明,DWSR1和NER1可作為湘獼棗的適宜授粉樹(shù),授粉后果大質(zhì)優(yōu)、風(fēng)味濃郁。
花粉活力對(duì)授粉成效有重要影響,而花粉類(lèi)型[28]、環(huán)境條件[29]、不同發(fā)育階段[30]、脫藥時(shí)間[31]、干燥方式[32]、貯藏條件[33]等影響花粉活力。筆者在本研究中使用的R2px2花粉并非當(dāng)年收集,故其花粉活力最低,可能是其坐果率在種內(nèi)花粉中最低的原因。獼猴桃種間雜交的雜交不親和性體現(xiàn)在種間授粉速度慢和種胚生長(zhǎng)異常導(dǎo)致的坐果率低、種子數(shù)量少和單果質(zhì)量較小[13],與筆者在本研究中發(fā)現(xiàn)的AASAH1授粉處理的坐果率低的情況相似,說(shuō)明長(zhǎng)葉獼猴桃和軟棗獼猴桃雜交不親和。
不同倍性的花粉顯著影響獼猴桃坐果率、單果質(zhì)量和種子千粒質(zhì)量等性狀。二倍體中華獼猴桃雄株花粉給四倍體軟棗獼猴桃授粉處理的坐果率遠(yuǎn)低于四倍體軟棗獼猴桃和六倍體美味獼猴桃[34],表明低倍性花粉和高倍性花粉授粉處理所產(chǎn)生的影響是有差異的,這與本研究結(jié)果一致。不同授粉時(shí)間影響果實(shí)生長(zhǎng),海沃德和徐香開(kāi)花后前3 d授粉的坐果率和單果質(zhì)量均大于開(kāi)花后4~7 d [35],AU Fitzgerald有效授粉期為4~5 d,且在第5天授粉的單果質(zhì)量和種子數(shù)量降低[36]。筆者在本研究中發(fā)現(xiàn),2023年DWSR1因花期稍晚于湘獼棗雌株,授粉時(shí)間為花后第7天,其余處理為開(kāi)花后前3 h,授粉時(shí)間的不同可能是T1-23與其他處理的坐果率和果實(shí)品質(zhì)存在差異的原因之一。而T2-22的坐果率遠(yuǎn)低于T1-22的原因可能是T2-22與T1-22授粉時(shí)間相同,此時(shí)NER1處于盛花期,而DWSR1處于大蕾期,故T2-22花粉活力可能下降,導(dǎo)致坐果率較低。
授粉后子房?jī)?nèi)源激素的含量和比值是影響雌株坐果率的關(guān)鍵因素。筆者在本研究中對(duì)湘獼棗授粉后子房中內(nèi)源激素分析的結(jié)果表明,在授粉后100~120 h內(nèi),T1-23和T3Aa-23處理的子房GA3含量都有上升的趨勢(shì);同時(shí)各處理的子房IAA含量均保持上升的趨勢(shì);雖然T4-23處理的子房IAA含量在各處理之間相對(duì)不低,但其ABA含量在授粉后30 h之后逐漸上升,T1-23和T2-23處理的子房ABA含量呈波動(dòng)式變化,T3Aa-23處理的子房ABA含量逐漸下降,直至授粉后120 h時(shí),T4-23授粉處理的子房ABA含量遠(yuǎn)高于其他處理。相關(guān)研究表明,火龍果的花、果從盛花期到坐果期內(nèi)GA3、IAA和ABA含量均呈上升趨勢(shì)[37]。百合在授粉后8 h內(nèi),雌蕊的ABA含量變化與IAA、GA3含量變化呈相反的趨勢(shì)[38],與本研究中獼猴桃在授粉后45 h內(nèi)子房激素含量變化相似。由此可見(jiàn),花粉不親和性與授粉后高水平的ABA有關(guān)。油茶在授粉48 h后的雌蕊中GA3/ABA、IAA/ABA和(GA3+IAA+ZR)/ABA的比值均呈上升的趨勢(shì)[39],這一結(jié)果與本研究中T1-23和T3Aa-23授粉處理在授粉100 h后的結(jié)果相似;雖然T2-23授粉處理的各激素間比值在該時(shí)期呈下降趨勢(shì),但其在授粉后55 h和100 h的GA3和IAA含量較高,達(dá)到一定積累量,為后續(xù)有效坐果奠定基礎(chǔ)。
在本研究中,不同授粉品種對(duì)湘獼棗果實(shí)質(zhì)量、果實(shí)形狀、硬度、干物質(zhì)含量、可溶性固形物含量和可滴定酸含量都有顯著影響,其中T3Aa-23的平均單果質(zhì)量顯著小于其他處理,推測(cè)可能是由于花粉為2022年采集,貯藏時(shí)間較長(zhǎng)降低了花粉活力,花粉管萌發(fā)力下降從而受精不充分,這與關(guān)于獼猴桃花粉耐貯性影響果實(shí)品質(zhì)性狀的研究結(jié)果相同[40]。干物質(zhì)和可溶性固形物含量作為軟棗獼猴桃的采收指標(biāo),在采收時(shí),T3Aa-23處理果實(shí)的這兩個(gè)指標(biāo)水平均顯著低于其他處理,表明不同花粉來(lái)源對(duì)果實(shí)成熟期存在明顯影響,這與授粉品種對(duì)黑穗醋栗成熟期影響顯著的研究結(jié)果一致[41]。在果實(shí)貯藏期間,T3Aa-23果實(shí)呼吸速率較高,且硬度下降速度相對(duì)更快,說(shuō)明授粉品種可能影響果實(shí)耐貯性,這與關(guān)于金魁獼猴桃授粉品種影響其貯藏性能的研究結(jié)果相似[11]。在本研究中,2023年DWSR1和NER1授粉處理的單果質(zhì)量和果形指數(shù)均大于2022年,產(chǎn)生差異的原因可能是授粉方式和環(huán)境氣候的不同,2023年果實(shí)的可溶性固形物和干物質(zhì)含量均低于2022年的原因可能是采收時(shí)間較早,2022年采收時(shí)出現(xiàn)了一定的落果現(xiàn)象,故2023年采收時(shí)間提前。
筆者在本研究中探討了植物內(nèi)源激素在授粉不親和過(guò)程中的作用,研究了授粉品種對(duì)果實(shí)成熟期的影響,為從分子生物學(xué)水平研究軟棗獼猴桃花粉直感提供了生理基礎(chǔ),也為該新品種的后續(xù)栽培管理及優(yōu)質(zhì)高效生產(chǎn)奠定了基礎(chǔ)。但筆者在本研究中的授粉品種的數(shù)量較少,未來(lái)可進(jìn)一步探索增加種內(nèi)品種授粉組合,并重復(fù)美味獼猴桃花粉及NER1授粉處理。
4 結(jié) 論
通過(guò)使用不同授粉品種花粉處理軟棗獼猴桃湘獼棗,分析不同授粉處理間果實(shí)生長(zhǎng)與品質(zhì)的差異。結(jié)果表明,以長(zhǎng)葉獼猴桃花粉授粉處理作為種間授粉,坐果率極低;種內(nèi)授粉中DWSR1和NER1授粉處理的果實(shí)品質(zhì)均較高,大圍山軟棗獼猴桃雄株DWSR1和NER1可作為湘獼棗的適宜授粉樹(shù)。
參考文獻(xiàn) References:
[1] 黃宏文,龔俊杰,王圣梅,何子燦,張忠慧,李建強(qiáng). 獼猴桃屬(Actinidia)植物的遺傳多樣性[J]. 生物多樣性,2000,8(1):1-12.
HUANG Hongwen,GONG Junjie,WANG Shengmei,HE Zican,ZHANG Zhonghui,LI Jianqiang. Genetic diversity in the genus Actinidia[J]. Chinese Biodiversity,2000,8(1):1-12.
[2] 黃宏文. 獼猴桃屬:分類(lèi)、資源、馴化、栽培[M]. 北京:科學(xué)出版社,2013:50-52.
HUANG Hongwen. Actinidia taxonomy germplasm domestication cultivation[M]. Beijing:Science Press,2013:50-52.
[3] COIMBRA S,TORR?O L,ABREU I. Programmed cell death induces male sterility in Actinidia deliciosa female flowers[J]. Plant Physiology and Biochemistry,2004,42(6):537-541.
[4] NEBEL B R. Metaxenia in apples[J]. Journal of Heredity,1936,27(9):345-350.
[5] SABIR A. Xenia and metaxenia in grapes:Differences in berry and seed characteristics of maternal grape cv. ‘Narince (Vitis vinifera L.) as influenced by different pollen sources[J]. Plant Biology,2015,17(2):567-573.
[6] ZHANG H P,LIU C H,YAO J L,DENG C H,CHEN S L,CHEN J J,WANG Z H,YU Q M,CHENG Y J,XU J. Citrus mangshanensis pollen confers a Xenia effect on linalool oxide accumulation in pummelo fruit by enhancing the expression of a cytochrome P450 78A7 gene CitLO 1[J]. Journal of Agricultural and Food Chemistry,2019,67(34):9468-9476.
[7] GUPTON C L. Evidence of xenia in blueberry[C]//International Society for Horticultural Science,VI International Symposium on Vaccinium Culture,August 12,1996,Maine,Orono:Acta Horticulturae,1996,446:119-124.
[8] CALLAN N W,LOMBARD P B. Pollination effects on fruit and seed development in ‘Comice pear[J]. Journal of the American Society for Horticultural Science,1978,103(4):496-500.
[9] OLFATI J A,SHEYKHTAHER Z,QAMGOSAR R,KHASMAKHI-SABET A,PEYVAST G,SAMIZADEH H,RABIEE B. Xenia and metaxenia on cucumber fruit and seed characteristics[J]. International Journal of Vegetable Science,2010,16(3):243-252.
[10] PIOTTO F A,BATAGIN-PIOTTO K D,DE ALMEIDA M,OLIVEIRA G C X. Interspecific xenia and metaxenia in seeds and fruits of tomato[J]. Scientia Agricola,2013,70:102-107.
[11] 陳慶紅,張忠慧,秦仲麒,蔣迎春. 金魁獼猴桃的雄株選配及其花粉直感研究[J]. 中國(guó)果樹(shù),1996(2):23-24.
CHEN Qinghong,ZHANG Zhonghui,QIN Zhongqi,JIANG Yingchun. Study on the selections of male plants and its xenia effects in Jinkui kiwifruit[J]. China Fruits,1996(2):23-24.
[12] SEAL A G,DUNN J K,JIA Y L. Pollen parent effects on fruit attributes of diploid Actinidia chinensis ‘Hort16A kiwifruit[J]. New Zealand Journal of Crop and Horticultural Science,2013,41(4):219-229.
[13] 齊秀娟,徐善坤,張威遠(yuǎn),林苗苗,方金豹. 美味獼猴桃‘徐香與長(zhǎng)果獼猴桃遠(yuǎn)緣雜交親和性的解剖學(xué)研究[J]. 園藝學(xué)報(bào),2013,40(10):1897-1904.
QI Xiujuan,XU Shankun,ZHANG Weiyuan,LIN Miaomiao,F(xiàn)ANG Jinbao. Studies on compatibility of interspecific hybridization between Actinidia deliciosa ‘Xuxiang and A. longicarpa by anatomy[J]. Acta Horticulturae Sinica,2013,40(10):1897-1904.
[14] STASIAK A,LATOCHA P,DRZEWIECKI J,HALLMANN E,NAJMAN K,LEONTOWICZ H,LEONTOWICZ M,?ATA B. The choice of female or male parent affects some biochemical characteristics of fruit or seed of kiwiberry (Actinidia arguta)[J]. Euphytica,2019,215(3):52.
[15] 李偉才,魏永贊,胡會(huì)剛,石勝友,王一承,謝江輝. 3種無(wú)核荔枝果實(shí)發(fā)育過(guò)程中內(nèi)源激素含量變化動(dòng)態(tài)[J]. 熱帶作物學(xué)報(bào),2011,32(6):1042-1045.
LI Weicai,WEI Yongzan,HU Huigang,SHI Shengyou,WANG Yicheng,XIE Jianghui. Dynamic changes of endogenous hormone contents in the pericarp of seedless litchi during fruit growth and development[J]. Chinese Journal of Tropical Crops,2011,32(6):1042-1045.
[16] CHENG X,RUYTER-SPIRA C,BOUWMEESTER H. The interaction between strigolactones and other plant hormones in the regulation of plant development[J]. Frontiers in Plant Science,2013,4:199.
[17] 李曉艷,王振興,秦紅艷,范書(shū)田,艾軍. 軟棗獼猴桃雌雄株花蕾發(fā)育過(guò)程中內(nèi)源激素的動(dòng)態(tài)變化[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,38(3):281-286.
LI Xiaoyan,WANG Zhenxing,QIN Hongyan,F(xiàn)AN Shutian,AI Jun. Dynamic variation of endogenous hormone during male and female flower buds development of Actinidia arguta[J]. Journal of Jilin Agricultural University,2016,38(3):281-286.
[18] 李堯,張坤,周源潔,劉芯伶,夏惠,鄧紅紅,梁東. 枝蔓牽引對(duì)金艷獼猴桃生長(zhǎng)的影響[J]. 果樹(shù)學(xué)報(bào),2022,39(3):406-415.
LI Yao,ZHANG Kun,ZHOU Yuanjie,LIU Xinling,XIA Hui,DENG Honghong,LIANG Dong. Effect of traction of branches on the growth of Jinyan kiwifruit[J]. Journal of Fruit Science,2022,39(3):406-415.
[19] 袁月,代志國(guó),張丙秀,王天鶴,張昭,姜婷,蔚明月. 自然越冬期軟棗獼猴桃枝條組織結(jié)構(gòu)及內(nèi)源激素的變化特征[J]. 西北植物學(xué)報(bào),2020,40(2):279-286.
YUAN Yue,DAI Zhiguo,ZHANG Bingxiu,WANG Tianhe,ZHANG Zhao,JIANG Ting,YU Mingyue. Changes in tissue structure and endogenous hormones of Actinidia arguta branches during over-wintering period[J]. Acta Botanica Boreali-Occidentalia Sinica,2020,40(2):279-286.
[20] 魯敏,黃亞欣,王國(guó)立,安華明. ‘貴長(zhǎng)獼猴桃果實(shí)內(nèi)源激素的動(dòng)態(tài)分布及含量變化與果實(shí)形狀發(fā)育的關(guān)系[J]. 植物生理學(xué)報(bào),2020,56(10):2159-2167.
LU Min,HUANG Yaxin,WANG Guoli,AN Huaming. The correlation between the dynamic distribution and content of endogenous hormones and the kiwi fruit shape during ‘Guichang fruits development[J]. Plant Physiology Journal,2020,56(10):2159-2167.
[21] 王利新. 軟棗獼猴桃果實(shí)發(fā)育與內(nèi)源激素含量變化關(guān)系的研究[D]. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2023.
WANG Lixin. Study on the relationship between fruit development and changes of endogenous hormone content of Actinidia arguta[D]. Changchun:Jilin Agricultural University,2023.
[22] 牟建莉,黃晗羽,陳夢(mèng)潔,唐育輝,王仁才,羅飛雄. 軟棗獼猴桃新品種湘獼棗的選育[J]. 果樹(shù)學(xué)報(bào),2024,41(1):187-192.
MOU Jianli,HUANG Hanyu,CHEN Mengjie,TANG Yuhui,WANG Rencai,LUO Feixiong. Breeding report of a new Actinidia arguta cultivar Xiangmizao[J]. Journal of Fruit Science,2024,41(1):187-192.
[23] 錢(qián)崢. 獼猴桃液體授粉配方的優(yōu)化及授粉效果評(píng)價(jià)[D]. 楊凌:西北農(nóng)林科技大學(xué),2021.
QIAN Zheng. Optimization of liquid pollination formula & evaluation of pollination effect of kiwifruit[D]. Yangling:Northwest A & F University,2021.
[24] 朱莉莉,陳雅雯,王棚濤,馬同森,張君麗. HPLC-MS/MS同時(shí)測(cè)定植物6種內(nèi)源激素含量方法的優(yōu)化[J]. 河南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,50(3):298-304.
ZHU Lili,CHEN Yawen,WANG Pengtao,MA Tongsen,ZHANG Junli. Optimization of HPLC-MS/MS method for simultaneous quantification of six classes of endogenous hormones in plants[J]. Journal of Henan University (Natural Science),2020,50(3):298-304.
[25] 劉磊,李爭(zhēng)艷,雷華,高本旺,趙佳,李薇. 30個(gè)獼猴桃品種(單株)主要果實(shí)品質(zhì)特征的綜合評(píng)價(jià)[J]. 果樹(shù)學(xué)報(bào),2021,38(4):530-537.
LIU Lei,LI Zhengyan,LEI Hua,GAO Benwang,ZHAO Jia,LI Wei. Comprehensive evaluation of main fruit quality characteristics with 30 kiwifruit cultivars (strains)[J]. Journal of Fruit Science,2021,38(4):530-537.
[26] 張艷霞,呂丹桂,耿康奇,王寧,王瑞,王振平. 水分脅迫對(duì)赤霞珠葡萄果實(shí)品質(zhì)和甲氧基吡嗪含量的影響[J]. 果樹(shù)學(xué)報(bào),2022,39(6):1017-1028.
ZHANG Yanxia,L? Dangui,GENG Kangqi,WANG Ning,WANG Rui,WANG Zhenping. Effects of water stress on grape quality and content of methoxypyrazines in Cabernet Sauvignon[J]. Journal of Fruit Science,2022,39(6):1017-1028.
[27] 田彥龍,馬永強(qiáng),王磊,郭青云,陳紅雨. 西北不同生態(tài)區(qū)甜櫻桃果實(shí)品質(zhì)分析[J]. 果樹(shù)學(xué)報(bào),2021,38(4):509-519.
TIAN Yanlong,MA Yongqiang,WANG Lei,GUO Qingyun,CHEN Hongyu. Quality analysis of sweet cherry fruits in different ecological areas in Northwest China[J]. Journal of Fruit Science,2021,38(4):509-519.
[28] 胡晉. 花粉的保存和生活力測(cè)定[J]. 種子,1992,11(6):33-35.
HU Jin. Pollen preservation and viability determination[J]. Seed,1992,11(6):33-35.
[29] 李釗. 開(kāi)花期低溫對(duì)花生開(kāi)花及結(jié)實(shí)特性的影響[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2022.
LI Zhao. Effects of low temperature at flowering stage flowering and fruiting characteristics of peanut[D]. Shenyang:Shenyang Agricultural University,2022
[30] 蔡昭艷,董龍,王葫青,邱文武,蘇偉強(qiáng),任惠,王小媚,方位寬,黃章保,鄧彪,劉業(yè)強(qiáng). 百香果花不同發(fā)育階段花粉活力、柱頭可授性及其對(duì)坐果的影響[J]. 果樹(shù)學(xué)報(bào),2023,40(5):969-977.
CAI Zhaoyan,DONG Long,WANG Huqing,QIU Wenwu,SU Weiqiang,REN Hui,WANG Xiaomei,F(xiàn)ANG Weikuan,HUANG Zhangbao,DENG Biao,LIU Yeqiang. Pollen viability,stigma receptivity and their effect on fruit set of passionfruit at different flower developmental stages[J]. Journal of Fruit Science,2023,40(5):969-977.
[31] 陳厚錫,楊技超,王勝艷,潘麗珊,羅充,李葦潔. 影響獼猴桃花粉活力的因素探討[J]. 中國(guó)果樹(shù),2021(9):59-62.
CHEN Houxi,YANG Jichao,WANG Shengyan,PAN Lishan,LUO Chong,LI Weijie. Discussion on the factors of affecting the activity of kiwifruit polle[J]. China Fruits,2021(9):59-62.
[32] 姚春潮,龍周俠,劉旭峰,王西芳. 不同干燥及貯藏方法對(duì)獼猴桃花粉活力的影響[J]. 北方園藝,2010(20):37-39.
YAO Chunchao,LONG Zhouxia,LIU Xufeng,WANG Xifang. Effects of different dryness and storage methods on pollen viability in Actinidia deliciosa[J]. Northern Horticulture,2010(20):37-39.
[33] 陳永安,陳鑫,劉艷飛. 采粉期及貯藏條件對(duì)獼猴桃花粉生活力的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(8):157-160.
CHEN Yongan,CHEN Xin,LIU Yanfei. Effects of different collecting pollen periods and storage conditions on pollen viability of kiwifruit[J]. Journal of Northwest A & F University (Natural Science Edition),2012,40(8):157-160.
[34] 李志,方金豹,齊秀娟,林苗苗,陳錦永,顧紅. 不同倍性雄株對(duì)軟棗獼猴桃坐果及果實(shí)性狀的影響[J]. 果樹(shù)學(xué)報(bào),2016,33(6):658-663.
LI Zhi,F(xiàn)ANG Jinbao,QI Xiujuan,LIN Miaomiao,CHEN Jinyong,GU Hong. Effects of male plants with different ploidy on the fruit set and fruit characteristics in Actinidia arguta kiwifruit[J]. Journal of Fruit Science,2016,33(6):658-663.
[35] 白雪,劉占德,李建軍,王西芳,蔣宏勤,姚春潮. 獼猴桃花后不同天數(shù)授粉效果研究[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(7):166-168.
BAI Xue,LIU Zhande,LI Jianjun,WANG Xifang,JIANG Hongqin,YAO Chunchao. Study on pollination effect of different days after flowering for kiwifruit[J]. Jiangsu Agricultural Sciences,2020,48(7):166-168.
[36] BRANTLEY A K,SPIERS J D,THOMPSON A B,PITTS J A,KESSLER J R,WRIGHT A N,CONEVA E D. Effective pollination period of Actinidia chinensis ‘AU Golden Sunshine and A. deliciosa ‘AU Fitzgerald kiwifruit[J]. HortScience,2019,54(4):656-660.
[37] 張瀚,楊福孫,胡文斌,孫會(huì)舉,李洪立. 火龍果生長(zhǎng)發(fā)育過(guò)程中內(nèi)源激素含量變化[J]. 江蘇農(nóng)業(yè)科學(xué),2022,50(10):110-116.
ZHANG Han,YANG Fusun,HU Wenbin,SUN Huiju,LI Hongli. Changes of endogenous hormone content during growth of pitaya[J]. Jiangsu Agricultural Sciences,2022,50(10):110-116.
[38] 楊曉苓,楊利平,尚愛(ài)芹,劉鳳欒. 百合授粉親和性與雌蕊中保護(hù)酶和激素的關(guān)系[J]. 園藝學(xué)報(bào),2009,36(6):855-860.
YANG Xiaoling,YANG Liping,SHANG Aiqin,LIU Fengluan. Relationship between protective enzymes,endogenous hormones in pistil and pollination compatibility of Lilium[J]. Acta Horticulturae Sinica,2009,36(6):855-860.
[39] 杜明,于旭東,吳繁花. 海南油茶授粉后雌蕊內(nèi)源激素的動(dòng)態(tài)變化[J]. 熱帶生物學(xué)報(bào),2023,14(2):173-177.
DU Ming,YU Xudong,WU Fanhua. Dynamic changes of endogenous hormones in self-pollinated and cross-pollinated pistils of two Camellia species in Hainan[J]. Journal of Tropical Biology,2023,14(2):173-177.
[40] SEYREK U A,LUO M,ZHONG M,HUANG C H,TAO J J,QU X Y,XU X B. Effects of stored pollens from wild Actinidia eriantha vines on some fruit quality traits[J]. Agricultural Sciences,2017,8:465-478.
[41] 高洪娜,張武杰,劉鳳芝,周文志,湯佳翰,徐德海,張帥. 黑穗醋栗晚豐花粉直感效應(yīng)研究[J]. 種子,2023,42(7):91-95.
GAO Hongna,ZHANG Wujie,LIU Fengzhi,ZHOU Wenzhi,TANG Jiahan,XU Dehai,ZHANG Shuai. Study on the Xenia of Wanfeng Ribes nigrum L.[J]. Seed,2023,42(7):91-95.