何坤 郭洋俊驍 趙世蓮



摘 要:最優性條件在優化問題中起著重要的作用,它為優化算法的研究提供了重要的理論依據。眾所周知,凸規劃方面最優性條件已比較完善。然而,由于擬凸函數性質的特殊性,對于擬凸規劃問題解的Karush-Kuhn-Tucker(KKT)類型最優性條件的研究相對較少。本文利用半擬可微刻畫了擬凸規劃的最優性條件,同時研究了可行集法錐與帶半擬可微性質的約束函數之間的關系,并證明了上述兩個結果與Greenberg-Pierskalla次微分的關系。
關鍵詞:半擬可微;次微分;擬凸規劃;最優性條件;法錐
中圖分類號:O224 文獻標志碼:A文章編號:1673-5072(2024)02-0150-05
擬凸函數及其性質的研究因其在數學、經濟學、圖像處理和機器學習等各個科學技術領域的應用而受到廣泛關注[1-6]。在優化問題的研究中,最優性條件起著重要的作用。對于凸規劃和擬凸規劃問題,許多學者通過使用一些次微分,引入了各種類型的充分和必要最優性條件。然而,關于不可微擬凸規劃的Karush-Kuhn-Tucker型(KKT型)最優性條件的結果并不多。
本文研究如下帶不等式約束的擬凸規劃問題:
minf(x),x∈K,(1)
近年來,在沒有凸性的假設下,利用上正則凸化器逼近非凸函數得到非凸問題的最優性條件被廣泛討論。Kabgani[7]介紹了函數的半擬可微性質作為上正則凸化器的推廣,并在擬凸的假設下用半擬可微刻畫了函數的GP次微分。Suzuki[1]利用GP次微分證明了本質擬凸規劃的充要KKT型最優性條件,但對于一般擬凸規劃問題的KKT型最優性條件并沒有研究,又因半擬可微性質良好,故想利用函數的半擬可微性質刻畫問題(1)的KKT型最優性條件,同時研究問題(1)中可行集法錐與帶半擬可微性質的約束函數之間的關系,最終形成一套完整的體系。
1 預備知識
2 一些引理
易知引理6—7成立:
3 主要結果
考慮問題(1),有以下定理:
證明 首先證明
參考文獻:
[1] SUZUKI S.Karush-Kuhn-Tucker type optimality condition for quasiconvex programming in terms of Greenberg-Pierskalla subdifferential[J].Journal of Global Optimization,2021,79(1):191-202.
[2] AGRAWAL A,BOYD S.Disciplined quasiconvex programming[J].Optimization Letters,2020,14(7):1643-1657.
[3] HISHINUMA K,IIDUKA H.Fixed point quasiconvex subgradient method[J].European Journal of Operational Research,2020,282(2):428-437.
[4] PLASTRIA F.On the structure of the weakly efficient set for quasiconvex vector minimization[J].Journal of Optimization Theory and Applications,2020,184(2):547-564.
[5] SUZUKI S.Optimality conditions and constraint qualifications for quasiconvex programming[J].Journal of Optimization Theory and Applications,2019,183(3):963-976.
[6] ZHANG X,HE Z,ZHANG X,et al.High-performance beampattern synthesis via linear fractional semidefinite relaxation and quasi-convex optimization[J].IEEE Transactions on Antennas and Propagation,2018,66(7):3421-3431.
[7] KABGANI A.Characterization of nonsmooth quasiconvex functions and their Greenberg-Pierskallas subdifferentials using semi-quasidifferentiability notion[J].Journal of Optimization Theory and Applications,2021,189(2):666-678.
[8] GREENBERG H J,PIERSKALLA W P.Quasi-conjugate functions and surrogate duality[J].Cahiers du Centre Détude de Recherche Operationelle,1973,15:437-448.
[9]HIRIART-URRUTY J B,LEMARECHEL C.Convex analysis and minimization algorithms II[M].Heidelberg:Springer Berlin,1993.
[10]劉普寅.凸集支撐函數的性質及其應用[J].國防科技大學學報,1990(3):25-31.
[11]梅家騮.廣義凸集的切錐[J].南昌大學學報(理科版),1990(4):24-30.
[12]ROCKAFELLAR R T.Convex Analysis[M].Princeton:Princeton University Press,1970.
[13]PENOT J P.Characterization of solution sets of quasiconvex programs[J].Journal of Optimization Theory and Applications,2003,117(3):627-636.
Karush-Kuhn-Tucker Type Optimality Conditionsfor Semi-quasi-differentiable Quasi-convex Programming
Abstract:As optimality condition plays an important role in the optimization problem,it provides an important theoretical basis for the study of optimization algorithm.It is well known that the optimality condition of convex programming has been relatively perfect.However,there are only few studies on Karush-Kuhn-Tucker type optimality conditions for the solutions of quasi-convex programming problems due to the special nature of quasi-convex functions.In this paper,the optimality conditions of quasi-convex programming are characterized by semi-quasi-differentiable,and the relationship between the feasible set normal cone and the constraint function with semi-quasi-differentiable properties is studied as well.In addition,the relationship between the above two results and Greenberg-Pierskalla subdifferential is proved.
Keywords:semi-quasi-differentiable;subdifferential;quasi-convex programming;optimality conditions;normal cone