





摘要:通過盆栽試驗研究了三維電場對博落回修復鈾污染土壤性能的強化作用。結果表明:與二維電場相比,三維電場與博落回耦合可使博落回地上和地下部分鈾質量分數分別提高17.14 %和43.3 %,干生物量分別提高40.4 %和37.6 %,土壤中可交換態鈾石比提高10百分點,改變了博落回體內鈾的亞細胞分布,增加了鈾在博落回體內的積累,促進鈾向博落回細胞器內轉移,其中莖部鈾的轉移更為明顯。三維電場可進一步強化博落回對鈾污染土壤的修復作用,是一種具有潛在應用前景的強化植物修復方法。
關鍵詞:三維電場;植物修復;博落回;鈾污染;土壤;生物修復
中圖分類號:TD167"X53"""""""""文章編號:1001-1277(2024)08-0112-05
文獻標志碼:Adoi:10.11792/hj20240818
引"言
天然鈾資源開采過程中會產生大量的鈾尾礦及含鈾溶液,其在人為或自然等因素影響下可能會進入到土壤中,從而導致土壤鈾污染,對人體健康產生較大威脅。目前,鈾污染土壤修復方法主要有自然衰減法、物理法、化學法及生物法[1]。生物修復技術主要分為植物修復技術和微生物修復技術,其中,植物修復技術可實現污染物的原位去除,是生物修復技術的研究熱點[2]。但是,單一植物修復技術在應用過程中仍存在一定的問題,如修復效率較低、易受環境影響、修復周期較長等[3]。因此,植物修復技術與其他技術聯合有望解決單一植物修復技術存在的弊端[4-5]。
電動強化植物修復技術主要利用電場有效地將可溶性帶電污染物驅向植物根系,增加金屬的生物有效性,促進植物對污染物的吸收與積累[6-8]。目前,電動強化植物修復技術的研究中,電動修復體系通常為二維電極體系,其在運行過程中具有一定的缺陷,如pH依賴性、濃差極化及二次電化學反應等[9-10]。三維電極法是一種新型的化學處理技術,通過在傳統電解槽兩端電極間裝填碎屑或粒狀工作電極材料,使其表面帶電形成第三極,加強水解和傳質,提高反應效率[11-12]。因此,第三極材料的理化性質對三維電極法的性能起關鍵作用[13-14]。生物質導電炭具有優良的導電性,可作為第三極材料用于構建三維電場修復體系[15]。有研究表明,在植物修復過程中向土壤基質中添加適宜濃度的生物炭材料可提高植物對重金屬的積累及轉運,促進植物根、莖、葉的生長,同時緩解重金屬誘發的氧化脅迫損傷[16-17]。此外,在土壤中添加生物炭材料可提高土壤孔隙率、持水性能、pH、速效鉀及有機質含量[18]。與普通導電炭材料相比,導電炭氣凝膠材料表現出更大的比表面積和豐富的孔結構,且可保持三維結構[19],同時有望改善土壤條件。
本文以廢棄咖啡渣作為原料,經凝膠化、高溫催化炭化處理制備導電炭氣凝膠材料,構建三維電場修復體系,研究三維電場修復體系對博落回電動耦合體系修復鈾污染土壤性能的強化作用,并通過分析博落回體內酶活性、植物根際土壤中鈾結合形態變化、鈾在植物體內亞細胞分布,揭示三維電場強化博落回-電動耦合體系修復鈾污染土壤的作用機制,以期建立三維電場-植物修復耦合體系強化博落回修復鈾污染土壤的方法。
1"材料與方法
1.1"試驗材料
1.1.1"供試土壤
供試土壤由無污染土壤與U3O8溶液配制而成,其中無污染土壤取自南華大學校園表層土(0~20 cm)。具體配制過程如下:首先,將無污染土壤去除樹葉和大石塊后過60目篩,取篩下土壤樣品置于高壓滅菌鍋(121 ℃、101 kPa)中滅菌2 h;然后,將2.9 L 1 g/L U(Ⅵ)溶液分2次添加到滅菌后的土壤樣品中,攪拌均勻;最后,將混合均勻的土壤樣品穩定60 d,每隔7 d攪拌一次。供試土壤中鈾質量分數為(29.86±0.36)mg/kg。
1.1.2"供試植物
供試博落回由種子萌發后培養獲得,其中博落回種子購買于衡陽市某花鳥市場。具體操作如下:首先,用1 %次氯酸鈉(NaClO)溶液對博落回種子消毒30 min;然后,用無菌水將消毒處理后的博落回種子沖洗3~5遍,并將種子在無菌水中浸泡12 h,以打破種子的休眠;隨后,將種子濾出,晾至半干后播種在已滅菌的營養土中,放置于溫室大棚中發芽2周;最后,選取生長8周且長勢一致的博落回進行盆栽試驗。
1.1.3"導電炭氣凝膠
類腐殖質基水凝膠制備:稱取一定量經水煮后的咖啡渣,加入裝有3 mol/L KOH溶液的燒杯中;將燒杯置于80 ℃水浴加熱器中攪拌3 h后進行固液分離,上清液為類腐殖質(HLSs)溶液;將HLSs溶液與丙烯酸(AA)以體積比2∶1進行混合,再加入交聯劑與引發劑混合均勻,置于80 ℃烘箱中2 h,進行凝膠化處理,得到類腐殖質基水凝膠。
2024年第8期/第45卷""安環與分析安環與分析""黃"金
導電炭氣凝膠制備及表征:將冷凍干燥處理后的類腐殖質基水凝膠置于真空高溫燒結爐中,分別在800 ℃、900 ℃、1 000 ℃和1 100 ℃下進行炭化并保溫1 h,得到不同溫度條件下制備的導電炭氣凝膠;采用四探針測量儀(MG-6)測量導電炭氣凝膠的導電性能。
1.2"修復體系構建
選取生長8周且長勢一致的博落回構建博落回-電動耦合體系(U+P+AC),其中,電極材料為石墨電極,陰極與陽極的電極間距15 cm,電極插入土壤深度15 cm,電場強度1 V/cm,通電時間24 h/d,持續20 d。盆栽試驗在南華大學溫室大棚中進行,共設2個試驗組,每個試驗組設3個平行樣。通過向U+P+AC中的供試土壤加入100 mg/kg導電炭氣凝膠,構建博落回-三維電動耦合體系(U+P+AC+C)。
1.3"測定方法
1.3.1"博落回生物量測定
鮮生物量測定:試驗結束后,分別收集博落回地上與地下部分,用去離子水沖洗干凈,隨后置于20 mmol/L Na2EDTA溶液中浸泡30 min,去除吸附在表面的U,然后用吸水紙吸干表面水分,稱量,即為博落回地上與地下部分鮮生物量。
干生物量測定:將測定鮮生物量后的博落回地上與地下部分置于105 ℃烘箱中殺青30 min,然后將烘箱調溫至70 ℃,烘至恒質量,冷卻后稱量,即得博落回地上與地下部分干生物量。
1.3.2"鈾含量及賦存形態測定
博落回中鈾含量測定:分別取0.2 g殺青后的博落回地上與地下部分加入HNO3-HClO4混合溶液(體積比為4∶1)中,使用石墨消解儀進行消解,待消解完成后,用3 %稀硝酸將上清液定容至25 mL,然后用電感耦合等離子體質譜儀(ICP-MS)測定博落回地上與地下部分中的鈾含量。
土壤中鈾賦存形態測定:采用改進后的Tessier法[20]對土壤中鈾賦存形態進行測定,其中鈾濃度采用ICP-MS測定。
1.3.3"博落回體內相關酶活性
利用上海柯意哲科學實驗室生產的試劑盒,測定植物地上部分過氧化物酶(POD)、超氧化物歧化酶(SOD)、丙二醛(MDA)及過氧化氫酶(CAT)的含量。
1.3.4"亞細胞分布
采用差速離心法對鈾的亞細胞分布進行測定。細胞壁和細胞器組分采用石墨消解法進行消解,ICP-MS測定消解后的樣品及細胞可溶性樣品中的鈾含量。
2"結果與討論
2.1"導電炭氣凝膠表征
不同炭化溫度下制備的導電炭氣凝膠電阻率變化曲線見圖1。從圖1可以看出:隨著炭化溫度的升高,導電炭氣凝膠的電阻率先降低后上升,1 000 ℃時電阻率達最低值。當炭化溫度低于1 000 ℃時,導電炭內部的羰基和脂肪族官能團被破壞,內部分子結構重排,芳構化程度、結晶度和石墨化程度增強,從而導致其電阻率隨溫度升高而降低[21-22]。當炭化溫度高于1 000 ℃時,隨著炭化溫度繼續升高,導電炭中的揮發分析出減少,絡合作用變弱,且石墨化程度趨于穩定,因此電阻率隨溫度升高略有上升。綜合考慮,選用炭化溫度為1 000 ℃的導電炭氣凝膠作為第三極材料。
2.2"三維電場對土壤pH的影響
不同處理組陰陽極土壤pH變化見圖2。從圖2可以看出:在為期20 d電場強度為1 V/cm的直流電源作用下,2個處理組中陽極與陰極土壤分別出現明顯的酸化與堿化,其中U+P+AC+C組陰極與陽極土壤pH的差值小于U+P+AC組。這表明三維電場可有效降低電動修復對土壤pH的影響。事實上,三維電極作為微電極,可在土壤中產生額外的H+和OH-,在第三極顆粒周圍形成小的酸性/堿性區域,能夠中和從主電極遷移的H+/OH-[23],從而能夠減緩土壤酸化的趨勢,避免pH急劇變化。
2.3"三維電場對博落回鈾富集性能的影響
不同處理組博落回鈾富集性能和干生物量見圖3。從圖3-a可以看出:與U+P+AC組相比,U+P+AC+C組中博落回地上部分和地下部分的U質量分數分別增加了17.4 %和43.3 %,富集系數提高了43.6 %。這表明三維電場對博落回鈾富集性能的提升效果較為顯著。此外,U+P+AC+C組地上、地下部分干生物量比U+P+AC組分別提高了40.4 %和37.6 %(見圖3-b)。三維電場中的導電炭氣凝膠電極作為微電極,不僅可以加速土壤顆粒上UO2(OH)2的解吸,提高植物根際土壤中有效態鈾的含量,從而增加植物根部對鈾的吸收[24],而且還能中和從主電極遷移的H+/OH-[25],使根際土壤的pH處于一個合適的值,更利于植物生長。
2.4"三維電場對博落回體內抗氧化酶活性的影響
植物在受到重金屬脅迫時,體內會產生大量活性自由基,部分自由基有信號傳遞的作用[26],但過多自由基堆積會對正常植物組織造成過氧化脅迫,進而影響植物的新陳代謝[27]。不同處理組博落回的生理活性指標見圖4。從圖4可以看出:與U+P+AC組相比,U+P+AC+C組具有較低的SOD活性與MDA活性和較高的CAT活性與POD活性,表明三維電場與博落回耦合在減輕鈾脅迫對博落回的傷害方面比二維電場更具優勢。導電炭氣凝膠的缺陷位點和官能團使其可以加速自由基氧化,為植物清除活性氧[28]。同時,電場可引起細胞內蛋白質、糖、脂質等分子的定向排序,含金屬的酶形成一定的構象,活性部位形成一個活性中心,對酶有提前激活作用,從而提高植物抗氧化性能[29-30]。因此,電場與導電炭氣凝膠耦合形成的三維電場能夠有效緩解鈾對博落回的過氧化脅迫。
2.5"三維電場對博落回體內鈾及亞細胞分布的影響
不同處理組博落回根、莖、葉的細胞器中鈾質量分數及亞細胞分布見圖5。從圖5-a)可以看出:U+P+AC+C組博落回的根、莖、葉中鈾質量分數均高于U+P+AC組,說明三維電場可提高博落回對鈾的去除效果。從圖5-b)可以看出:與二維電場相比,三維電場可影響鈾在博落回細胞中的亞細胞分布,促進鈾向博落回細胞器內轉移,尤其根部鈾的轉移更為明顯。鈾不是博落回生長的必需元素,且植物中沒有轉運鈾的通道和轉運蛋白,但鈾可以經由運輸必需元素的渠道進入植物,從而被植物吸收。生物炭中存在鈣(Ca)、鉀(K)、鎂(Mg)和磷(P)等營養物質,可以向土壤釋放養分,促進植物生長[31]。因此,導電炭氣凝膠材料的引入可能會刺激轉運體吸收必需元素,進而促進植物對鈾的吸收和轉運,使鈾轉移至博落回細胞器中。
2.6"三維電場對根際土壤中鈾形態分布的影響
土壤中鈾的化學行為和生物可利用性受鈾的化學形態影響。根據MAENPAA等[32]的研究結果,植物富集鈾的主要形態是可交換態鈾和碳酸鹽結合態鈾。不同處理組根際土壤中鈾形態分布見圖6。從圖6可以看出:與U+P+AC組相比,U+P+AC+C組的可交換態占比提高了10百分點,碳酸鹽結合態鈾占比降低了11百分點。導電炭氣凝膠材料可以刺激植物分泌大量的有機酸[33],從而分解土壤中部分碳酸鹽結合態鈾和鐵錳氧化物結合態鈾,使可交換態鈾的比例增加,進而被植物吸收[34]。因此,三維電場和博落回的耦合可增強鈾酰離子在土壤中的流動性,提高土壤中可利用態鈾的含量,促進博落回對鈾的去除。
3"結"論
1)三維電場耦合博落回可使博落回地上和地下部分鈾質量分數在U+P+AC組的基礎上分別提高17.4 %和43.3 %。
2)三維電場耦合博落回可使博落回體內CAT活性、POD活性增強,緩解鈾對植物的氧化脅迫,增強博落回對鈾的耐受性。
3)三維電場耦合博落回可使根際土壤中可交換態鈾提高,促進了土壤中鈾從其他形態向生物可利用態轉變,增強鈾從細胞壁和可溶性部分進入細胞器的能力。
[參 考 文 獻]
[1]"ACOSTA-SANTOYO G,CAMESELLE C,BUSTOS E.Electrokinetic-enhanced ryegrass cultures in soilspolluted with organic and inorganic compounds[J].Environmental Research,2017,158:118-125.
[2]"BI R,SCHLAAK M,SIEFERT E,et al.Influence of electrical fields(AC and DC)on phytoremediation of metal polluted soils with rapeseed(Brassica napus)and tobacco(Nicotiana tabacum)[J].Che-mosphere,2010,83(3):318-326.
[3]"CAMESELLE C,CHIRAKKARA A R,REDDY R K.Electrokinetic-enhanced phytoremediation of soils:Status and opportunities[J].Chemosphere,2013,93(4):626-636.
[4]"CHIRAKKARA A R,REDDY R K,CAMESELLE C.Electrokinetic amendment in phytoremediation of mixed contaminated soil[J].Electrochimica Acta,2015,181:179-191.
[5]"EVANGELOU W M,EBEL M,SCHAEFFER A.Chelate assisted phyto-extraction of heavy metals from soil.Effect,mechanism,toxicity,and fate of chelating agents[J].Chemosphere,2007,68(6):989-1 003.
[6]"GUODONG F,JUAN G,CUN L,et al.Key role of persistent free radicals in hydrogen peroxide activation by biochar:Implications to organic contaminant degradation[J].Environmental Science amp; Technology,2014,48(3):1 902-1 910.
[7]"GAVRILESCU M,PAVEL V L,CRETESCU I.Characterization and remediation of soils contaminated with uranium[J].Journal of Ha-zardous Materials,2008,163(2):475-510.
[8]"GONG X,HUANG D,LIU Y,et al.Biochar facilitated the phyto-remediation of cadmium contaminated sediments:Metal behavior,plant toxicity,and microbial activity[J].Science of the Total Environment,2019,666:1 126-1 133.
[9]"HOUBEN D,EVRARD L,SONNET P.Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd,Pb and Zn and the biomass production of rapeseed(Brassica napus L.)[J].Biomass and Bioenergy,2013,57:196-204.
[10]"HUANG T,LIU L,ZHOU L,et al.Operating optimization for the heavy metal removal from the municipal solid waste incineration fly ashes in the three-dimensional electrokinetics[J].Chemosphere,2018,204:294-302.
[11]"HUANG T,LIU L,ZHOU L,et al.Electrokinetic removal of chromium from chromite ore-processing residue using graphite particle-supported nanoscale zero-valent iron as the three-dimensional electrode[J].Chemical Engineering Journal,2018,350:1 022-1 034.
[12]"HUANG T,ZHANG S,LIU L,et al.Graphite particle electrodes that enhance the detoxification of municipal solid waste incineration fly ashes in a three-dimensional electrokinetic platform and its mechanisms[J].Environmental Pollution,2018,243:929-939.
[13]"KEILUWEIT M,NICO P S,JOHNSON M G,et al.Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J].Environmental Science amp; Technology,2010,44(4):1 247-1 253.
[14]"KODAMA Y,SATO K,SUZUKI K,et al.Electron microscope study of the formation of graphitic nanostructures in nickel-loaded wood char[J].Carbon,2012,50(10):3 486-3 496.
[15]"KUWATA K,SAITO Y,SHIDA S,et al.Intercalation of wood charcoal with sulfuric acid[J].Journal of Wood Science,2009,55(2):154-158.
[16]"LI T,WANG Y,GUO S,et al.Effect of polarity-reversal on electrokinetic enhanced bioremediation of pyrene contaminated soil[J].Electrochimica Acta,2016,187:567-575.
[17]"LIU H,WEI Y F,LUO J M,et al.3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water[J].Chemical Engineering Journal,2019,368:639-648.
[18]"LIU S M,YANG B,LIANG Y S,et al.Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils[J].Environmental Science and Pollution Research International,2020,27(14):16 069-16 085.
[19]"MAENPAA A,KUKKONEN J V K,LYDY M J.Remediation of heavy metal-contaminated soils using phosphorus:Evaluation of bioavailability using an earthworm bioassay[J].Archives of Environmental Contamination and Toxicology,2002,43(4):389-398.
[20]"MUKHERJEE A,ZIMMERMAN R A.Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures[J].Geoderma,2013,193:122-130.
[21]"NAWAZ A M,JIAO Y,CHEN C,et al.Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression[J].Journal of Plant Physiology,2018,220:115-127.
[22]"OMONDI O M,XIA X,NAHAYO A,et al.Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data[J].Geoderma,2016,274:28-34.
[23]"PEPPICELLI C,CLEALL P,SAPSFORD D,et al.Changes in metal speciation and mobility during electrokinetic treatment of industrial wastes:Implications for remediation and resource recovery[J].Science of the Total Environment,2018,624:1 488-1 503.
[24]"PHILLIPS C G,GARDA M.Plant tissue culture media and practices:An overview[J].In Vitro Cellular Developmental Biology-Plant,2019,55(3):242-257.
[25]"RABIYA U E,ALI M,FAROOQ M A,et al.Comparative efficiency of silica gel,biochar,and plant growth promoting bacteria on Cr and Pb availability to Solanum melongena L.in contaminated soil irrigated with wastewater[J].Frontiers in Plant Science,2022,13:950362.
[26]"SARWAR N,IMRAN M,SHAHEEN R M,et al.Phytoremediation strategies for soils contaminated with heavy metals:Modifications and future perspectives[J].Chemosphere,2017,171:710-721.
[27]"SONG B,XU P,CHEN M,et al.Using nanomaterials to facilitate the phytoremediation of contaminated soil[J].Critical Reviews in Environmental Science and Technology,2019,49(9):791-824.
[28]"STINGU A,VOLF I,POPA I V,et al.New approaches concerning the utilization of natural amendments in cadmium phytoremediation[J].Industrial Crops Products,2011,35(1):53-60.
[29]"TANG L,LIU Y,WANG J,et al.Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants:Electron transfer mechanism[J].Applied Catalysis B:Environmental,2018,231:1-10.
[30]"VANDENHOVE H,VANHOUDT N,DUQUNE L,et al.Comparison of two sequential extraction procedures for uranium fractionation in contaminated soils[J].Journal of Environmental Radioactivity,2014,137:1-9.
[31]"YAN Y J,XUE F J,MUHAMMAD F,et al.Application of iron-loaded activated carbon electrodes for electrokinetic remediation of chromium-contaminated soil in a three-dimensional electrode system[J].Scientific Reports,2018,8(1):5753.
[32]"VERDEIL J,ALEMANNO L,NIEMENAK N,et al.Pluripotent versus totipotent plant stem cells:Dependence versus autonomy?[J].Trends in Plant Science,2007,12(6):245-252.
[33]"WANG J,WANG S.Preparation,modification and environmental application of biochar:A review[J].Journal of Cleaner Production,2019,227:1 002-1 022.
[34]"WANG L H,ZHANG X B,ZHOU Q,et al.Effects of terbium(Ⅲ)on signaling molecules in horseradish[J].Biological Trace Element Research,2015,164(1):122-129.
Experimental study "of 3D electric field enhanced
Macleaya cordata phytoremediation of uranium-contaminated soil
Liu Qian1,2,Zeng Xiangyu1,2,Ding Dexin1,2,Ma Jianhong1,2
(1.School of Resources Environment and Safety Engineering,University of South China;
2.Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy,
University of South China)
Abstract:In this study,pot experiments were utilized to investigate the impact of 3D electric fields on the efficacy of Macleaya cordata in remediating uranium-contaminated soil.The results indicated that compared with the 2D electric field,the coupling between the 3D electric field and Macleaya cordata could lead to an increase in uranium mass fraction in both the above-ground and underground parts of Macleaya cordata by 17.14 % and 43.3 %,and an increase in dry biomass by 40.4 % and 37.6 %,respectively.Additionally,the proportion of exchangeable uranium in the soil showed an increase of 10 percentage points.Meanwhile,the subcellular distribution of uranium within Macleaya cordata was altered,leading to increased uranium accumulation and transfer to organelles,particularly in the stems.These findings indicate that the 3D electric field can further improve the remediation performance of Macleaya cordata on uranium-contaminated soil,offering a promising approach for enhancing phytoremediation.
Keywords:3D electric field;phytoremediation;Macleaya cordata;uranium contamination;soil
;bioremediation