








摘" 要:與傳統制作管狀材料的纏繞成型、拉擠成型等方法相比,編織可以根據物體的形狀和尺寸,直接形成各種形狀的編織物,已廣泛應用于醫療、航空航天、復合材料和組織工程等領域。圍繞近年來國內外編織領域的研究成果,從編織技術的分類出發,綜述了不同編織技術的編織設備及原理,分析了編織參數、編織結構、編織材料對編織管性能的影響,最后總結了編織管近年來的技術發展及挑戰。綜述結果可為促進編織管在智能可穿戴電子、消費電子設備等新領域中的應用提供參考。
關鍵詞:紡織技術;編織工藝;編織結構;編織管性能
中圖分類號:TS101.8
文獻標志碼:A
文章編號:1009-265X(2024)12-0113-10
DOI: 10.19398j.att.202403003
收稿日期:20240605
網絡出版日期:20240618
基金項目:上海市自然科學基金項目(22ZR1400800)
作者簡介:時子祥(2000—),男,江蘇連云港人,碩士研究生,主要從事導電發熱編織管方面的研究。
通信作者:胡吉永, E-mail:hujy@dhu.edu.cn
近年來,纖維管狀材料在航空、醫療、復合材料和組織工程[1-3]等許多領域受到歡迎,可以通過編織[4]、機織[5]、針織[6-7]和非織造[8]等方法制備。相對而言,編織方法速度更快、效率更高,可以通過改變材料和編織工藝來滿足不同產品的應用需求;同時,編織管的軸向強度和抗沖擊力強[9],具有良好的孔隙率,能夠承受三維的載荷和應力。目前,許多學者從實際應用出發,開發了不同結構和性能的編織管[10],如車身結構加強件或醫療設備支架等,大大拓寬了編織管的應用范圍。
編織參數和編織材料會影響編織管的性能,采用不同編織工藝制備的編織管的結構和性能也大不相同。因此,掌握編織管的編織方法及工藝、結構、性能之間的關系對設計開發新型專用編織管具有重要意義。Bilisik等[11]總結了編織技術從二維到三維的發展歷程,Emonts等[12]概括了編織機的發展歷程,Ayranci等[13]從編織結構出發綜述了編織技術的優缺點以及編織復合材料管在航空、體育器材、結構部件等領域的應用。對于影響編織管性能的因素方面,目前大部分綜述從影響編織管某一性能(剛度、強度、彈性)的因素入手,討論編織工藝參數(編織角度、編織材料)對編織管該性能的影響。例如,Lou等[14]從孔隙結構角度探究了孔隙結構對編織管機械性能的影響;或是通過建立各種編織管模型來預測其性能,例如,Alpyildiz等[15]分析了影響編織管性能因素的理論模型,并提出新模型來預測編織管的機械行為。
隨著編織管的應用范圍不斷擴大,當前對于編織管的理論研究已經滯后于應用,對編織工藝參數與編織管結構性能的關系缺少系統的總結。因此,研究編織參數與編織管結構性能的關系,以及不同編織結構對編織管性能的影響,對提升編織管的結構及可靠性具有重要的意義。本文從二維編織和三維編織2個角度出發,綜述編織管的制備技術以及編織參數、編織結構等與性能之間的關系,并總結現階段編織管的技術發展趨勢和挑戰。
1" 編織制備方法及工藝
與傳統制作管狀材料的纏繞成型、拉擠成型等方法相比,編織可以根據物體的形狀和尺寸,直接編織成與物體外形相近的各種管道,具有設計靈活性高、制造成本低等優點[16-18]。編織技術一般可分為二維編織和三維編織。
2" 二維編織
二維編織技術是使織物成型方向的多束纖維(或紗線)相互交叉,并沿與織物成型方向有一定角度的方向排列成型,最后形成編織管。二維編織作為一種自動化復合材料預制件制造技術,制造工藝相對簡單,能夠實現不同復雜產品設計的需求。二維編織產品具有很高的抗沖擊性能和碰撞能量吸收潛力,在剛度和強度性能方面也極具競爭力[19],已廣泛應用于各個領域。
2.1" 二維編織結構及編織設備
2.1.1" 二維編織結構
a)雙軸編織物
雙軸編織物是由一組紗線以一定角度相互交織形成。常用的編織結構有菱形編織結構、規則編織結構和赫格利斯編織結構:菱形編織結構指的是每根紗線以重復的方式在另一根紗線上方或下方穿過;規則編織結構指的是每根紗線在兩根紗線上方和下方穿過;赫格利斯編織結構,即三根紗線交替連續地從另三根紗線或纖維的下面經過,然后又穿過另三根紗線或纖維的上面,連續交替進行交織的結構[18]。雙軸編織物可以根據連續交織紗線根數的不同產生不同的結構,如圖1(a)所示。
b)三軸編織物
三軸編織在雙軸編織的基礎上增加了軸向紗線,軸向紗線位于整個結構中,編織紗線圍繞軸向紗線相互交織,形成了如圖1(b)所示的三軸編織物。與雙軸編織物相比,三軸編織物的軸向性能更好[20]。
2.1.2" 二維編織設備
二維編織機通常由兩組錠子組成,通過喇叭狀葉輪驅動,使錠子移動,并通過凹口將其轉移到下一個葉輪。編織機中葉輪的配置如圖2(a)所示,圖2(b)展示了兩組錠子的運動軌跡,它們分別繞圓心做順、逆時針運動,使紗線相互纏繞形成編織結構,圖2(c)展示了編織管的基本結構,圖2(d)展示了不同規格的編織管。
2.2" 編織結構對編織性能的影響
2.2.1" 力學性能
Fukunishi等[21]提出兩組紗線采用不同編織角度的新型編織結構,認為由于混雜編織角度產生的幾何不相容性,混雜編織結構比均勻編織結構具有更高的縱向剛度,在最佳情況下縱向剛度提高了418.3%。Praveen等[22]采用手工搭接技術制備了雙管碳纖維和環氧樹脂結合的復合編織管,該結構在受到沖擊后可以通過內外管共同吸收能量,所吸收的能量比傳統單管結構更高。
2.2.2" 電學性能
Bar等[23]采用編織的方法制造了一種可拉伸的導電編織結構,這種結構可以通過拉伸改變紗線間的距離和角度,還能夠在連續生產中調整編織材料的含量滿足不同的要求。這種可拉伸導電編織管在大變形拉伸下,電阻率可以在循環加載下保持恒定,直到機械失效。
2.2.3" 熱學性能
Song等[24]用聚偏氟乙烯溶液涂覆在聚四氟乙烯-六氟丙烯紗線和鎳鉻電阻絲編織的中空管表面,將孔隙結構變為膜結構。該研究發現,由于膜結構的存在,在施加比較低的直流電下(0.15 A),該編織管的表面溫度就可以達到70℃。Tao等[25]通過在石墨棒上引入碳化硅納米線,獲得了具有光滑內表面的致密雙層碳化硅納米管,試驗結果表明,光滑的內表面結構可以提高編織管的熱傳輸性能,通過改變編織管內表面的粗糙度可以改善雙層碳化硅納米管的熱傳輸性能。
上述研究表明,通過改變編織工藝形成與常規編織不同的編織結構,可以改善編織管的性能。
2.3" 編織材料種類對編織性能的影響
不同編織材料制備的編織管的性能大不相同。一般來說,編織材料的規格會影響編織管的尺寸結構,編織材料的種類會影響編織管的物理機械性能。
Rebelo等[26]使用滌綸、聚酰胺和聚丙烯單絲來制備編織管,并且對不同材料制備的編織管進行了性能評價。該實驗結果表明,聚酯編織管比聚酰胺編織管更耐變形,聚丙烯編織管抗徑向壓縮能力差。Heller等[27]將超彈性鎳鈦絲與彈性體基質混雜制作了編織管,然后對它的附加功能進行了表征,結果表明,由于其內部結構,該復合材料編織管在可恢復應變、承載能力、超彈性阻尼能力和熱致驅動應變等方面比單根鎳鈦絲更加優秀。Bar等[23]通過將碳納米管紗線編織管嵌入彈性基體聚二甲基硅氧烷中制備了一種超彈性復合材料管。該復合材料管具有超彈性響應,并且可以在大變形下保持高電導率。Carpenter等[28]設計了一種編織管,內層和外層由單片碳化硅組成,中間層由碳化硅纖維纏繞復合材料組成。該實驗證明該編織管具有良好的高溫抗氧化性,可以作為燃料棒的包殼材料。Ding等[29]設計了一種電紡絲基血管移植物,它比用膠原或其他常用的天然生物材料制備的血管移植物具有更好的機械強度[30],體外試驗顯示該移植物具有良好的細胞相容性,可用于小直徑血管組織工程。各種編織材料特征如表1所示。
2.4" 編織參數對編織性能的影響
2.4.1" 編織角度的影響
編織角度是描述編織結構的關鍵參數,指的是編織紗線與繩索軸線之間的銳角。通過改變編織角度可以改變單位長度上編織的紗線面積,從而改變編織管的基本結構和性能。
Rebelo等[26]發現,編織角度的增加導致編織紗線更多地向橫軸沉積,這樣增大了紗線覆蓋芯軸的面積,降低了孔隙率。因此,在一定長度和體積的芯軸上,編織角度越大,沉積的紗線線圈越多,覆蓋系數越大,孔隙率則隨著編織角度的增加而降低。
Jin等[31]通過實驗發現,不同編織角度的編織管之間存在明顯不同的失效模式;30°的試樣容易發生剪切斷紗,60°的樣品存在大編織角度的編織結構導致的塑性變形。Roslan等[32]研究了編織角度對玄武巖編織復合管能量吸收性能的影響。該研究表明編織角度對比能量吸收有顯著影響。如圖3(a)所示,比能量吸收值隨著編織角的減小而增加。隋紋龍等[33]通過研究發現,編織角度對管腔內支架的徑向支撐力、壓縮彈性回復率也有明顯影響;編織角度越大,徑向支撐力越大,摩擦力越大,彈性回復率越小。Chen等[34]研究了3種不同編織角度的復合材料編織管的裂紋萌生和擴展。該結果表明,編織角度對裂紋擴展路徑有顯著影響。此外,宏觀彈性極限隨著編織角度的增加而減?。辉诶熳冃蜗戮幙椆艿暮暧^應力-應變曲線如圖3(b)所示。編織角度越大,彈性極限越低,破壞應力越低,但破壞應變越大。Liu等[35]對不同編織角度的聚左旋乳酸編織支架在徑向循環載荷試驗后的徑向支撐性能進行了評價。該結果表明,支架的編織角度是影響其抵抗徑向循環載荷能力的一個重要參數。編織角度較小的支架具有更好的初始徑向支撐,但耐久性不足,而編織角度較大的支架可以保持足夠的徑向支撐和抵抗徑向循環載荷的適當能力。因為編織角較小的支架細絲在徑向壓縮過程中具有更顯著的軸向位移和軸向旋轉角,這使得摩擦現象更加強烈,導致其抵抗徑向循環載荷的能力不足。
2.4.2" 編織層數的影響
編織技術可以制備多層編織圓管,能夠以自動方式生產各種中空纖維增強復合材料管[36-37],隨著此類應用中對性能要求的不斷提高,優化多層編織管結構從而制備滿足要求的各類多層編織管至關重要。編織層數主要通過改變編織材料的厚度以及壓縮程度影響編織管的性能。
Rebelo等[26]對單層編織管徑向及縱向壓力下孔隙率的變化進行了表征,對于多層編織管來說,編織層數的增加會減小編織管的孔隙率,并且由于外層紗線的壓力作用,孔隙率變化規律更難探究,但是很少有文章提及固定參數下編織層數的變化對其孔隙率的影響。
Jiang等[38]使用持續碳纖維和形狀記憶聚氨酯材料制備了具有不同編織層的編織復合材料管,并研究了其拉伸性能、形狀記憶行為和拉伸恢復力。該結果表明,隨著編織層數的增加,拉伸載荷、形狀恢復率和恢復力均有所增加。Yang等[39]采用熔融擠出和編織技術制備了可重復使用的編織形狀記憶聚合物復合材料管,實驗結果表明,在軸向和徑向壓縮模式下,總能量吸收和比能量吸收隨著編織層數的增加而增加。
2.4.3" 編織紗根數的影響
其他條件一定,編織紗線根數越多,編織密度越大。Li等[40]通過實驗發現,編織管的孔隙率隨著編織紗線根數的增加而減小。另外,孔徑隨著編織紗線根數的增加呈非線性減小。馬曉紅等[41]使用不同根數的碳纖維紗線進行編織,通過實驗發現,紗線排列會隨著編織紗線根數的增加而變得更加緊密,整體斷裂強力也逐漸增加。
2.4.4" 編織芯軸的影響
芯軸指紗線編織所纏繞的物體,芯軸的大小和形狀直接影響編織管的大小和性能,決定了所生產編織管的應用方向。此外,對于中空編織管,使用合適的芯軸也會改善編織管的結構和性能。
Li等[40]發現,編織管的孔隙率隨芯軸半徑的增加呈非線性增加,編織管的孔徑隨芯軸半徑的增加而線性增加。Rebelo等[26]也發現,孔隙率隨著芯軸半徑的增加而增大。如果其他參數保持不變,則芯軸半徑的增加使芯軸上沉積的紗線線圈數量減少,從而減少芯軸被紗線覆蓋的面積。即芯軸半徑增加,孔隙率增大。Yuksekkaya等[42]發現,編織管芯軸半徑對編織管的受力有顯著影響,在其他條件不變的情況下,初始直徑越小的編織管,拉伸到同樣的長度,所受的軸向拉力和徑向壓力越大。
3" 三維編織
三維編織技術是使一種由多個不同系統的纖維束在空間按一定的路徑和規律交織,從而形成整體網狀結構[43]。與二維編織相比,三維編織可以快速編織出復雜的三維幾何形狀并且實現編織層的連接,以及編織截面形狀的變化。此外,無需額外步驟,即可實現編織產品的局部增強。
3.1" 三維編織結構及編織設備
3.1.1" 三維編織物
三維編織織物由2個或多個交織紗線系統共同完成,其中每個系統的紗線通常相對于織物形成方向以特征角度傾斜以形成三維交織結構[44]。
一般來說,三維編織物可以通過軌柱式編織和旋轉式編織制造。軌柱式編織一般采用徑向四步編織工藝來制備編織管,即錠子在同心圓之間運動,如圖4(a)所示,圖4(b)為圓柱編織機。編織過程包括4個連續的錠子組運動。在第一步、第二步中,錠子交替移動到規定位置,第三步、第四步則是第一步、第二步的反向運動過程。在這4步驟之后,錠子已經移動到它們的初始位置[45-46],如圖4(c)所示。圓柱式編織機制備的編織管如圖5(a)所示,圖5(b)為其微觀結構模型。
旋轉編織是在傳統二維編織的基礎上把喇叭齒輪技術擴展到整個編織機床的編織技術。在旋轉編織中,每個錠子幾乎可以獨立運動,因此有利于進行更復雜的編織[47]。旋轉式編織的編織過程如圖6(a)所示,圖6(b)為其軌道示意圖。
3.1.2" 三維軸編織物
通過Maypole編織方法可以形成由經紗(軸向)和編織物兩組紗線組成的三維圓形軸向編織結構。編織紗線與圍繞圓周路徑徑向前后移動的固定軸向紗線交織在一起,如圖7所示,該過程稱為多次往復編織,基于二維三軸編織原理[20],該結構同樣可以使用軌柱式以及旋轉編織的方法。
3.2" 編織結構對編織性能的影響
Potluri等[48]探究了雙軸向和三軸向編織結構對編織圓管彎曲和扭轉性能的影響,實驗表明,其他條件一定時,由于添加軸向紗線增加了編織管的軸向性能,三軸向編織圓管的彎曲剛度和扭轉剛度均大于雙軸向編織圓管。陳波等[49]基于徑向軸紗三維五向圓形編織工藝及其紗線的編織規律,建立了三維圓形編織復合材料剛度預測模型,研究表明,徑向軸紗可以使得增強復合材料的軸向力學性能。王景景[50]探究了深交聯、淺交彎聯、淺交直聯3種編織結構對復合材料力學性能的影響,研究表明,深交聯結構復合材料的力學性能優于淺交彎聯和淺交直聯結構的復合材料。Wang等[51]研究了4種不同編織結構的復合材料管,試驗結果表明,三維五向編織復合管的抗扭強度高于其他材料,而三維多層纏繞編織復合管的抗扭轉模量最好。Xue等[52]研究了三維碳纖維/環氧樹脂編織圓形復合管在直流電下的溫度分布和傳熱規律。該研究表明,編織結構會顯著影響表面溫度分布,且不均勻性隨電流幅度的增加而增大。表面溫度分布具有與表面編織紋理相關的規則高溫區。Ma等[53]在傳統三維正交編織結構的基礎上,提出了一種新型不完全正交三維編織結構,實驗結果表明,這種結構的性能優于傳統的三維正交編織結構。
3.3" 編織材料種類對編織結構的影響
Qi等[54]開發了一種三維編織碳纖維增強形狀記憶聚氨酯基復合管,并研究了其在壓縮下的熱/電形狀記憶行為。試驗結果表明,該三維編織管表現出優異的電熱形狀記憶行為和高恢復力,有望擴展智能致動器的應用。Yang等[39]采用熔融擠出和編織技術制備了可重復使用的編織形狀記憶聚合物復合材料管。實驗結果表明,與純熱塑性聚氨酯管相比,該復合材料編織管表現出優異的機械性能和重復能量吸收性能。Wu等[55]研究了三維編織碳纖維增強樹脂基復合材料圓管在準靜態低溫、高應變率時的壓縮性能,研究表明,三維編織復合材料圓管的力學性能對溫度和應變率較為敏感,可以通過改變溫度和應變率來改變其力學性能。Roslan等[32]研究了玄武巖復合管在準靜態擠壓響應下不同參數對特定能量吸收的影響,論證了玄武巖纖維作為能量吸收材料的可行性。各種編織材料特征如表2所示。
3.4" 編織參數對編織性能的影響
3.4.1" 編織角度的影響
Li等[56]研究了碳纖維/環氧樹脂復合材料編織管在高應變率剪切載荷下的力學行為。結果表明,編織角度對該三維編織復合管的剪切行為起著重要的作用。不同編織角度的試樣的剪切性能明顯不同。剪切模量和峰值剪切應力隨著編織角度的增加而增加,如圖8(a)所示,這是由于編織角度的增大使編織紗線的橫向性能變得更加有效。Gideon等[57-58]探究了影響三維編織復合材料圓管靜態壓縮疲勞性能的因素。結果表明,編織角度45°的三維編織圓管試樣的壓縮性能較好,具有最高的比吸能值,如圖8(b)所示。Qi等[54]研究了編織材料、編織角度和壓縮模式對三維編織形狀記憶聚合物管的熱/電驅動形狀記憶行為的影響。該實驗表明,徑向壓縮載荷隨編織角度的增加而顯著增加,如圖8(c)所示。大角度樣品的回復力優于小角度樣品,而形狀回復速度較差,45°樣品在相同電壓下表現出最高的形狀回復速度,如圖8(d)所示。賀辛亥等[59]探討不同編織角度對3D-Cf/6061Al復合材料力學性能的影響,試驗表明,復合材料的彎曲強度和彎曲模量均隨編織角度的減小而增大,當編織角10°時,復合材料的彎曲強度和彎曲模量最大。
3.4.2" 編織層數的影響
Potluri等[48]在研究雙軸向和三軸向編織結構復合材料圓管彎曲和扭轉性能時發現,隨著編織層數的增加,試樣的彎曲與扭轉剛度增加。EK瘙塁I等[60]對由不同纖維制成的復合材料管進行了三點彎曲試驗,結果表明,增加層數可以增加管的可彎曲性和能量吸收量。Zhou等[61]研究編織層數對編織管橫向沖擊變形的影響。研究表明,編織層數越多,編織管的剛度越高,并且編織層數的增加會增加編織管的能量吸收能力和沖擊載荷。
4" 結論
很多學者將高性能纖維材料和編織技術結合,制備了滿足各種特殊性能要求的編織管。本文系統總結了編織設備、編織原理和編織管特征,以及編織材料、編織參數、編織結構等因素對編織管性能的影響。雖然在開發醫用、航空航天等領域應用的編織管方面取得了系列技術進步,但隨著編織管的特殊性能要求和應用領域變化,編織技術還需要進一步
研究發展,主要體現在以下幾方面:
a)編織管的編織材料、編織參數、編織結構與力學性能之間關系已被深入研究,但缺少討論這些參數對編織管的電熱學性能的影響,可以將高性能導電導熱材料和實際應用相結合進行研究,擴大編織管的應用范圍和應用場景。
b)大多試驗基于單一參數或單一材料展開研究,研究靜態條件下編織參數或編織材料等因素對編織管結構性能的影響規律,需要進一步研究各種編織參數和編織材料對編織管的綜合作用。
參考文獻:
[1]FREEMAN J W, WOODS M D, LAURENCIN C T. Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design[J]. Journal of Biomechanics, 2007, 40(9): 2029-2036.
[2]孫夢堯,于頌,劉景艷,等. 三維五向編織復合材料纖維束真實形態觀測[J]. 紡織高校基礎科學學報,2022,35(1):7-13.
SUN Mengyao, YU Song, LIU Jingyan, et al. Observation on the real shape of fiber bundles in three-dimensional five-directional braided composites[J]." Basic Sciences Journal of Textile Universities, 2022, 35(1): 7-13.
[3]TANG Z X, POSTLE R. Mechanics of three-dimensional braided structures for composite materials-part I: Fabric structure and fibre volume fraction[J]. Composite Struc-tures, 2000, 49(4): 451-459.
[4]張萬靈. 可降解管道支架的紡織參數對其徑向壓縮性能的影響[D]. 上海: 東華大學, 2012.
ZHANG Wanling. Influence of Braiding Parameters on the Radial Compression Property of Biodegradable Tubular Scaffold[D]. Shanghai: Donghua University, 2012.
[5]李倩, 王云云, 李毓陵, 等. 機織人工氣管的性能分析[J]. 產業用紡織品, 2011, 29(6): 12-14.
LI Qian, WANG Yunyun, LI Yuling, et al. Performance analysis of woven artificial trachea[J]. Technical Textiles, 2011, 29(6): 12-14.
[6]張佩華, 王文祖, 陳南梁. 針織醫用金屬內支架的編織工藝研究[J]. 東華大學學報(自然科學版), 2002, 28(5): 30-33.
ZHANG Peihua, WANG Wenzu, CHEN Nanliang. Study on knitting parameters of knitted medical expandable metallic stent[J]. Journal of Donghua University(Natural Science), 2002, 28(5): 30-33.
[7]WANG X, HAN C, HU X, et al. Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(7): 922-932.
[8]何建龍, 李文龍, 張帆, 等. 纖維素長絲直接成網非織造技術的新進展[J]. 合成纖維, 2022, 51(2): 27-31.
HE Jianlong, LI Wenlong, ZHANG Fan, et al. New deve-lopment of cellulose filament direct-laid nonwoven tech-nology[J]. Synthetic Fiber in China, 2022, 51(2): 27-31.
[9]WU Z, SHI L, CHENG X, et al. Transverse impact behavior and residual axial compression characteristics of braided composite tubes: Experimental and numerical study[J]. International Journal of Impact Engineering, 2020, 142: 103578.
[10]楊瑩,臧金環.三維編織復合材料的力學性能研究進展[J]. 汽車文摘,2023(12):8-13.
YANG Ying, ZANG Jinhuan. Advances in mechanical properties of three-dimensional braided composites[J]. Automotive Digest, 2023(12): 8-13.
[11]BILISIK K. Multiaxis three-dimensional weaving for composites: A review[J]. Textile Research Journal, 2012, 82(7): 725-743.
[12]EMONTS C, GRIGAT N, MERKORD F, et al. Innovation in 3D braiding technology and its applications[J]. Textiles, 2021, 1(2): 185-205.
[13]AYRANCI C, CAREY J. 2D braided composites: A review for stiffness critical applications[J]. Composite Structures, 2008, 85(1): 43-58.
[14]LOU C W, LU P C, HU J J, et al. Effect of manufacturing parameters and thermal treatment on the properties of tubular braids and tubular knits[J]. Journal of Polymer Engineering, 2016, 36(4): 421-430.
[15]ALPYILDIZ T. 3D geometrical modelling of tubular braids[J]. Textile Research Journal, 2012, 82(5): 443-453.
[16]SANDERS L R. Braiding: A mechanical means of composite fabrication[J]. Sampe Quarterly, 1977, 8: 38-44.
[17]SAINSBURY-CARTER J B. Braided composites. A material form providing low cost fabrication techniques[J]. Proceedings of the National SAMPE Symposium and Exhibition, 1985, 30: 1486-1497.
[18]MUNJAL A K, MALONEY P F. Braiding for improving performance and reducing manufacturing costs of com-posite structures for aerospace applications[J]. Advanced Materials.1990, 35: 1231-1242.
[19]于輝, 張健中, 黃兆賀. 二維編織管狀織物復合材料研究進展[J]. 紡織導報, 2022 (1): 49-53.
YU Hui, ZHANG Jianzhong, HUANG Zhaohe. Research progress of two-dimensional braided tubular fabric composites[J]. China Textile Leader, 2022(1): 49-53.
[20]BILISIK K. Three-dimensional braiding for composites: A review[J]. Textile Research Journal, 2013, 83(13): 1414-1436.
[21]FUKUNISHI T, ONG C S, LUI C, et al. Formation of neoarteries with optimal remodeling using rapidly degra-ding textile vascular grafts[J]. Tissue Engineering Part A, 2019, 25(7/8): 632-641.
[22]PRAVEEN KUMAR A, NAGESWARA RAO D. Crushing characteristics of double circular composite tube structures subjected to axial impact loading[J]. Materials Today: Proceedings, 2021, 47: 5923-5927.
[23]BAR A J, MEAD J, DODIUK H, et al. Stretchable conductive tubular composites based on braided carbon nanotube yarns with an elastomer matrix[J]. ACS Omega, 2022, 7(45): 40766-40774.
[24]SONG L, HUANG Q, HUANG Y, et al. An electro-thermal braid-reinforced PVDF hollow fiber membrane for vacuum membrane distillation[J]. Journal of Membrane Science, 2019, 591:117359.
[25]TAO P, LIU W, WANG Y. Fabrication of two-layer SiC nanowire cladding tube with high thermal conductivity[J]. Journal of the European Ceramic Society, 2020, 40(9): 3399-3405.
[26]REBELO R, VILA N, FANGUEIRO R, et al. Influence of design parameters on the mechanical behavior and porosity of braided fibrous stents[J]. Materials amp; Design, 2015, 86: 237-247.
[27]HELLER L, VOKOUN D, ITTNER P, et al. 3D flexible NiTi-braided elastomer composites for smart structure applications[J]. Smart Materials and Structures, 2012, 21(4): 045016.
[28]CARPENTER D M. An assessment of silicon carbide as a cladding material for light water reactors [J]. Massach-usetts Institute of Technology, 2010, 1:135629045.
[29]DING X, ZOU T, GONG X, et al. Trilayered sulfated silk fibroin vascular grafts enhanced with braided silk tube[J]. Journal of Bioactive and Compatible Polymers, 2016, 31(6): 613-623.
[30]SOFFER L, WANG X, ZHANG X, et al. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts[J]. Journal of Biomaterials Science Polymer Edition, 2008, 19(5): 653-664.
[31]JIN Y, WU Z, PAN Z, et al. Numerical and experimental study on effect of braiding angle on low-velocity transverse punch response of braided composite tube[J]. International Journal of Damage Mechanics, 2020, 29(4): 667-686.
[32]ROSLAN M N, YAHYA M Y, AHMAD Z, et al. Energy absorption behaviour of braided basalt composite tube[J]. Advanced Composite Materials, 2018, 27(5): 467-481.
[33]隋紋龍,陳南梁. 編織型醫用管腔內支架的編織工藝研究[J]. 產業用紡織品, 2013, 31(10): 15-18.
SUI Wenlong, CHEN Nanliang. Study on braiding para-meters of braided medical intraluminal stent[J]. Tech-nical Textiles, 2013, 31(10): 15-18.
[34]CHEN Y, GLBART L, CHATEAU C, et al. Crack initiation and propagation in braided SiC/SiC composite tubes: Effect of braiding angle[J]. Journal of the European Ceramic Society, 2020, 40(13): 4403-4418.
[35]LIU Q, LIU M, TIAN Y, et al. Evaluation of resistance to radial cyclic loads of poly(L-lactic acid) braided stents with different braiding angles[J]. International Journal of Biological Macromolecules, 2022, 218: 94-101.
[36]WU Z, SHEN Y, PAN Z, et al. Three-point bending behavior and energy absorption capacity of composite tube reinforced by gradient braided structure in radial direction[J]. Fibers and Polymers, 2019, 20(7): 1455-1466.
[37]GURLEY A, BEALE D, BROUGHTON R, et al. The design of optimal lattice structures manufactured by maypole braiding[J]. Journal of Mechanical Design, 2015, 137(10): 101401.
[38]JIANG Z, CHEN J, SUN B, et al. Electro-induced tensile deformation of over-braiding composite tube with carbon fiber reinforced shape memory polyurethane filament[J]. Smart Materials and Structures, 2022, 31(9): 095015.
[39]YANG Q, LIU R, LI Z, et al. Axial and radial reversibility and energy absorption behaviors of braided shape memory composite thin-walled tubes[J]. Thin-Walled Structures, 2024, 196: 111524.
[40]LI C, WANG X, ZHAO F, et al. Modeling of braiding parameter impact on pore size and porosity in a tubular braiding fabric[J]. E-Polymers, 2017, 17(3): 221-226.
[41]馬曉紅, 檀江濤, 秦志剛. 碳纖維二維編織管狀織物的編織工藝[J]. 紡織學報, 2018, 39(6): 64-69.
MA Xiaohong, TAN Jiangtao, QIN Zhigang. Braiding technologies of 2-D braided carbon fiber tubular fabrics[J]. Journal of Textile Research, 2018, 39(6): 64-69.
[42]YUKSEKKAYA M E, ADANUR S. Analysis of polymeric braided tubular structures intended for medical appli-cations[J]. Textile Research Journal, 2009, 79(2): 99-109.
[43]李志敏, 胡海. 三維編織復合材料圓柱殼的扭轉后屈曲分析[J]. 力學季刊, 2008, 29(2): 319-328.
LI Zhimin, HU Hai. Postbuckling analysis of three dimensional braided composite cylindrical shells under torsion[J]. Chinese Quarterly of Mechanics, 2008, 29(2): 319-328.
[44]王秋野,韓琳,李朋,等. 三維編織復合材料的發展及應用研究[J]. 纖維復合材料, 2022,39(4):145-149.
WANG Qiuye, HAN Lin, LI Peng, et al. Study on present situation and application of three-dimensional composite materials[J]. Fiber Composites, 2022, 39(4):145-149.
[45]BYUN J H, CHOU T W. Modelling and characterization of textile structural composites: A review[J]. The Journal of Strain Analysis for Engineering Design, 1989, 24(4): 253-262.
[46]KOSTAR T D, CHOU T W. Microstructural design of advanced multi-step three-dimensional braided preforms[J]. Journal of Composite Materials, 1994, 28(13): 1180-1201.
[47]LI X, HE X, LIANG J, et al. Research status of 3D braiding technology[J]. Applied Composite Materials, 2022, 29(1): 147-157.
[48]POTLURI P, MANAN A, FRANCKE M, et al. Flexural and torsional behaviour of biaxial and triaxial braided composite structures[J]. Composite Structures, 2006, 75(1/2/3/4): 377-386.
[49]陳波,張昇雨,楊興林,等.基于細觀結構的徑向軸紗三維五向圓形編織復合材料的剛度預測[J]. 現代紡織技術,2024, 32(2):83-95.
CHEN Bo, ZHANG Shengyu, YANG Xinglin, et al. Stiffness prediction of 3D five-directional circular braided composites with radial yarns based on microstructure[J]. Advanced Textile Technology, 2024, 32(2):83-95.
[50]王景景.不同結構三維UHMWPE纖維復合材料的性能研究[J].現代紡織技術,2021, 29(4):12-17.
WANG Jingjing. Research on the properties of three-dimensional UHMWPE fiber composites with different structures[J]. Advanced Textile Technology, 2021, 29(4):12-17.
[51]WANG X, CAI D, LI C, et al. Failure analysis of three-dimensional braided composite tubes under torsional load: Experimental study[J]. Journal of Reinforced Plastics and Composites, 2017, 36(12): 878-888.
[52]XUE Y, XUN L, LI Z, et al. Microstructural modeling of temperature distribution and heat transfer of 3-D carbon fiber braided circular composite tubes under direct current[J]. Aerospace Science and Technology, 2023, 139: 108376.
[53]MA W, MA Z, ZHU J. Processing technique and geometric model of an imperfect orthogonal 3D braided material[J]. Journal of Industrial Textiles, 2017, 47(3): 297-309.
[54]QI Y, XUE Y, GU B, et al. Dual thermal/electrical-driven compressive recovery behaviors of 3D braided shape memory composite tubes[J]. Composites Science and Technology, 2023, 233: 109912.
[55]WU X, ZHANG Q, GU B, et al. Influence of temperature and strain rate on the longitudinal compressive crashworthiness of 3D braided composite tubes and finite element analysis[J]. International Journal of Damage Mechanics, 2017, 26(7): 1003-1027.
[56]LI Y, GAN X, GU B, et al. Dynamic responses and damage evolutions of four-step three-dimensional braided composites subjected to high strain rate punch shear loading[J]. Journal of Composite Materials, 2016, 50(12): 1635-1650.
[57]GIDEON R K, SUN B, GU B. Mechanical behaviors of four-step 1× 1 braided carbon/epoxy three-dimensional composite tubes under axial compression loading[J]. Polymer Composites, 2016, 37(11): 3210-3218.
[58]GIDEON R K, ZHOU H, LI Y, et al. Quasi-static compression and compression-compression fatigue charac-teristics of 3D braided carbon/epoxy tube[J]. The Journal of the Textile Institute, 2016, 107(7): 938-948.
[59]賀辛亥,寧志新,梁軍浩,等.編織角對3D-Cf/6061Al復合材料彎曲性能的影響[J].西安工程大學學報,2022,36(3):100-105.
HE Xinhai, NING Zhixin, LIANG Junhao, et al. Effect of braiding angle on bending properties of 3D-Cf/6061Al composites[J]. Journal of Xi′an Polytechnic University, 2022, 36(3):100-105.
[60]EK瘙塁I S, GENEL K. Three point bending behavior of woven glass, aramid and carbon fiber reinforced hybrid composite tube[J]. Acta Physica Polonica A, 2015, 128(2B):59-62.
[61]ZHOU H, HU D, GU B, et al. Transverse impact performance and finite element analysis of three dimen-sional braided composite tubes with different braiding layers[J]. Composite Structures, 2017, 168: 345-359.
Research progress on the structure, technology and performance of braided tubes
SHI" Zixiang," HU" Jiyong
(a.College of Textiles; b.Key Laboratory of Textile Science amp; Technology, Ministry of Education,
Donghua University, Shanghai 201620, China)
Abstract:
Fibrous tubular materials refer to tubular materials produced through textile methods, which possess many advantages such as good fatigue resistance, high strength, and high modulus. They can be widely used in pipelines, pipe shells, bushings, ultra-high temperature insulation pipes, and structural support fields. Fibrous tubular materials generally include woven tubes, knitted tubes, non-woven tubes, and braided tubes. Among them, woven tubes are mainly evolved from double-layer woven fabrics, with low porosity, low elasticity and high mechanical strength; knitted tubes can be prepared by the two methods of weft knitting and warp knitting, with uniform pore structure, high porosity and high elasticity; non-woven tubes focus on the preparation of multi-layer tubes, with a unique fiber arrangement structure, but their pores are uneven, stability is poor and strength is low; the braided tubes can be shaped flexibly, with uniform pore structure, adjustable pores, and high axial strength.
Braiding, as an automated manufacturing technology with faster speed and higher efficiency, has been widely applied in various fields. The manufacturing process of braided tubes is relatively simple, and the structure and performance of braided tubes can be changed by changing parameters to meet the needs of different complex product designs. In recent years, research on braided tubes has become increasingly in-depth.
For braided tubes, the structure and performance can be changed by changing the braiding material and braiding parameters. Currently, high-performance materials such as medical materials, conductive materials, and high-temperature oxidation resistant materials have been used to prepare braided tubes suitable for different fields, demonstrating the unique advantages and application potential of braided tubes.
In terms of braiding parameters, there has been a series of progress in the study of braiding angles and mechanical properties of braiding tubes from theory to application. However, there is a lack of systematic research on the relationship between parameters such as number of braiding layers, number of braiding yarns, and core shaft specifications and the pore structure and performance of braiding tubes. In addition, scholars have studied the impact of new structures such as different pore structures, structures with different braiding angles, mixed yarn structures, and elastic structures on the performance of braided tubes.
Therefore, it is necessary to systematically summarize the relationship between braiding parameters and the structural performance of braided tubes. Explaining the relationship between braiding parameters and the structural performance of braided tubes has practical guiding significance for the subsequent structural design, and can scientifically guide researchers in preparing ideal braided tubes.
Keywords:
textile technology; braiding process; braided structure; braided tube performance