








摘" " 要:【目的】篩選出防治獼猴桃褐斑病的有效藥劑?!痉椒ā坎扇【z生長速率法及孢子萌發抑制法測定了9種原藥對多主棒孢菌菌絲生長及分生孢子萌發的毒力,繼而依據毒力結果選擇復配藥劑進行室內毒力及田間病害藥效的測定?!窘Y果】戊唑醇、吡唑醚菌酯、苯醚甲環唑對病菌菌絲生長毒力較強。戊唑醇及肟菌酯對病菌孢子萌發毒力較強。復配藥劑中,氟唑菌酰胺·吡唑醚菌酯對病菌菌絲生長毒力抑制較強。田間藥效試驗中,氟唑菌酰胺·吡唑醚菌酯與氟吡菌酰胺·肟菌酯效果明顯,交替使用此種復配藥劑在四川省不同種植區對褐斑病的防治效果均能在80.00%以上?!窘Y論】推薦氟唑菌酰胺·吡唑醚菌酯和氟吡菌酰胺·肟菌酯用于獼猴桃褐斑病的防治。
關鍵詞:獼猴桃褐斑病;多主棒孢菌;毒力;藥劑篩選;田間防效
中圖分類號:S663.4、S436.634 文獻標志碼:A 文章編號:1009-9980(2024)11-2347-11
Toxicity of several fungicides against Corynespora cassiicola and the field efficacy in the control of kiwifruit brown spot
WANG Jun1, 2, XU Jing1, ZHU Yuhang1, YAO Kaikai1, YANG Rui1, CHEN Wen1, CHENG Huabao1, MAO Miaomiao1, GONG Guoshu1*
(1College of Agriculture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; 2Sinochem Agricuiture Holdings, Beijing 100031, Beijing, China)
Abstract: 【Objective】 The study aimed to screen out effective fungicide for controlling kiwifruit brown spot disease. 【Methods】 The toxicity of nine primary chemical fungicides against Corynespora cassiicola were measured by mycelial growth rate and conidial germination inhibition methods. The compound fungicides were selected according to the toxicity of different fungicides to determine the toxicity to mycelia and field control efficacy. 【Results】 The toxicity of tebuconazole, pyraclostrobin and difenoconazole to the mycelial growth of C. cassiicola was the highest, and their EC50 values were 10.81, 11.69 and 12.48 μg·mL-1, respectively. The carbendazim and pyraclostrobin had low toxicity to mycelial growth, and their EC50 values were 35.19 and 41.85 μg·mL-1, respectively. The toxicity of tebuconazole and trifloxystrobin to conidial germination was the highest, and their EC50 values were 8.33 and 8.50 μg·mL-1, respectively. The toxicity of difenoconazole, azoxystrobin and pyraclostrobin was medium, with the EC50 values of 12.69, 14.60, and 15.89 μg·mL-1, respectively. The toxicity of carbendazim and boscalid was lower, with the EC50 values of 33.65 and 40.35 μg·mL-1, respectively. Based on the results of these primary chemical fugicides, as well as the field investigation on fungicides using, we selected some primary fugicides with better inhibitory effects on C. cassiicola in the laboratory, and chose the compound fungicides containing these primary fugicides as the test agents. Among the eight compound fungicides, the toxicity of fluzoxammide-pyraclostrobin to the mycelial growth of C. cassiicola was the highest. When the concentration was 1 μg·mL-1, fluzoxammide-pyraclostrobin had the best inhibitory effect, but only reached 63.45%, and the others were all lower than 50%. When the concentration was 10 μg·mL-1, the inhibitory effect of fluzoxammide-pyraclostrobin on mycelium was still the highest, and the inhibitory rate reached 88.59%. The inhibitory effects of the difenoconazole-trifloxystrobin and fluriramide-trifloxystrobin were the second, with inhibition rates of 77.30% and 73.08%, respectively. The inhibitory effect of the tebuconazole·trifloxystrobin was the worst, and the inhibitory rate was only 39.44%. The fluzoxammide-pyraclostrobin could completely inhibit mycelium growth when the inhibition rate of fluriramide-trifloxystrobin was 85.85%, but the inhibitory effect of the tebuconazole·trifloxystrobin was the worst, and the inhibitory rate was 46.93% at the concentration of 20 μg·mL-1. When the concentration was 50 μg·mL-1, the inhibitory effect of the fluriramide-trifloxystrobin and propiconazole·azoxystrobin was 96.08% and 91.46%, respectively, while the fluzoxammide-pyraclostrobin could completely inhibit mycelium growth. In addition, the inhibitory effect of the difenoconazole-trifloxystrobin reached 89.55%; The inhibitory effect of the tebuconazole·trifloxystrobin was still the worst, and the inhibitory rate was only 51.92%. The fluriramide-trifloxystrobin could completely inhibit mycelium growth at the concentration of 100 μg·mL-1. And the inhibition rates of the propiconazole-azoxystrobin, difenoconazole-trifloxystrobin, difenoconazole-azoxystrobin, clofiurfenazole-pyraclostrobin and tebuconazole-trifloxystrobin to the mycelial growth were 99.46%, 95.04%, 89.04%, 60.03% and 57.18%, respectively. According to the inhibition effects of 7 compound fungicides on mycelium growth of C. cassiicola and their field effects, 6 agents of fluzoxammide-pyraclostrobin, fluriramide-trifloxystrobin, difenoconazole-trifloxystrobin, difenoconazole-azoxystrobin, clofiurfenazole-pyraclostrobin and tebuconazole-trifloxystrobin were selected for field efficacy control tests. In the field efficacy test, after 7 days of the first application, the control effect of each compound fungicide on kiwifruit brown spot disease was different. Among them, the control effect of the fluzoxammide-pyraclostrobin was up to 76.17%, and the control effects of the difenoconazole-azoxystrobin, clofiurfenazole-pyraclostrobin were over 60%. The control effects of the tebuconazole-trifloxystrobin and difenoconazole-trifloxystrobin were 58.60% and 53.50%, respectively. 7 days after the third application, the control effect of fluzoxammide-pyraclostrobin was up to 85.69%, and the control effects of the fluriramide-trifloxystrobin and difenoconazole-azoxystrobin were up to 83.25% and 81.33%, respectively. And the control effects of the other three compound fungicides did not exceed 80%. Among them, the control effect of the difenoconazole-trifloxystrobin was only 70.19%. According to the control effects 7 days after the first application and 7 days after the third application, the fluzoxammide-pyraclostrobin had the best effect, followed by the fluriramide-trifloxystrobin. According to the field efficacy test, two kinds of compouond fungicides, the fluzoxammide-pyraclostrobin and fluriramide-trifloxystrobin, were promoted to use for controlling kiwifruit brown spot disease in Dujiangyan and other planting areas in Sichuan Province. From 2019 to 2021, the control effect of the two compound fungicides on kiwifruit brown spot in different planting areas could reach more than 80.00%. In 2019, the control effect of the orchards in 5 planting areas, including Lushan and Dujiangyan, was 81.45%-89.25%, and the incidence rate in the treatment group was basically controlled within 50%, among them the incidence rate in Mianzhu and Lushan was only 8.86% and 12.40% respectively. In 2020, the disease control effect of the orchards in Anzhou, Lushan and Dujiangyan planting areas reached 86.79%, 86.61% and 84.87%, respectively. The disease control effect of Anzhou and Dujiangyan orchards in 2021 was 81.03% and 81.16%, respectively. According to the disease index and incidence of the disease in different planting areas from 2019 to 2021, the disease had a trend of increasing year by year. But the control effect of the set of fungicides application scheme for the disease could still remain above 80.00%. 【Conclusion】 The fluriramide-trifloxystrobin and difenoconazole-azoxystrobin should be recommended for the prevention and control of kiwifruit brown spot disease.
Key words: Kiwifruit brown spot; Corynespora cassiicola; Toxicity; Fungicide selection; Field control effect
獼猴桃褐斑病是由多主棒孢菌(Corynespora cassiicola)侵染引起的一種葉部病害[1-2],主要在果實膨大期至品質形成期危害葉片,發病初期在葉片上出現褐色小圓斑,中期典型癥狀表現為具有同心輪紋的褐色壞死斑,后期病斑擴展合并,最終導致葉片大面積壞死及早落,影響果實品質及產量,致使減產15%~50%[3-4]。近年來,隨著高感品種紅陽獼猴桃種植面積的擴增,獼猴桃褐斑病逐漸成為危害四川地區獼猴桃最為嚴重的真菌性病害,且局部區域暴發成災,嚴重制約了獼猴桃產業的發展[5-6]。目前生產上對獼猴桃褐斑病的防治以化學防治為主,但未見登記用于防治該病害的化學藥劑,同時代森錳鋅、多菌靈、百菌清等廣譜性殺菌劑被廣泛使用,藥劑防治的針對性不強,防治效果參差不齊,現生產上發現用于防治褐斑病的復配藥劑如戊唑醇·肟菌酯、氯氟醚菌唑·吡唑醚菌酯及苯醚甲環唑·嘧菌酯等防治效果有逐年減弱的趨勢[7-8]。
針對多主棒孢菌在其他寄主上引起的病害,前人已有一些相關的藥劑防治研究。Vawdrey等[9]通過人工接種多主棒孢菌后進行藥劑處理,發現百菌清及吡唑醚菌酯對病情抑制較其他藥劑效果明顯。祁之秋等[10]檢測出苯醚甲環唑、咪鮮胺、代森錳鋅及嘧霉胺對黃瓜上多主棒孢病菌菌絲生長具有強烈抑制作用,而烯肟菌酯、福美雙、代森錳鋅、烯酰嗎啉、百菌清和多菌靈則對孢子萌發抑制作用更好。番華彩等[11]對來自香蕉的多主棒孢菌進行了7種殺菌劑的室內毒力測定,其中丙環唑對病原菌抑制效果較好,其次為多抗霉素和苯醚甲環唑·丙環唑。Vishwakarma等[12]對來自大豆的多主棒孢菌的室內毒力測定表明,當殺菌劑質量濃度為50 μg·mL-1時,咪鮮胺·戊唑醇、嘧菌酯·戊唑醇·咪鮮胺、吡唑醚菌酯·氯氟醚菌唑·氟唑菌酰胺、多菌靈·代森錳鋅和己唑醇可完全抑制病菌菌絲生長。崔麗紅等[13]通過田間藥效測定篩選出40%苯醚甲環唑·咪鮮胺水乳劑對獼猴桃褐斑病防治效果較好。目前,國內外對于多主棒孢菌的藥劑毒力相關研究多集中在黃瓜及大豆等寄主上,且現有的藥劑篩選工作多停留在單獨的室內毒力測定或田間藥效方面,不具有系統性。關于獼猴桃上多主棒孢菌的藥劑毒力測定及藥劑篩選鮮見報道,生產上亟待篩選出高效低毒的化學藥劑,針對獼猴桃褐斑病做到高效防治[14-15]。
筆者在本研究中擬對啶酰菌胺、吡唑醚菌酯、肟菌酯、戊唑醇等9種原藥進行菌絲生長及孢子萌發的室內毒力測定,對測定的毒力進行評價并結合生產用藥選擇合適的復配藥劑,然后進行復配藥劑室內菌絲生長的毒力測定及田間藥效試驗,旨在系統地篩選出防治獼猴桃褐斑病的高效藥劑。
1 材料和方法
1.1 材料
1.1.1 供試菌株 從獼猴桃褐斑病葉片上以單孢分離法得到多主棒孢菌(C. cassiicola)[16],病樣采集于四川省成都市邛崍市固驛鎮(E 103°59′83″,N 30°36′91″),病菌使用兩種方法保存備用,分別為斜面培養基4 ℃臨時保存及甘油-80 ℃長期保存。
1.1.2 供試藥劑 原藥:95%氟硅唑(Flusilazole)、95%嘧菌酯(Azoxystrobin)、97%戊唑醇(Tebuconazole)、95%肟菌酯(Trifloxystrobin)、98%啶酰菌胺(Boscalid)、98%多菌靈(Carbendazim)、98%惡唑菌酮(Famoxadone)、95%苯醚甲環唑(Difenoconazole)、95%吡唑醚菌酯(Pyraclostrobin),以上原藥均由四川國光農化股份有限公司提供。復配藥劑見表1。
1.1.3 培養基 馬鈴薯葡萄糖瓊脂(PDA)培養基:馬鈴薯200 g,葡萄糖20 g,瓊脂粉15 g,蒸餾水1000 mL。
清水瓊脂(WA)培養基:瓊脂粉15 g,蒸餾水1000 mL。
1.1.4 試驗條件 田間試驗獼猴桃的選擇應滿足同一栽培模式、管理措施、品種及樹齡的條件;試驗區域位于都江堰市胥家鎮獼猴桃種植區,露天栽培模式的5年生紅陽品種園(E 103?71′98″,N 31?02′37″)。
1.2 方法
1.2.1 不同原藥對多主棒孢菌的菌絲抑制效果 采用菌絲生長速率法[17-18]測定9種原藥對病菌的室內毒力,分別設置0.1、1.0、10.0、25.0、50.0、100.0 μg·mL-1 6個原藥質量濃度梯度,將原藥用丙酮預溶,隨后用0.01%的吐溫80稀釋到所需要的不同質量濃度;含藥培養基的制作為每個培養皿加入1 mL稀釋后的藥劑與9 mL的PDA培養液(相當于在原有的梯度質量濃度下再次稀釋10倍),在培養基冷卻至45 ℃左右混勻制成(最終培養基中丙酮的含量不得超過0.1%)。對照平板以1 mL 0.01%吐溫80加9 mL PDA培養基混合配制而成。將活化7 d的菌落沿外緣用5 mm打孔器切取菌餅放置于含藥平板中央,放入25 ℃恒溫培養箱遮光培養7 d后,用十字交叉法測量菌落直徑,計算抑菌率及EC50值,每個藥劑質量濃度設置3次重復。
菌絲生長抑制率/%=[(對照菌落直徑-處理菌落直徑)/(對照菌落直徑-菌餅直徑)]×100。
1.2.2 不同原藥對多主棒孢菌孢子萌發的抑制試驗 將多主棒孢菌分生孢子用無菌水從平板上洗脫下來,濃度調至1[×]106個孢子·mL-1。將30 μL孢子懸浮液與30 μL系列質量濃度的藥劑溶液混合而成藥劑處理液加入凹玻片中,最終藥劑處理液質量濃度設置0.1、1.0、10.0、25.0、50.0、100.0 μg·mL-1 6個梯度,對照處理液為30 μL孢子懸浮液與30 μL 0.01%吐溫水混合而成,每個處理設置3次重復,將凹玻片置于25 ℃培養箱中培養6 h,分別統計孢子萌發率,計算孢子萌發抑制率及EC50值[17]。
孢子萌發率/%=(孢子萌發數?調查的孢子總數)×100。
孢子萌發相對抑制率/%=[(對照孢子萌發率-處理孢子萌發率)?對照孢子萌發率]×100。
1.2.3 復配藥劑對多主棒孢菌的菌絲抑制試驗 結合生產上用于防治獼猴桃褐斑病的化學藥劑與原藥試驗效果,選擇不同復配藥劑進行室內毒力測定,將不同復配藥劑按照有效成分含量用無菌水稀釋設置1.0、10.0、20.0、50.0、100.0 μg·mL-1 5個質量濃度梯度。含藥培養基的制作參考1.2.1,對照培養基用1 mL無菌水與9 mL PDA培養基混合配制而成。將活化7 d的菌落沿外緣用5 mm打孔器切取菌餅放置在含藥平板中央,每個處理設置3次重復,25 ℃黑暗培養7 d后,用十字交叉法測量菌落直徑,計算抑菌率。
1.2.4 復配藥劑對獼猴桃褐斑病的田間防治試驗 將篩選出的復配藥劑應用于田間防治試驗,在獼猴桃褐斑病的病害防治關鍵期間分3次進行施藥,施藥時間為2020年7月11日、7月18日和7月25日,田間各復配藥劑施藥質量濃度均設置為100 μg·mL-1。采取隨機區組設計:以3株果樹為1個小區,設置3次重復小區。對照組同期噴灑清水處理。于藥前、第1次藥后7 d和第3次藥后7 d調查獼猴桃褐斑病的嚴重度,每株樹分東南西北中5個方位各固定調查10枚葉片,病害嚴重度分級標準見表2。其中病情指數計算公式為:病情指數=∑(各級病葉數×病級數值)/(病葉總數×9)×100。防治效果計算公式為:防治效果/%=[1-(CK0×PT1)/(CK1×PT0)]×100(CK0對照組藥前病情指數,PT1處理組藥后病情指數,CK1對照組藥后病情指數,PT0處理組藥前病情指數)[19]。
1.2.5 田間大區應用試驗 在四川省綿陽安州、都江堰、雅安蘆山等獼猴桃種植區域進行藥劑方案的推廣應用,在種植區內選擇典型果園進行藥劑方案的施行。藥劑方案選擇的藥劑為試驗中篩選出的高效復配藥劑,基于四川省地方標準DB51《獼猴桃褐斑病綜合防控技術規程》,確定藥劑施用時間及施藥次數:在6月初褐斑病初發期開始施藥,露天栽培條件下間隔7~10 d施藥,連續施藥4次,采果前20 d停藥。在推廣用藥的果園設立對照組,不對其進行藥劑防治,只進行正常的肥水管理。
1.3 數據分析
使用IBM SPSS Statistics 27軟件對數據進行分析,以藥劑質量濃度的對數值為橫坐標,抑制率對應的概率值為縱坐標作圖,得到毒力回歸方程及有效抑制中濃度(EC50)值。使用Duncan新復極差法比較各試驗處理之間的差異顯著性。
2 結果與分析
2.1 不同原藥對多主棒孢菌的菌絲抑制效果
不同原藥對多主棒孢菌菌絲的室內毒力試驗表明,戊唑醇、吡唑醚菌酯、苯醚甲環唑對菌絲生長的毒力較高,EC50值依次為10.81、11.69、12.48 μg·mL-1,多菌靈及啶酰菌胺對菌絲生長的毒力較低,EC50值分別為35.19、41.85 μg·mL-1,抑制效果可見圖1,具體毒力數據見表3。
2.2 不同原藥對多主棒孢菌孢子萌發的抑制效果
通過不同原藥對病菌孢子萌發的室內毒力試驗表明:戊唑醇與肟菌酯的毒力較高,EC50值分別為8.30、8.55 μg·mL-1;苯醚甲環唑、嘧菌酯、吡唑醚菌酯毒力相對次之,EC50值分別為12.69、14.60、15.89 μg·mL-1,多菌靈與啶酰菌胺的毒力較低,EC50值分別為33.65、40.35 μg·mL-1,具體結果見表4。
2.3 不同復配藥劑對多主棒孢菌菌絲生長的抑制效果
根據2.1與2.2的試驗結果,以及田間生產用藥調查情況,篩選出室內毒力抑制效果較好的原藥種類,選擇含有這些原藥的商品復配藥劑作為試驗藥劑,具體復配藥劑詳細信息見表1。從表5可知,在藥劑質量濃度為1 μg·mL-1時,7種復配藥劑中以氟唑菌酰胺·吡唑醚菌酯對病菌的菌絲生長抑制效果最好,但僅達63.45%,其他均低于50%。在藥劑質量濃度為10 μg·mL-1時,氟唑菌酰胺·吡唑醚菌酯對病菌菌絲的抑制效果仍是最佳,抑制率可達到88.59%;苯醚甲環唑·肟菌酯與氟吡菌酰胺·肟菌酯抑制效果次之,抑制率分別達到77.30%與73.08%;戊唑醇·肟菌酯抑制效果最差,抑制率僅為39.44%。在藥劑質量濃度為20 μg·mL-1時,7種藥劑對菌絲生長抑制效果在0.05水平上彼此之間均表現出差異,氟唑菌酰胺·吡唑醚菌酯抑制效果最佳,能100%完全抑制菌絲生長;氟吡菌酰胺·肟菌酯抑制效果次之,抑制率能達到85.85%;戊唑醇·肟菌酯抑制效果最差,抑制率為46.93%。在藥劑質量濃度為50 μg·mL-1時,氟唑菌酰胺·吡唑醚菌酯能100%抑制菌絲生長外,氟吡菌酰胺·肟菌酯與丙環唑·嘧菌酯抑制效果能分別達到96.08%與91.46%;另外苯醚甲環唑·肟菌酯的抑制效果達到了89.55%;戊唑醇·肟菌酯抑制效果仍是最差,抑制率為51.92%。在藥劑質量濃度為100 μg·mL-1時,氟唑菌酰胺·吡唑醚菌酯與氟吡菌酰胺·肟菌酯對菌絲生長抑制率均達到100%;丙環唑·嘧菌酯和苯醚甲環唑·肟菌酯的抑制率分別達到了99.46%與95.04%;氯氟醚菌唑·吡唑醚菌酯和戊唑醇·肟菌酯抑制效果最差,抑制率分別為60.03%與57.18%。
2.4 復配藥劑對獼猴桃褐斑病的田間防治效果
根據2.3中7種復配藥劑對病菌菌絲生長抑制效果及田間用藥情況,選擇氟唑菌酰胺·吡唑醚菌酯、氟吡菌酰胺·肟菌酯、苯醚甲環唑·肟菌酯、苯醚甲環唑·嘧菌酯、氯氟醚菌唑·吡唑醚菌酯及戊唑醇·肟菌酯6種藥劑進行田間防治試驗,并在施藥后持續調查至9月。由圖2可知,連續3次施用氟唑菌酰胺·吡唑醚菌酯的效果最好,至9月5日褐斑病病情指數只有17.13;施用苯醚甲環唑·肟菌酯、氟吡菌酰胺·肟菌酯、苯醚甲環唑·嘧菌酯的效果次之,至9月5日病情指數均小于30,距末次施藥后20 d(8月15日)病情仍處于相對較低水平,可持續至果實完全采收,保證了果品的安全。氯氟醚菌唑·吡唑醚菌酯與戊唑醇·肟菌酯處理的試驗區病情指數最高,到9月5日,病情指數分別達到61.58與52.98。由此可知:氟唑菌酰胺·吡唑醚菌酯有效地抑制了病情的發展;苯醚甲環唑·肟菌酯、氟吡菌酰胺·肟菌酯與苯醚甲環唑·嘧菌酯雖抑制了病情進一步發展,但是抑制效果不及氟唑菌酰胺·吡唑醚菌酯;氯氟醚菌唑·吡唑醚菌酯與戊唑醇·肟菌酯的病情指數最高,對病情發展的控制效果不佳。
根據各處理獼猴桃褐斑病病情指數計算田間各復配藥劑的防治效果,本次試驗以首次施藥后7 d(7月18日)及末次施藥后7 d(8月1日)的病情指數為代表,得出各復配藥劑的防效見表6。
在第1次施藥7 d后,各復配藥劑對褐斑病防治效果不一,其中氟唑菌酰胺·吡唑醚菌酯的防治效果達到了76.17%,氟吡菌酰胺·肟菌酯、苯醚甲環唑·嘧菌酯和氯氟醚菌唑·吡唑醚菌酯防治效果均在60%以上,戊唑醇·肟菌酯及苯醚甲環唑·肟菌酯防效較低分別只有58.60%和53.50%。在第3次施藥后7 d,氟唑菌酰胺·吡唑醚菌酯的防治效果達到了85.69%,氟吡菌酰胺·肟菌酯和苯醚甲環唑·嘧菌酯的防治效果分別達到83.25%和81.33%,其他3種復配藥劑的防效均未超過80%,其中苯醚甲環唑·肟菌酯防治效果最低只有70.19%。根據第1次試驗后7 d與第3次施藥后7 d的防治效果,氟唑菌酰胺·吡唑醚菌酯效果最好,氟吡菌酰胺·肟菌酯次之。
2.5 田間大區防治效果
根據藥劑篩選結果在四川省都江堰等不同種植區域推廣氟唑菌酰胺·吡唑醚菌酯與氟吡菌酰胺·肟菌酯兩種藥劑,在6月初褐斑病初發期開始施藥,露天栽培條件下間隔7~10 d施藥,連續施藥4次(兩種藥劑交替使用,各施藥2次)。在7月下旬至8月上旬對不同種植區域進行褐斑病的調查。結果(表7)顯示,2019—2021年應用此套施藥方案的種植區果園對獼猴桃褐斑病的防效均超過了80.00%,2019年雅安蘆山、都江堰等5個種植區果園對獼猴桃褐斑病的防治效果在81.45%~89.25%,處理組的發病率基本控制在50%以內,其中德陽綿竹與雅安蘆山的發病率分別只有8.86%和12.40%;2020年綿陽安州、雅安蘆山與都江堰種植區果園對病害的防治效果分別達到86.79%、86.61%和84.87%;2021年綿陽安州與都江堰果園對病害的防治效果分別為81.03%和81.16%。根據2019—2021年不同種植區病害的病情指數與發病率可知,該病害有逐年加重的趨勢,但該套施藥方案對病害的防治效果依舊能保持在80.00%以上。
3 討 論
對于由多主棒孢菌引起的植物病害,化學藥劑防治是目前為止最有效的防治措施,化學防治藥劑多屬于琥珀酸脫氫酶抑制劑(Succinate dehydrogenase inhibitors,SDHIs)、甲氧基丙烯酸酯類(Strobilurin,QoIs)及甾醇合成抑制劑(Sterolbiosynthesis inhibitors,SBIs)三類殺菌劑。SDHIs是市場上近些年銷售額年復合增長率最高的殺菌劑,主要作用于病菌的線粒體呼吸鏈復合體Ⅱ,阻斷能量代謝、抑制病菌生長直至死亡[20-21],SDHIs中啶酰菌胺,氟啶胺、吡唑萘菌胺、氟唑菌酰胺被先后報道對多主棒孢菌的菌絲生長有較強的抑制作用,其中氟啶胺及吡唑萘菌胺對多主棒孢菌孢子的萌發同樣具有較強的抑制作用。QoIs作為全球市場份額最大的殺菌劑,近些年一直表現出較強的市場競爭力[22],其主要作用于病原菌線粒體呼吸鏈復合體Ⅲ,阻止電子傳遞從而抑制真菌生長,QoIs中嘧菌酯、吡唑醚菌酯、肟菌酯對多主棒孢菌菌絲生長抑制作用明顯,并且吡唑醚菌酯與烯肟菌酯對病菌孢子萌發抑制作用較強[23-24]。作為農作物病害化學防治的主導藥劑之一,SBIs殺菌劑主要抑制病菌麥角甾醇的自身合成,破壞病菌細胞膜結構從而起到殺菌作用,其中苯醚甲環唑、咪鮮胺、丙硫菌唑、氟硅唑、丙環唑與氟醚菌唑對多主棒孢菌菌絲的生長抑制作用明顯,但尚未發現對病菌孢子萌發具有較強抑制作用的此類殺菌劑[25-27]。
本研究從殺菌劑原藥出發對多主棒孢菌菌絲生長及孢子萌發進行室內毒力測定,根據毒力結果選擇氟唑菌酰胺·吡唑醚菌酯在內的7種復配藥劑進行菌絲生長抑制試驗,最后通過6種復配藥劑田間藥效測定篩選出氟唑菌酰胺·吡唑醚菌酯與氟吡菌酰胺·肟菌酯2種高效殺菌劑。本試驗中戊唑醇、吡唑醚菌酯及苯醚甲環唑原藥對多主棒孢菌菌絲生長的抑制效果最強,戊唑醇與肟菌酯原藥對該病菌孢子萌發的抑制效果最強,前人研究中對該病菌菌絲生長有較強抑制作用的啶酰菌胺在本試驗中對菌絲生長及孢子萌發均表現出最差的抑制效果,此結果原因可能是來源于不同寄主的多主棒孢菌遺傳背景及施藥環境不同,導致對同一藥劑的敏感性有所差異。戊唑醇原藥對病菌的菌絲生長及孢子萌發均表現出較強的抑制效果,肟菌酯原藥對病菌孢子萌發抑制效果較強,但復配藥劑戊唑醇·肟菌酯在室內毒力測定及田間藥效相較于其他復配藥劑表現最差,這可能與復配藥劑的劑型種類有關,除戊唑醇·肟菌酯為水分散粒劑(WG)外,其余6種復配藥劑均為懸浮劑(SC),WG的懸浮率及藥效均低于或差于SC[28-29]。這說明單一的室內毒力或田間藥效均不能反映藥劑對病菌的具體作用效果,需要將二者結合分析,這也是本試驗較前人相關研究的差異之處。本試驗中對殺菌劑原藥分別進行了菌絲生長及抑制孢子萌發毒力測定,綜合對比原藥毒力進行后續篩選;由于采集的病菌孢子僅能滿足前期原藥的毒力測定,不能長期保存,且該病菌在人工培養時不易產孢,故在后續復配藥劑毒力測定中,僅測定了對菌絲生長的抑制效果,未測定對孢子萌發的抑制作用,此為本試驗的不足之處,待室內誘導產孢技術成熟,可補充此部分試驗。
通過復配藥劑的室內毒力及田間藥效篩選出氟唑菌酰胺·吡唑醚菌酯和氟吡菌酰胺·肟菌酯2種復配藥劑均為SDHIs與QoIs兩類殺菌劑組合而成,此2類殺菌劑作用機制均為高效的抑制線粒體呼吸鏈方式,并且作用位點不同,使得此種復配藥劑具有高效、低抗藥性風險的應用前景。根據2019—2021年田間推廣應用結果,即從6月初該病害初發階段開始間隔7~10 d使用氟唑菌酰胺·吡唑醚菌酯或氟吡菌酰胺·肟菌酯2種藥劑共4次,對該病害的防治效果均能超過80.00%,能有效防治獼猴桃褐斑病。后續應擴大對近些年生產上較為主流的復配藥劑的藥效測定,以便為獼猴桃褐斑病的高效防治及抗藥性治理提供更多藥劑選擇。
4 結 論
通過原藥及復配藥劑一系列的毒力篩選及藥效測定,戊唑醇、吡唑醚菌酯及苯醚甲環唑原藥對多主棒孢菌菌絲生長的抑制效果明顯,戊唑醇與肟菌酯原藥對病菌孢子萌發有較強抑制效果;復配藥劑42.4%氟唑菌酰胺·吡唑醚菌酯懸浮劑與43%氟吡菌酰胺·肟菌酯懸浮劑在室內毒力、田間藥效、累年藥劑防治結果中效果明顯,推薦此2種藥劑用于獼猴桃褐斑病的防治。
參考文獻 References:
[1] YUAN G Q,XIE Y L,TAN D C,LI Q Q,LIN W. First report of leaf spot caused by Corynespora cassiicola on kiwifruit (Actinidia chinensis) in China[J]. Plant Disease,2014,98(11):1586.
[2] CUI Y L,GONG G S,YU X M,XU J,WEN X W,ZHANG M,CHEN H B,ZHENG X J,ZHOU Y,CHANG X L. First report of brown leaf spot on kiwifruit caused by Corynespora cassiicola in Sichuan,China[J]. Plant Disease,2015,99(5):725.
[3] 龔國淑,李慶,張敏,崔永亮. 獼猴桃病蟲害原色圖譜與防治技術[M]. 北京:科學出版社,2020:21-23.
GONG Guoshu,LI Qing,ZHANG Min,CUI Yongliang. Kiwifruit diseases and insect pests original color map and control technology[M]. Beijing:Science Press,2020:21-23.
[4] 鄧蕾,潘慧,李文藝,趙昆松,鐘彩虹,李黎. 湖北省獼猴桃周年病害病原菌鑒定分析[J]. 中南農業科技,2023(4):25-30.
DENG Lei,PAN Hui,LI Wenyi,ZHAO Kunsong,ZHONG Caihong,LI Li. Identification and analysis of annual disease pathogens of kiwifruit in Hubei Province[J]. South-Central Agricultural Science and Technology,2023(4):25-30.
[5] 黃秀蘭,崔永亮,徐菁,朱宇航,陳華保,常小麗,楊繼芝,龔國淑. 獼猴桃種質材料對褐斑病抗性評價[J]. 植物病理學報,2018,48(5):711-715.
HUANG Xiulan,CUI Yongliang,XU Jing,ZHU Yuhang,CHEN Huabao,CHANG Xiaoli,YANG Jizhi,GONG Guoshu. Resistance evaluation of kiwifruit germplasm materials to brown leaf spot caused by Corynespora cassiicola[J]. Acta Phytopathologica Sinica,2018,48(5):711-715.
[6] XU J,GONG G S,CUI Y L,ZHU Y H,WANG J,YAO K K,CHEN W,WU C P,YANG R,YANG X D,LI P,ZHAO H N,ZHONG S,LUO Y,LI Y,LIAO W F. Comparison and correlation of Corynespora cassiicola populations from kiwifruit and other hosts based on morphology,phylogeny,and pathogenicity[J]. Plant Disease,2023,107(7):1979-1992.
[7] 蘇文文,李葦潔,李良良,吳迪,韓振成,王加國,任春光. 獼猴桃褐斑病的發生及防治[J]. 農技服務,2020,37(5):84-85.
SU Wenwen,LI Weijie,LI Liangliang,WU Di,HAN Zhencheng,WANG Jiaguo,REN Chunguang. Occurrence and prevention of kiwifruit brown spot[J]. Agricultural Technology Service,2020,37(5):84-85.
[8] 楊恩蘭,王林,茍鐵丞,龍彪,李榮. 3種殺菌劑對獼猴桃褐斑病的防治效果[J]. 農技服務,2021,38(1):74-76.
YANG Enlan,WANG Lin,GOU Tiecheng,LONG Biao,LI Rong. Control effect of three fungicides on kiwifruit brown spot[J]. Agricultural Technology Service,2021,38(1):74-76.
[9] VAWDREY L L,GRICE K R E,WESTERHUIS D. Field and laboratory evaluations of fungicides for the control of brown spot (Corynespora cassiicola) and black spot (Asperisporium caricae) of papaya in far north Queensland,Australia[J]. Australasian Plant Pathology,2008,37(6):552-558.
[10] 祁之秋,紀明山,陸田,王英姿,李興海,魏松紅. 黃瓜褐斑病防治藥劑的離體活性篩選[J]. 植物保護,2009,35(2):140-143.
QI Zhiqiu,JI Mingshan,LU Tian,WANG Yingzi,LI Xinghai,WEI Songhong. In vitro screening of effective fungicides against Corynespora cassiicola[J]. Plant Protection,2009,35(2):140-143.
[11] 番華彩,郭志祥,白亭亭,徐勝濤,尹可鎖,楊佩文,鄭泗軍,李迅東,曾莉. 香蕉棒孢霉葉斑病菌防治藥劑室內毒力測定[J]. 中國南方果樹,2018,47(2):96-97.
FAN Huacai,GUO Zhixiang,BAI Tingting,XU Shengtao,YIN Kesuo,YANG Peiwen,ZHENG Sijun,LI Xundong,ZENG Li. Laboratory determination of virulence of control fungicides for corynespora banana leaf spot pathogen[J]. South China Fruits,2018,47(2):96-97.
[12] VISHWAKARMA V K,SAXENA M,SAXENA D R. Evaluation of strobilurin and triazole fungicides against target leaf spot caused by (Corynespora cassiicola) in vitro condition[J]. International Journal of Current Microbiology and Applied Sciences,2020,9(12):1895-1902.
[13] 崔麗紅,宋金秋,黃蔚. 六種藥劑對湘西地區獼猴桃褐斑病的防治效果[J]. 黑龍江農業科學,2023(2):51-54.
CUI Lihong,SONG Jinqiu,HUANG Wei. Control effects of six fungicides on kiwifruit brown spot in western Hunan[J]. Heilongjiang Agricultural Sciences,2023(2):51-54.
[14] 崔永亮. 獼猴桃褐斑病的研究[D]. 雅安:四川農業大學,2015.
CUI Yongliang. Study of kiwifruit brown leaf spot[D]. Ya’an:Sichuan Agricultural University,2015.
[15] 張凱東,強遙,劉冰,李邦明,趙尚高,蔣軍喜. 獼猴桃葉斑病病菌生物學特性及室內藥劑篩選[J]. 江蘇農業科學,2021,49(18):106-110.
ZHANG Kaidong,QIANG Yao,LIU Bing,LI Bangming,ZHAO Shanggao,JIANG Junxi. Biological characteristics of kiwi leaf spot pathogen and screening of indoor pesticides[J]. Jiangsu Agricultural Sciences,2021,49(18):106-110.
[16] 龔國淑,徐琴,張敏,楊繼芝,陳華保,申世安,唐太飛. 一種簡便的病原真菌單孢分離方法研究[J]. 玉米科學,2010,18(1):126-127.
GONG Guoshu,XU Qin,ZHANG Min,YANG Jizhi,CHEN Huabao,SHEN Shian,TANG Taifei. A simple method for single fungal spore isolation[J]. Journal of Maize Sciences,2010,18(1):126-127.
[17] 唐爽爽,劉志恒,余朝閣,趙廷昌. 9種殺菌劑對西瓜炭疽病菌的室內毒力測定及配比試驗[J]. 植物保護,2014,40(6):171-175.
TANG Shuangshuang,LIU Zhiheng,YU Zhaoge,ZHAO Tingchang. Toxicity determination and proportioning tests of nine fungicides to Colletotrichum orbiculare[J]. Plant Protection,2014,40(6):171-175.
[18] 朱發娣. 黃瓜多主棒孢菌(Corynespora cassiicola)對啶酰菌胺的抗性及其機理研究[D]. 北京:中國農業科學院,2018.
ZHU Fadi. Resistance and its mechanism of Corynespora cassiicola from cucumber to boscalid[D]. Beijing:Chinese Academy of Agricultural Sciences,2018.
[19] 王曉坤,郭貝貝,高楊楊,慕衛,劉峰. 六種三唑類殺菌劑對番茄葉霉病菌的毒力及其安全性和田間防效評價[J]. 植物保護學報,2017,44(4):671-678.
WANG Xiaokun,GUO Beibei,GAO Yangyang,MU Wei,LIU Feng. The toxicity of six triazole fungicides to Cladosporium fulvum and their safety and field efficacy in the control of tomato leaf mold[J]. Journal of Plant Protection,2017,44(4):671-678.
[20] 仇是勝,柏亞羅. 琥珀酸脫氫酶抑制劑類殺菌劑的研發進展(Ⅰ)[J]. 現代農藥,2014,13(6):1-7.
QIU Shisheng,BAI Yaluo. Progress on research and development of succinate dehydrogenase inhibitor fungicides (Ⅰ)[J]. Modern Agrochemicals,2014,13(6):1-7.
[21] 魏閣,高夢琪,朱曉磊,楊光富. 靶向琥珀酸脫氫酶的酰胺類殺菌劑的研究進展[J]. 農藥學學報,2019,21(5/6):673-680
WEI Ge,GAO Mengqi,ZHU Xiaolei,YANG Guangfu. Research progress on carboxamide fungicides targeting succinate dehydrogenase[J]. Chinese Journal of Pesticide Science,2019,21(5/6):673-680
[22] 嚴明,柏亞羅. 甲氧基丙烯酸酯類等四大類殺菌劑市場概況及前景展望[J]. 現代農藥,2016,15(6):1-8.
YAN Ming,BAI Yaluo. Market overview and prospect outlook on four fungicide sectors including methoxyacrylates[J]. Modern Agrochemicals,2016,15(6):1-8.
[23] 思彬彬,楊卓. 甲氧基丙烯酸酯類殺菌劑作用機理研究進展[J]. 世界農藥,2007,29(6):5-9.
SI Binbin,YANG Zhuo. Studies on mechanism and resistance to strobilurin fungicides[J]. World Pesticides,2007,29(6):5-9.
[24] 徐麗慧,高士剛,曾蓉,戴富明. 黃瓜靶斑病菌致病性鑒定及藥劑篩選[J]. 上海農業學報,2016,32(4):116-121.
XU Lihui,GAO Shigang,ZENG Rong,DAI Fuming. Pathogenicity identification and fungicide screening of Corynespora cassiicola in cucumber[J]. Acta Agriculturae Shanghai,2016,32(4):116-121.
[25] TERAMOTO A,MEYER M C,SUASSUNA N D,DA CUNHA M G. In vitro sensitivity of Corynespora cassiicola isolated from soybean to fungicides and field chemical control of target spot[J]. Summa Phytopathologica,2017,43(4):281-289.
[26] 禾麗菲,李曉旭,朱佳美,慕衛,劉峰. 不同殺菌劑對黃瓜靶斑病菌的毒力作用特性比較[J]. 農藥學學報,2018,20(1):25-32.
HE Lifei,LI Xiaoxu,ZHU Jiamei,MU Wei,LIU Feng. Comparison of toxicity properties of different types of fungicides against Corynespora cassiicola on cucumber[J]. Chinese Journal of Pesticide Science,2018,20(1):25-32.
[27] 葉滔,馬志強,畢秋艷,牛芳勝,韓秀英,張小風,王文橋,張利輝. 植物病原真菌對甾醇生物合成抑制劑類(SBIs)殺菌劑的抗藥性研究進展[J]. 農藥學學報,2012,14(1):1-16.
YE Tao,MA Zhiqiang,BI Qiuyan,NIU Fangsheng,HAN Xiu-ying,ZHANG Xiaofeng,WANG Wenqiao,ZHANG Lihui. Research advances on the resistance of plant pathogenic fungi to SBIs fungicides[J]. Chinese Journal of Pesticide Science,2012,14(1):1-16.
[28] 華乃震. 農藥劑型的進展和動向(中)[J]. 農藥,2008,47(3):157-160.
HUA Naizhen. Advance and trend of pesticide formulation development (Middle)[J]. Agrochemicals,2008,47(3):157-160.
[29] 王彥華,王鳴華,張久雙. 農藥劑型發展概況[J]. 農藥,2007,46(5):300-304.
WANG Yanhua,WANG Minghua,ZHANG Jiushuang. Present situation on pesticide formulations[J]. Agrochemicals,2007,46(5):300-304.