999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

不同酶解工藝對鮮木薯塊根粗多糖得率的影響

2025-02-09 00:00:00余厚美林立銘王琴飛姚慶群杜培旭張金泉張振文
熱帶作物學報 2025年2期
關鍵詞:優化

摘""要:本研究以木薯塊根為原料,采用單因素試驗結合Box-Behnken響應面方法,優化超聲波輔助木薯粗多糖的提取工藝,分析4種不同酶酶解鮮木薯塊根的工藝,比較木薯粗多糖(crude"polysaccharide"of"cassava"root,"CPCR)得率的差異。結果表明:4種酶酶解最優工藝均有所差異,加酶提取CPCR得率顯著高于不加酶,4種酶的CPCR得率大小為中溫α-淀粉酶gt;普魯蘭酶gt;半纖維素酶gt;低溫α-淀粉酶,其中低溫α-淀粉酶酶解超聲處理時間最長(360"min),但CPCR得率最低為7.02%;中溫α-淀粉酶CPCR得率最高(20.25%),其最佳酶解提取工藝為超聲功率300"W,超聲溫度70"℃,加酶量5"KU/g,料液比(g/mL)1∶2.5,超聲時間240"min;普魯蘭酶酶解超聲處理時間最短(60"min),CPCR得率為13.98%;半纖維素酶酶解條件下CPCR得率為7.99%。進一步對優化條件進行驗證,結果表明,粗多糖得率和預測值接近,但是在僅加入酶不加木薯樣本的條件下也檢測到粗多糖含量,扣除酶的影響后中溫α-淀粉酶的提取率仍然為最高(17.22%),可見,中溫α-淀粉酶酶解木薯塊根是一種高效率提取CPCR的方法。本研究有望為鮮木薯粗多糖的深入研究和開發利用提供技術基礎。

關鍵詞:木薯;粗多糖;響應面分析;酶解提取中圖分類號:Q814.9,S533""""""文獻標志碼:A

Effect"of"Different"Enzymatic"Hydrolysis"Processes"on"the"Yield"of"Crude"Polysaccharide"from"Fresh"Cassava"Roots

YU"Houmei1,2,"LIN"Liming1,2,"WANG"Qinfei1,2,"YAO"Qingqun1,2,"DU"Peixu1,"ZHANG"Jinquan1,"ZHANG"Zhenwen1,2*

  • Institute"of"Tropical"Crops"Genetic"Resources,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"National"Ramp;D"Center"for"Potato"Processing,"Haikou,"Hainan"571101,"China;"2.nbsp;Key"Laboratory"of"Germplasm"Resources"Conservation"and"Utilization"of"Cassava,"Ministry"of"Agriculture"and"Rural"Affairs,"Haikou"Hainan"571101,"China

Abstract:"Cassava"roots"were"used"as"the"raw"material."Single"factor"tests"combined"with"the"Box-Behnken"response"surface"method"were"used"to"optimize"the"extraction"process"of"cassava"crude"polysaccharide"(CPCR)"assisted"by"ultrasonic"wave,"and"the"process"of"enzymatic"hydrolysis"of"cassava"tuber"roots"by"four"different"enzymes"was"analyzed."The"results"showed"that"the"four"enzymatic"hydrolysis"processes"were"different."The"extraction"yield"of"CPCR"with"enzyme"was"significantly"higher"than"that"without"enzyme."The"CPCR"yield"of"the"four"enzymes"was"α-medium"temperaturegt;pullulanasegt;hemicellulasegt;α-low-temperature"amylase,"the"ultrasonic"treatment"time"of"α-low-temperature"amylase"was"the"longest"(360"min),"but"the"CPCR"yield"was"the"lowest"(7.02%)."The"α-medium"temperature"CPCR"yield"was"the"highest"(20.25%),"and"the"best"enzymatic"extraction"process"was"as"follows:"ultrasonic"power"300"W,"ultrasonic"temperature"70"℃,"enzyme"content"5"KU/g,"solid-liquid"ratio"(g/mL)"1∶2.5,"and"ultrasonic"time"240"min."The"ultrasonic"treatment"time"of"pullulanase"was"the"shortest"(60"min),"and"the"CPCR"yield"was"13.98%."The"yield"of"CPCR"under"hemicellulase"hydrolysis"was"7.99%."The"optimized"conditions"were"further"verified,"and"the"results"showed"that"the"yield"of"crude"polysaccharide"was"close"to"the"predicted"value."However,"the"crude"polysaccharide"content"was"also"detected"under"the"condition"that"only"enzyme"was"added"without"cassava"sample,"and"the"extraction"rate"of"medium"temperature"α-amylase"was"still"the"highest"(17.22%)"after"deducting"the"influence"of"enzyme."It"can"be"seen"that"medium"temperature"α-amylase"enzymatic"hydrolysis"of"cassava"tuber"roots"is"an"efficient"way"to"extract"CPCR."This"study"is"expected"to"provide"technique"basis"for"its"further"research"and"utilization"of"crude"polysaccharide.

Keywords:"cassava;"crude"polysaccharides;"response"surface"analysis;"enzymolysis"extraction

DOI:"10.3969/j.issn.1000-2561.2025.02.016

多糖是一類由單糖通過糖苷鍵連接在一起形成的生物大分子物質[1-2],廣泛存在于自然界中,并因其獨特的生物活性,如免疫調節、抗氧化、抗腫瘤、降血糖等備受關注,并在醫藥、食品和化妝品等領域具有廣泛的應用價值[3-7]。木薯(Manihot"esculenta"Crantz)作為一種在全球熱帶地區廣泛種植的糧食作物,為超過10億人口提供了基本的營養來源[8],其塊根含有淀粉、纖維素、蛋白質等營養物質,且已被證實是制備活性多糖的重要物質基礎[9-11]。已有研究表明,木薯塊根中的多糖不僅種類繁多,而且具有顯著的生物活性。例如,CHARLES等[12]從木薯塊根中分離出一種由蔗糖、果糖、葡萄糖、半乳糖和阿拉伯糖等組成的粘多糖,具有特定的分子量和組成,該粘多糖來自半纖維素;CHIA等[13]的研究則揭示了木薯多糖對大鼠耐力的積極影響;此外,木薯粉提取的粗多糖亦被證實具有抗氧化活性和對大鼠肝損傷的保護作用[14];UTHUMPORN等[15]進一步研究發現,木薯多糖的添加能夠顯著改善小麥粉面團的加工特性。

多糖的提取是多糖活性評價的前提,其方法的選擇對于多糖的得率、性質及生物活性具有顯著影響[16-19],傳統的提取方法如熱水提取、酸堿提取雖操作簡單,但存在得率低、活性低等缺點。相比之下,超聲提取和酶法提取因具有條件溫和、提取率高、活性強等優勢而逐漸受到重視[20-21]。超聲波能夠破壞植物細胞壁結構,促進多糖的釋放,而酶法則具有專一性強、反應條件溫和、活性強、成本低、環保等特點,特別是當把2種方法結合使用時,能夠進一步提高多糖的得率和活性[22]。然而,值得注意的是,盡管超聲輔助酶法在多糖提取領域展現出巨大的潛力,但該方法尚未被應用于木薯多糖的提取。因此,本研究旨在充分利用超聲和酶解法的優點,通過響應面法優化不同酶解條件下的最佳提取工藝,以期為木薯多糖的深入研究和綜合高效利用提供理論支持和實踐指導。

1""材料與方法

1.1""材料

華南9號木薯(South"China"9,"SC9)塊根采自中國熱帶農業科學院熱帶作物品種資源研究所國家薯類加工技術研發分中心(海南儋州);無水葡萄糖、葡萄糖醛酸、牛血清白蛋白(bovine"serum"albumin,"BSA)、四硼酸鈉、考馬斯亮藍均購自北京索萊寶公司;低溫α-淀粉酶、半纖維素酶均購自上海源葉生物公司;中溫α-淀粉酶、普魯蘭酶、三氯乙酸均購自上海麥克林公司;無水乙醇、磷酸二氫鈉、磷酸氫二鈉、氯化鈉、硫酸等所有分離用有機試劑均購自國藥集團化學試劑有限公司。

KQ-600DE超聲波清洗器(昆山舒美公司);TU-1810APC紫外分光光度計(北京普析公司);Simple-Q15超純水系統(上海芷昂公司);Multiskan"FC酶標儀(美國Thermo公司);PHS-3E"pH計(上海儀電科學儀器公司);SRY-150生化培養箱(寧波賽福公司);IJXFSTPRP-24全自動樣品快速研磨儀(上海凈信實業公司);Z327K高速冷凍離心機(德國HERMLE公司)。

1.2""方法

1.2.1""木薯粗多糖提取樣本預處理""采收生長期1年的華南9號木薯塊根,木薯塊根洗凈泥沙、去掉外表皮和木薯內層皮,切塊、研磨成漿、分裝,?20"℃冷凍待用。

1.2.2""超聲輔助酶解木薯粗多糖提取工藝""CPCR的提取參考CHARLES等[12]、CHEN等[23]的方法并優化,按照圖1流程進行提取:在木薯樣本中加入一定量的去離子水和酶,300"W條件下超聲浸提,25"℃,8000"r/min離心10"min后取上清,加4%三氯乙酸去蛋白,離心后在上清中加無水乙醇至濃度為80%,混勻后室溫靜置2"h離心取沉淀,沉淀用去離子水復溶后使用截留量為3.5"kDa透析袋在去離子水中透析72"h。

1.2.3""單因素試驗""低溫α-淀粉酶:以CPCR得率為指標,在超聲功率300"W、超聲溫度45"℃條件下,按照1.2.2提取CPCR,依次分別考察加酶量(0、0.1、0.3、0.5、0.7、0.9、1.1"KU/g)、料液比(g/mL)(1∶2、1∶3、1∶5、1∶8)、超聲時間(60、120、180、240、300、360"min)對CPCR得率的影響。

中溫α-淀粉酶:以CPCR得率為指標,在超聲功率300"W、超聲溫度70"℃條件下,按照1.2.2提取CPCR,依次分別考察加酶量(0、1.0、2.0、3.5、4.5、6.0"KU/g)、料液比(g/mL)(1∶1.5、1∶2、1∶3、1∶5、1∶8)、超聲時間(30、60、120、240、360、480"min)對CPCR得率的影響。

普魯蘭酶:以CPCR得率為指標,在超聲功率300"W、超聲溫度55"℃條件下,按照1.2.2提取CPCR,依次考察加酶量(0、1.0、2.0、3.0、4.0"KU/g)、料液比(g/mL)(1∶1.5、1∶2、1∶3、1∶5、1∶8)、超聲時間(30、60、120、240、360、480"min)對CPCR得率的影響。

半纖維素酶:以CPCR得率為指標,在超聲功率300"W、超聲溫度50"℃條件下,按照1.2.2提取CPCR,依次考察加酶量(0、0.3、0.5、0.7、1.0、2.0、3.0"KU/g)、料液比(g/mL)(1∶2、1∶3、1∶5、1∶8、1∶10)、超聲時間(15、30、45、60、80、100、120"min)對CPCR得率的影響。

1.2.4""響應面優化""基于單因素試驗結果,采用Design-Expert"12的Box-Behnken設計響應面組合試驗方案[24],以加酶量、料液比和超聲時間為正交因子,CPCR得率為響應值,優化木薯粗多糖的超聲波輔助提取工藝參數,具體試驗因素水平如表1所示。

1.2.5""粗多糖組成測定""采用苯酚-硫酸法測定木薯粗多糖總糖含量,采用間羥基聯苯法測定酸性糖含量,采用考馬斯亮藍法測定可溶性蛋白質含量[25]。

1.3""數據處理

每個試驗至少重復3次,采用Excel"2016軟件計算試驗數據平均值和相對標準偏差,響應面試驗數據由Design-Expert"12軟件處理,采用IBM"SPSS"Statistics"27軟件進行單因素顯著性統計分析,相關圖形數據均由Origin"2021軟件處理。

2""結果與分析

2.1""單因素試驗

2.1.1""加酶量對CPCR得率的影響""4種酶的不同加酶量對CPCR得率的影響表明,在未添加和低劑量添加酶時,CPCR得率較低。隨著加酶量的增加,CPCR得率逐漸升高,當加酶量達到一定程度時,CPCR得率不再顯著增加,部分情況下反而有所降低(圖2)。這可能是因為在加酶量較低時,酶可以充分與底物接觸,隨著加酶量增加底物被完全反應,進一步增加加酶量可能導致酶的活性被抑制[26]。低溫α-淀粉酶在加酶量為0.9"KU/g時得率達到最高,進一步增加加酶量未顯著提高CPCR得率(圖2A),因此,選擇0.6~"1.0"KU/g作為優化范圍;中溫α-淀粉酶加酶量達到4.5"KU/g時,粗多糖得率達到最高,為23.11%(圖2B),其優化范圍為2.0~5.0"KU/g。普魯蘭酶為液體型,加酶量增加會導致料液比相應增加,結合料液比數據(圖2C),其優化范圍選擇為2.0~4.0"KU/g。半纖維素酶在加酶量達到2.0"KU/g時CPCR得率達到最大,但在0.7"KU/g后增加不顯著(圖2D),其優化范圍為0.3~3.0"KU/g。

2.1.2""料液比對CPCR得率的影響""4種酶解條件下料液比對CPCR得率的影響見圖3,隨著溶劑增加,圖3A、圖3B、圖3D中粗多糖得率均呈現先增加后減少的趨勢。當溶劑較少時對木薯酶解不充分,隨著料液比增加,可能雜質的溶出抑制了多糖的提取,使得多糖呈現先增加后減少的趨勢[27]。從圖3A中可知,料液比在1∶3"時粗多糖得率最高,與1∶2"的料液比無顯著性差異,料液比1∶5"或1∶8"時,多糖得率顯著下降,因此,料液比選擇1∶2~1∶5"作為優化范圍;圖3B料液比在1∶2"時粗多糖得率最高,因此選1∶1.5~1∶3.0"作為其優化范圍;圖3C中料液比1∶2"后CPCR得率未顯著增加,料液比選擇1∶2~1∶8"作為其優化范圍;圖3D料液比在1∶5"時粗多糖得率最高,隨著料液比上升粗多糖得率迅速下降,料液比選擇1∶3~1∶8"進一步優化。

2.1.3""超聲時間對CPCR得率的影響""超聲時間對CPCR得率的影響如圖4所示。隨著超聲時間延長,木薯粗多糖得率逐漸增加,說明適當延長超聲時間可以提高CPCR得率,但時間過長,多糖得率呈現下降趨勢,可能是粗多糖溶解到平衡后,會引起粗多糖結構的改變從而降低得率[28]。低溫α-淀粉酶在超聲時間60~300"min時CPCR得率和超聲時間成正比,超過300"min后CPCR得率下降(圖4A),可能是超聲時間太長導致水溫上升,超過了低溫α-淀粉酶的最適溫度45"℃導致酶失活,導致得率下降,因此提取時間選取180~360"min作為優化范圍;中溫α-淀粉酶在超聲時間大于120"min后粗多糖得率并未顯著增加(圖4B),表明經過120"min的超聲處理,大部分木薯粗多糖都已溶出[25],隨著超聲時間延長水溫升高,但是仍然在中溫α-淀粉酶的活性溫度范圍內,所以隨著超聲時間延長,CPCR得率未減少,因此提取時間選取60~240"min作為優化范圍;普魯蘭酶超聲時間對木薯粗多糖的得率如圖4C所示,隨著提取時間延長,CPCR得率逐漸增加,但超過360"min后未顯著提高粗多糖得率,因此提取時間選取60~360"min作為優化范圍;半纖維素酶在15~100"min隨著超聲時間延長,CPCR"得率逐漸增加,并在100"min時達到最大(圖4D),說明適當延長超聲時間可以提高木薯粗多糖得率,可能是超聲能破壞細胞壁促進粗多糖溶出,但超聲時間超過100"min后木薯粗多糖得率開始下降,可能長時間超聲破壞了多糖結構并使其降解,導致得率下降[29-30],因此超聲時間選取45~120"min作為優化范圍。

2.2""響應面優化

2.2.1""低溫α-淀粉酶""應用Design-Expert"12軟件對表2中的數據進行建模和分析,得到了粗多糖得率(R)的加酶量(A)、料液比(B)、和超聲時間(C)的多元回歸方程:R=3.7600+1.2700A?1.3000B+"0.1613C?0.3725AB+0.0150AC?0.4975BC?0.3590A2?0.3365B2+0.3410C2。響應面試驗數據的分析結果見表3,模型P=0.0413lt;0.05,R2=83.62%,說明此模型顯著,失擬項P=0.9053gt;0.05,說明明顯的失擬因素不存在,因此該回歸方程可信。根據F值可判斷3項因素對CPCR得率影響大小排序為B(料液比)gt;A(加酶量)gt;C(超聲時間)。

根據回歸模型分析結果,運用Design-Expert"12軟件中的Optimization功能,以粗多糖含量最大為條件,求解回歸模型優化得到最優參數:加酶量為1"KU/g,料液比(g/mL)為1∶2,超聲時間為360"min,粗多糖得率為7.02%。

2.2.2""中溫α-淀粉酶""應用Design-Expert"12軟件對表4中的數據進行建模和分析,得到粗多糖得率(R)的加酶量(A)、料液比(B)、和超聲時間(C)的多元回歸方程:R=16.4300+2.8400A+1.9300B+"1.5300C?0.5163AB?0.8623AC?0.0935BC?0.4883A2?1.9400B2+0.5730C2。響應面試驗數據的分析結果見表5,P=0.0014lt;0.01,R2=94.34%,說明此模型極顯著,失擬項P=0.5926gt;0.05,說明明顯的失擬因素不存在,因此該回歸方程可信。F值可評估判斷自變量對因變量產生的影響,可知3個因素影響CPCR提取率的程度為A(加酶量)gt;B(料液比)gt;C(超聲時間)。

根據回歸模型分析結果,運用Design-Expert"12軟件中的Optimization功能,以粗多糖含量最大為條件,求解回歸模型優化得到最優參數:加酶量為5"KU/g,料液比為1∶2.5,超聲時間為240"min,粗多糖得率為20.25%。

2.2.3""普魯蘭酶""應用Design-Expert"12軟件對表6中的數據進行建模和分析,得到了粗多糖得率(R)的加酶量(A)、料液比(B)、和超聲時間(C)的多元回歸方程:R=8.4900+3.2100A+0.0072B?"0.4989C?0.1425AB?0.3443AC+0.6830BC+0.3117A2?0.0120B2+0.3152C2。響應面試驗數據的分析結果見表7,Plt;0.01,R2=98.04%,說明此模型極顯著,失擬項P=0.0564gt;0.05,說明該回歸方程可信。由F值可知3個因素影響CPCR提取率的程度為A(加酶量)gt;C(超聲時間)gt;B(料液比)。

根據回歸模型分析結果,運用Design-Expert"12軟件中的Optimization功能,以粗多糖含量最大為條件,求解回歸模型優化得到最優參數:加酶量為4"KU/g,料液比為1∶2"g/mL,超聲時間為60"min,粗多糖得率為13.98%。

2.2.4""半纖維素酶""應用Design-Expert"12軟件對表8中的數據進行建模和分析,得到粗多糖得率(R)的加酶量(A)、料液比(B)、和超聲時間(C)的多元回歸方程:R=3.59000+0.72000A?0.20250B+"0.86250C+0.13000AB+0.34500AC+1.82000BC?1.11000A2+1.53000B2+0.06957C2。響應面試驗數據的分析結果見表9,P=0.0060lt;0.01,R2=91.14%,說明此模型極顯著,失擬項P=0.4365gt;0.05,說明該回歸方程可信。由F值可評估3個因素影響提取率的程度為C(超聲時間)gt;A(加酶量)gt;B(料液比)。

根據回歸模型分析結果,運用Design-Expert"12軟件中Optimization功能,以粗多糖含量最大為條件,求解回歸模型優化得到最優參數:加酶量為2.4"KU/g,料液比為1∶8,超聲時間為120"min,粗多糖得率為7.99%。

2.3""參數驗證

根據多元回歸方程和模型,預測了4種酶法輔助超聲波提取木薯粗多糖最優參數。經過5次平行試驗,CPCR的得率如表10所示。結果顯示,4種酶對木薯肉粗多糖得率大小:中溫α-淀粉酶>普魯蘭酶>半纖維素酶>低溫α-淀粉酶,中溫α-淀粉酶酶解木薯漿時CPCR得率最高。進一步分析發現,所有加酶條件下的CPCR得率均極顯著高于未加酶條件的得率,這證明了超聲波輔助酶解能極顯著提高CPCR的提取效率。此外,在僅加入酶而不加木薯樣本的試驗中也檢測到了多糖成分,無樣本只加酶提取的粗多糖得率大小為普魯蘭酶(5.23%)gt;低溫α-淀粉酶(2.97%)gt;中溫α-淀粉酶(2.58%)gt;半纖維素酶(0.04%),這可能是由于菌種自身的胞壁多糖,或者在酶的生產過程中菌種培養等原因而殘留的能產生多糖的成分所致[31-33]。具體而言,在未加樣本只加酶的情況下,普魯蘭酶的多糖得率最高,達到5.23%,而半纖維素酶的多糖得率最低,僅為0.04%。在扣除酶本身產生的多糖影響后,我們發現中溫α-淀粉酶對木薯漿中CPCR的提取得率仍然為最高(17.22%)。值得注意的是,中溫α-淀粉酶的最佳作用溫度為70"℃,這與木薯淀粉的糊化溫度相近[34],因此,不加酶的情況下,由于樣本大部分已凝固,導致無法有效提取木薯粗多糖,所以,中溫α-淀粉酶提取條件下不加酶無法獲得木薯粗多糖。總的來說,建立的回歸模型能準確反映3個因素對木薯粗多糖得率的影響,并且實際結果與預測值非常接近。經過響應面法優化的超聲波輔助酶法提取的參數具有實際應用價值,為CPCR的提取提供了有效的技術方法。

3""討論

木薯是世界重要的糧食作物,其塊根富含淀粉和纖維素,是傳統的植物基多糖提取制備的優質原料。傳統采用熱水浸提法提取多糖時,過高的提取溫度(65"℃以上)會引起淀粉的糊化[34],進而影響非淀粉多糖的提取效率。而采用α-淀粉酶和糖化酶聯合酶解處理山藥的多糖得率為溫水浸提的3.5倍左右[35],為此,常見能降解淀粉的酶類如α-淀粉酶、糖化酶、普魯蘭酶等常被用于高淀粉含量樣本的粗多糖提取。本研究表明,中溫α-淀粉酶提取的多糖得率最高,這可能中溫α-淀粉酶的作用溫度為70"℃,超聲過程中溫度會升高,導致實際作用溫度高于70"℃,但是還是在中溫α-淀粉酶的最佳作用溫度范圍內,在該范圍內木薯淀粉已糊化,糊化的淀粉空間結構更松散,更易于被酶解,提高了粗多糖的得率[36]。

從提取工藝看,超聲輔助提取多糖也是一種常用的物理提取方法,超聲形成的空化效應具有高強度的沖擊力和剪切力,能夠穿透細胞壁,從而促進胞內物質的溶出[37],縮短時間,提高得率[38],使多糖分子量更小,活性更高[39]。本研究結果表明300"W超聲波輔助酶解能顯著提高CPCR得率,但不同的酶最適作用條件不同,所得產物也有差異。許多研究也表明,不同的酶解條件下所得到的多糖在含量、單糖組成、分子量、外觀形態等方面有顯著差異[40-42]。可見,超聲波輔助酶水解植物基提取功能多糖可能是今后產業化應用的主流技術。本研究系統分析了CPCR的提取工藝,為后續CPCR的分離純化及活性組分研究奠定基礎,有助于進一步揭示其結構與生物活性之間的關系。然而,不同超聲時間和酶是如何高效水解淀粉、CPCR主要來源于淀粉還是纖維或細胞壁等科學問題尚不清楚,這將是今后研究的重點。

參考文獻

[1]"路欣彤,"齊欣,"高雪峰,"崔承弼."輻照處理對樺褐孔菌多糖抗疲勞作用的影響[J]."食品工業科技,"2022,"43(3):"351-357.LU"X"T,"QI"X,"GAO"X"F,"CUI"C"B."Effect"of"irradiated"process"on"anti-fatigue"activity"of"inonotus"obliquus"polysaccharide[J]."Science"and"Technology"of"Food"Industry,"2022,"43(3):"351-357."(in"Chinese)

[2]"SHI"L."Bioactivities,"isolation"and"purification"methods"of"pol y saccharides"from"natural"products:"a"review[J]."Interna tional"Journal"of"Biological"Macromolecules,"2016,"92:"37-48.

[3]"WANG"M"X,"FU"C"Y,"ZHANG"M"C,"ZHANG"Y"X,"CAO"L."Immunostimulatory"activity"of"soybean"hull"polysaccharide"on"macrophages[J]."Experimental"and"Therapeutic"Medicine,"2022,"23(6):"389.

[4]"HUANG"R"R,"WU"E"H,"DENG"X"L."Potential"of"lycium"barbarum"polysaccharide"for"the"control"of"glucose"and"lipid"metabolism"disorders:"a"review[J]."International"Journal"of"Food"Properties,"2022,"25(1):"673-680.

[5]"DENG"R,"WANG"F,"WANG"L"F,"XIONG"L,"SHEN"X"C,"SONG"H"Z."Advances"in"plant"polysaccharides"as"antiaging"agents:"effects"and"signaling"mechanisms[J]."Journal"of"Agricultural"and"Food"Chemistry,"2023,"71(19):"7175-7191.

[6]"WANG"A"Q,"LIU"Y,"ZENG"S,"LIU"Y"Y,"LI"W,"WU"D"T,"WU"X,"ZOU"L,"CHEN"H"J."Dietary"plant"polysaccharides"for"cancer"prevention:"role"of"immune"cells"and"gut"microbiota,"challenges"and"perspectives[J]."Nutrients,"2023,"15(13):"3019.

[7]"劉爽,"曲孟,"齊欣,"及長城,"崔承弼."輻照富硒木耳多糖對1型糖尿病小鼠的降血糖作用研究"[J]."食品工業科技,"2024,"45(18)":"334-343.LIU"S,"QU"M,"QI"X,"JI"C"C,"CUI"C"B."Hypoglycemic"effect"of"irradiation"Se-enriched"A."auricularia"polysaccharide"on"type"1"diabetes"mice[J]."Science"and"Technology"of"Food"Industry,"2024,"45(18)":"334-343."(in"Chinese)

[8]"LIN"L"M,"LUO"X"Q,"YU"H"M,"WANG"Q"F,"ZHANG"Z"W,"LI"K"M."The"effect"of"postharvest"water"migration"onnbsp;metabolism"of"cassava"root"by"hypobaric"storage[J]."Innovative"Food"Science"amp;"Emerging"Technologies,"2024,"93:"103609.

[9]"張振文,"李開綿."木薯及其加工利用100問[M]."北京:"中國農業出版社,"2017.ZHANG"Z"W,"LI"K"M."100"Questions"on"cassava"and"its"processing"and"utilization[M]."Beijing:"China"Agricultural"Publishing"House,"2017."(in"Chinese)

[10]"姜太玲,"劉光華,"周迎春,"熊賢坤,"劉超,"段春芳,"宋記明,"劉倩,"李月仙,"沈紹斌,"嚴煒,"易懷鋒,"盧誠,"張林輝."不同品種木薯的主要品質特征與綜合評價[J]."食品工業科技,"2019,"40(20):"251-255,"261.JIANG"T"L,"LIU"G"H,"ZHOU"Y"C,"XIONG"X"K,"LIU"C,"DUAN"C"F,"SONG"J"M,"LIU"Q,"LI"Y"X,"SHEN"S"B,"YAN"W,"YI"H"F,"LU"C,"ZHANG"L"H."Main"quality"characteristics"and"comprehensive"evaluation"of"different"varieties"of"cassava[J]."Science"and"Technology"of"Food"Industry,"2019,"40(20):"251-255,"261."(in"Chinese)

[11]"喻珊,"王友印,"邢曉東,"李開綿,"王志勇,"歐文軍."木薯飼料化應用研究進展[J]."熱帶作物學報,"2023,"44(12):"2369-2383.YU"S,"WANG"Y"Y,"XING"X"D,"LI"K"M,"WANG"Z"Y,"OU"W"J."Research"progress"on"feed"application"of"cassava[J]."Chinese"Journal"of"Tropical"Crops,"2023,"44(12):"2369-2383."(in"Chinese)

[12]"CHARLES"A"L,"HUANG"T"C,"CHANG"Y"H."Structural"analysis"and"characterization"of"a"mucopolysaccharide"isolated"from"roots"of"cassava"(Manihot"esculenta"Crantz"L.)[J]."Food"Hydrocolloids,"2008,"22(1):"184-191.

[13]"CHIA"H"Y,"TE"H"T,"CHENG"U"H,"CHANG"B"Y,"CHUNG"S"K."Effects"of"sweet"cassava"polysaccharide"extracts"on"endurance"exercise"in"rats[J]."Journal"of"the"International"Society"Sports"Nutrition,"2013,"10(1):"18.

[14]"CHARLES"A"L,"HUANG"T."Sweet"cassava"polysaccharide"extracts"protects"against"CCl4"liver"injury"in"wistar"rats[J]."Food"Hydrocolloids,"2009,"23(6):"1494-1500.

[15]nbsp;UTHUMPORN"U,"NADIAH"I,"IZZUDDIN"I,"CHENG"L,"AIDA"H."Physicochemical"characteristics"of"non-starch"polysaccharides"extracted"from"cassava"tubers[J]."Saine"Malaysiana,"2017,"46(2):"223-229.

[16]"XI"T,"XIN"Z,"CHEN"H"G."Structure-activity"relationship"of"plant"polysaccharides[J]."China"Journal"of"Chinese"Materia"Medica,"2017,"42(21):"4104-4109.

[17]"陳超鵬,"全偉,"吳明亮,"張文韜."基于離散元法的油菜移栽垂直入土式成孔部件參數優化[J]."湖南農業大學學報"(自然科學版),"2019,"45(4):"433-439.CHEN"C"P,"QUAN"W,"WU"M"L,"ZHANG"W"T."Parameter"optimization"of"vertical"soil-filling"hole-forming"parts"for"rapeseed"transplantation"based"on"discrete"element"method[J]."Journal"of"Hunan"Agricultural"University"(Natural"Sciences),"2019,"45(4):"433-439."(in"Chinese)

[18]"陸建能,"麥碧儀,"劉義軍,"趙雨詩,"陳云蘭,"林麗靜,"周大圣,"張明."梯度乙醇沉淀工藝對靈芝多糖結構特征及生物活性的影響[J]."熱帶作物學報,"2023,"44(4):"816-824.LU"J"N,"MAI"B"Y,"LIU"Y"J,"ZHAO"Y"S,"CHEN"Y"L,"LIN"L"J,"ZHOU"D"S,"ZHANG"M."Effect"of"gradient"alcohol"precipitation"process"on"the"structural"characteristics"and"biological"activity"of"ganoderma"lucidum"poly-saccharides[J]."Chinese"Journal"of"Tropical"Crops,"2023,"44(4):"816-824."(in"Chinese)

[19]"譚婉碧,"王琴飛,"余厚美,"何毅,"張振文."植物源功能活性多糖的提取及其研究進展[J]."熱帶農業科學,"2022,"42(7):"90-98.TAN"W"B,"WANG"Q"F,"YU"H"M,"HE"Y,"ZHANG"Z"W."Research"progress,"extraction"and"functional"activity"of"plant"polysaccharides[J]."Chinese"Journal"of"Tropical"Agriculture,"2022,"42(7):"90-98."(in"Chinese)

[20]"WU"H"Y,"SHANG"H"M,"GUO"Y,"ZHANG"H"X,"WU"H"X."Comparison"of"different"extraction"methods"of"polysaccharides"from"cup"plant"(Silphium"perfoliatum"L.)[J]."Process"Biochemistry,"2020,"90:"241-248.

[21]"LIAO"D"W,"CHENG"C,"LIU"J"P,"ZHAO"L"Y,"HUANG"D"C,"CHEN"G"T."Characterization"and"antitumor"activities"of"polysaccharides"obtained"from"ginger"(Zingiber"officinale)"by"different"extraction"methods[J]."International"Journal"of"Biological"Macromolecules,"2020,"152:"894-903.

[22]"董宇,"林翰清,"繆松,"盧旭."酶法提取多糖的研究進展[J]."食品工業科技,"2021,"42(3):"351-358.DONG"Y,"LIN"H"Q,"MIAO"S,"LU"X."Advances"in"enzymatic"extraction"of"polysaccharides[J]."Science"and"Technology"of"Food"Industry,"2021,"42(3):"351-358."(in"Chinese)

[23]"CHEN"X,"ZHANG"H,"DU"W"Q,"QIAN"L"Y,"XU"Y,"HUANG"Y"G,"XIONG"Q"P,"LI"H"L,"YUAN"J."Comparison"of"different"extraction"methods"for"polysaccharides"from"Crataegus"pinnatifida"bunge[J]."International"Journal"of"Biological"Macromolecules,"2020,"150:"1011-1019.

[24]"GUO"L,"TAN"D"C,"HUI"F"Y,"GU"F,"XIAO"K"M,"HUA"Y."Optimization"of"the"cellulase?ultrasonic"synergistic"extraction"conditions"of"polysaccharides"from"Lenzites"betulina[J]."Chemistry"amp;"Biodiversity,"2019,"16(11):"e1900369.

[25]"徐湘,"龐旭佳,"張名位,"張瑞芬,"賈栩超,"董麗紅,"馬勤,"趙東,"黃菲."不同提取工藝淮山多糖的理化性質及抗氧化活性分析[J]."現代食品科技,"2023,"39(10):"128-138.XU"X,"PANG"X"J,"ZHANG"M"W,"ZHANG"R"F,"JIA"X"C,"DONG"L"H,"MA"Q,"ZHAO"D,"HUANG"F."Physicochemical"properties"and"antioxidant"activity"of"chinese"yam"polysaccharides"extracted"by"different"methods[J]."Modern"Food"Science"amp;"Technology,"2023,"39(10):"128-138."(in"Chinese)

[26]"喻隨,"鄧霞,"陳思穎,"吳鵬,"占劍峰,"胡婷."纖維素酶法提取佛手山藥多糖的工藝[J]."食品工業,"2020,"41(9):"60-63.YU"S,"DENG"X,"CHEN"S"Y,"WU"P,"ZHAN"J"F,"HU"T."Extraction"technology"of"polysaccharide"from"Foshou"yam"by"enzymatic"hydrolysis"of"cellulase[J]."The"Food"Industry,"2020,"41(9):"60-63."(in"Chinese)

[27]"張婷陽,"張伶,"蔣雨秦,"劉洋,"王新惠,"趙欣欣,"苗保河."玫瑰花渣多糖提取工藝優化及體外抗氧化活性分析[J/OL]."食品工業科技,"1-18"(2024-05-13)[2024-06-22]."doi:"10."13386/j.issn1002-0306.2023120256.ZHANG"T"Y,"ZHANG"L,"JIANG"Y"Q,"LIU"Y,"WANG"X"H,"ZHAO"X"X,"MIAO"B"H."Study"of"extraction"process"of"polysaccharides"from"rosa"residue"and"and"evaluation"of"antioxidative"activity[J/OL]."Science"and"Technology"of"Food"Industry,"1-18(2024-05-13)[2024-06-22]."doi:"10.13386/j."issn1002-0306.2023120256."(in"Chinese)

[28]"李晨京,"馮怡華,"王春玲."紫甘薯水溶性多糖的提取工藝優化及結構研究[J]."食品研究與開發,"2022,"43(24):"125-133.LI"C"J,"FENG"Y"H,"WANG"C"L."Extraction"optimization"and"structure"of"water-soluble"polysaccharides"from"purple"sweet"potato[J]."Food"Research"and"Development,"2022,"43(24):"125-133."(in"Chinese)

[29]"劉鑫,"陳香玉,"郭銳,"李旭嬌,"寇宇星,"張俊愛,"吳艷."碧螺春多糖的超聲輔助酶提取工藝優化、分離純化及性質分析[J]."食品工業科技,"2021,"42(16):"138-146.LIU"X,"CHEN"X"Y,"GUO"R,"LI"X"J,"KOU"Y"X,"ZHANG"J"A,"WU"Y."Process"optimization"of"ultrasound-assisted"enzyme"extraction"of"Biluochun"polysaccharide"and"its"separation,"purification"and"property"analysis[J]."Science"and"Technology"of"Food"Industry,"2021,"42(16):"138-146."(in"Chinese)

[30]"陸源添,"劉迪."楊樹桑黃與紫孢側耳共培養胞內多糖提取工藝優化及抗氧化活性分析[J/OL]."食品工業科技,"1-19"(2024-05-31)[2024-06-22]."doi:"10.13386/j.issn1002-"0306."2024020046.LU"Y"T,"LIU"D."Optimization"of"intracellular"polysaccharide"extraction"process"and"analysis"of"antioxidant"activity"in"co-"cultures"of"sanghuangporus"vaninii"and"pleurotus"sap id us[J/OL]."Science"and"Technology"of"Food"Industry,"1-19"(2024-05-31)[2024-06-22]."doi:"10.13386/j.issn1002-0306."2024 0 20046."(in"Chinese)

[31]"韓宗辰."煙草專用α-淀粉酶的基因挖掘及其表達優化[D]."武漢:"華中農業大學,"2023.HAN"Z"C."Gene"mining"and"expression"optimization"of"tobacco-specific"alpha-amylase[D]."Wuhan:"Huazhong"Agricultural"University,"2023."(in"Chinese)

[32]"胡曉龍,"馮大鴻,"田瑞杰,"王永亮,"曹滿堂,"魏濤,"韓素娜,"沈祥坤,"何培新."中溫大曲產淀粉酶菌株的篩選鑒定及培養條件優化[J]."中國釀造,"2023,"42(1):"78-85.HU"X"L,"FENG"D"H,"TIAN"R"J,"WANG"Y"L,"CAO"M"T,"WEI"T,"HAN"S"N,"SHEN"X"K,"HE"P"X."Isolation,"identification"and"culture"conditions"optimization"of"amylase-pro du cing"strains"in"medium-temperature"Daqu[J]."China"Brewing,"2023,"42(1):"78-85."(in"Chinese)

[33]"YEKTA"G,"PüRLEN"U,"SEVAL"D."Optimization"of"pullulan"production"from"hydrolysed"potato"starch"waste"by"response"surface"methodology[J]."Carbohydrate"Polymers,"2011,"83(3):"1330-1337.

[34]"譚婉碧,"王琴飛,"張金泉,"余厚美,"張振,"何毅."不同菌種發酵木薯粉品質和糊化特性比較分析[J]."食品科學,"2023,"44(10):"56-63.TAN"W"B,"WANG"Q"F,"ZHANG"J"Q,"YU"H"M,"ZHANG"Z"W,"HE"Y."Comparative"analysis"on"quality"and"gelatinization"characteristics"of"cassava"flour"fermented"by"different"strains[J]."Food"Science,"2023,"44(10):"56-63."(in"Chinese)

[35]"董義,"沈才洪,"曾里,"黃張君,"劉曉碧,"劉文虎,"何強,"曾凡駿."酶解輔助提取山藥多糖的研究[J]."河南工業大學學報"(自然科學版),"2015,"36(3):"56-60.DONG"Y,"SHEN"C"H,"ZENG"L,"HUANG"Z"J,"LIU"X"B,"LIU"W"H,"HE"Q,"ZENG"F"J."Enzymolysis-assisted"extraction"of"polysaccharides"in"Chinese"yam[J]."Journal"of"Henan"University"of"Technology"(Natural"Science"Edition),"2015,"36(3):"56-60."(in"Chinese)

[36]"ZHANG"Y"T,"XU"F,"WANG"Q"F,"ZHANG"Y"J,"WU"G,"TAN"L"H,"ZHANG"Z"W."Effects"of"moisture"content"on"digestible"fragments"and"molecular"structures"of"high"amylose"jackfruit"starch"prepared"by"improved"extrusion"cooking"technology[J]."Food"Hydrocolloids,"2022,"133:"108023.

[37]"陳雪梅,"劉夏蕾,"林標聲,"陳小紅,"黎英."百香果果皮主要有效成分連續提取工藝[J].nbsp;熱帶作物學報,"2023,"44(2):"405-418.CHEN"X"M,"LIU"X"L,"LIN"B"S,"CHEN"X"H,"LI"Y."Continuous"extraction"technology"of"main"active"components"of"passion"fruit"peel[J]."Chinese"Journal"of"Tropical"Crops,"2023,"44(2):"405-418."(in"Chinese)

[38]"郭蒙,"郭純,"蔣青,"高林曉."黃果茄中綠原酸超聲輔助提取工藝優化及抗氧化活性[J]."熱帶作物學報,"2023,"44(4):"825-833.GUO"M,"GUO"C,"JIANG"Q,"GAO"L"X."Ultrasound-assisted"extraction"process"optimization"of"chlorogenic"acid"from"Solanum"xanthocarpum"fruits"and"its"antioxidant"activity[J]."Chinese"Journal"of"Tropical"Crops,"2023,"44(4):"825-833."(in"Chinese)

[39]"JIA"Y"N,"GAO"X"D,"XUE"Z"H,"WANG"Y"J,"LU"Y"P,"ZHANG"M,"PANICHAYUPAKARANANT"P,"CHEN"H"X."Characterization,"antioxidant"activities,"and"inhibition"on"alpha-glucosidase"activity"of"corn"silk"polysaccharides"obtained"by"different"extraction"methods[J]."International"Journal"of"Biological"Macromolecules,"2020,"163:nbsp;1640-1648.

[40]"XIAO"B,"HUANG"Q"Q,"CHEN"S,"YAO"J,"ZENG"J"Y,"SHEN"J"M,"WANG"G,"WANG"W"M,"ZHANG"Y"J."Comparison"on"chemical"features"and"antioxidant"activity"of"polysaccharides"from"Auricularia"auricula"by"three"different"enzymes[J]."Journal"of"Food"Biochemistry,"2022,"46(5):"e14051.

[41]"HONG"S,"ZHANG"Z"Q,"LI"Y"X,"ZHANG"Y,"YANG"L"N,"WANG"S"N,"HE"Y"T,"LIU"J,"ZHU"D"S,"LIU"H."Effects"of"different"enzyme"extraction"methods"on"the"properties"and"prebiotic"activity"of"soybean"hull"polysaccharides[J]."Heliyon,"2022,"8(11):"e11053.

[42]"張妮,"陶文揚,"羅夢帆,"周萬怡,"鄭曉杰,"李彥坡,"金火喜,"楊穎."酶解輔助提取對鐵皮石斛多糖結構和菌群調節功能的影響[J]."浙江農業學報,"2024,"36(9):"2099-2109.ZHANG"N,"TAO"W"Y,"LUO"M"F,"ZHOU"W"Y,"ZHENG"X"J,"LI"Y"P,"JIN"H"X,"YANG"Y."Effects"of"enzyme-assisted"extraction"on"polysaccharide"composition"and"gut"microbiota"regulation"function"of"Dendrobium"officinale[J]."Acta"Agriculturae"Zhejiangensis,"2024,"36(9):"2099-2109."(in"Chinese)

猜你喜歡
優化
超限高層建筑結構設計與優化思考
房地產導刊(2022年5期)2022-06-01 06:20:14
PEMFC流道的多目標優化
能源工程(2022年1期)2022-03-29 01:06:28
民用建筑防煙排煙設計優化探討
關于優化消防安全告知承諾的一些思考
一道優化題的幾何解法
由“形”啟“數”優化運算——以2021年解析幾何高考題為例
圍繞“地、業、人”優化產業扶貧
今日農業(2020年16期)2020-12-14 15:04:59
事業單位中固定資產會計處理的優化
消費導刊(2018年8期)2018-05-25 13:20:08
4K HDR性能大幅度優化 JVC DLA-X8 18 BC
幾種常見的負載均衡算法的優化
電子制作(2017年20期)2017-04-26 06:57:45
主站蜘蛛池模板: 国产免费看久久久| 国产尤物视频网址导航| 在线色综合| 国产18在线| 日韩精品免费一线在线观看| 日本人妻一区二区三区不卡影院 | 美女毛片在线| 亚洲天堂视频在线免费观看| 91精品综合| 综合色88| 日韩a在线观看免费观看| 毛片卡一卡二| 99国产精品国产| 四虎免费视频网站| 国产亚洲精品91| 噜噜噜久久| 久久免费视频6| 色综合天天视频在线观看| 婷婷中文在线| 4虎影视国产在线观看精品| 亚洲国产日韩在线观看| 欧美性猛交一区二区三区| 天天摸天天操免费播放小视频| 欧美性猛交一区二区三区| 天天摸天天操免费播放小视频| 欧美日韩一区二区三区在线视频| 无码专区国产精品第一页| 国产综合在线观看视频| 福利小视频在线播放| 欧美日本一区二区三区免费| 99久久精品国产综合婷婷| 高清无码手机在线观看| 色综合五月婷婷| 亚洲欧美一级一级a| 亚洲精品成人片在线播放| 国产成人a在线观看视频| 国产精品页| 亚洲成a人片77777在线播放| 日本免费精品| 黄色网站不卡无码| 91美女视频在线| 国产成人毛片| V一区无码内射国产| 91在线视频福利| 免费毛片在线| 国产1区2区在线观看| 国产亚洲精品无码专| 亚洲国产天堂久久综合| 国产女人18水真多毛片18精品| 国产一区二区三区日韩精品 | 91在线国内在线播放老师| 欧美第一页在线| 国产微拍精品| 亚洲成人免费在线| 婷婷亚洲视频| 免费AV在线播放观看18禁强制| 亚洲午夜久久久精品电影院| 亚洲AⅤ永久无码精品毛片| 国产区91| 国产精品第5页| www.youjizz.com久久| 免费aa毛片| 一级毛片免费播放视频| 天天色天天操综合网| 国产屁屁影院| 99热这里只有免费国产精品| 亚洲欧美在线看片AI| 999精品在线视频| 香蕉色综合| 日韩精品中文字幕一区三区| 国产精品任我爽爆在线播放6080| 黄色在线不卡| 一区二区三区成人| 亚洲欧美日本国产综合在线| 国产精品亚洲精品爽爽| 99国产在线视频| 国产99精品久久| 黑色丝袜高跟国产在线91| 久久国产精品影院| 中文字幕无码中文字幕有码在线| 熟女成人国产精品视频| 国产成人凹凸视频在线|