










摘要: 古土壤是研究古氣候的重要載體。目前針對成土作用的研究主要圍繞著成土過程中元素的遷移行為和成土演化過程等方面,但對成土作用表現形式的相關報道卻很少。江西省信江盆地上白堊統塘邊組以發育大型交錯層理紅色砂巖為特征,是華南白堊紀溫室氣候陸地沉積的典型代表。本文在詳細的野外調查基礎上,運用巖石學和地球化學方法對信江盆地白堊系塘邊組的紅色砂巖開展成土作用研究,探究晚白堊世信江盆地的古氣候特征。研究區塘邊組紅色砂巖的巖石類型主要為中粒長石砂巖。塘邊組沉積物普遍經歷了成土作用,其主要識別特征包括發育于碎屑顆粒邊部的黏土膜、微晶—亮晶碳酸鹽膠結物和潛育作用。化學蝕變指數(CIA)分布在50.20~83.30之間(平均值58.08),反映該套紅色砂巖處于弱化學風化水平。微量元素分析以及成土作用的識別,共同指示研究區砂巖形成于干旱—炎熱的古氣候,這種干旱—炎熱的古氣候可能與中國東部晚白堊世高大沿岸山系阻礙古太平洋濕潤水汽向華東南內陸地區的流入有關。
關鍵詞:紅色砂巖;成土作用;地球化學;古氣候;信江盆地;塘邊組;晚白堊世
doi:10.13278/j.cnki.jjuese.20240015 中圖分類號:P581 文獻標志碼:A
收稿日期: 2024-01-14
作者簡介: 叢云燕(1997—), 女, 碩士研究生, 主要從事沉積巖石學和沉積地球化學方面的研究, E-mail: congyy21@mails.jlu.edu.cn
通信作者: 劉娜(1984—), 女, 副教授, 碩士生導師, 主要從事沉積巖石學和儲層沉積學方面的研究, E-mail: liuna_jlu@126.com
基金項目: 國家自然科學基金項目(42272146)Supported by the National Natural Science Foundation of China (42272146)
Pedogenesis Characteristics and Geological Significance of the Red Sandstone in Upper Cretaceous Tangbian Formation, Xinjiang Basin, Jiangxi Province
Cong Yunyan, Liu Na, Gao Fuhong, Zhang Songxu
College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: Paleosol is a significant carrier for studying paleoclimate. Presently, the research on pedogenesis principally focuses on the migratory behavior of elements and the evolutionary process of pedogenesis, with limited reports on the manifestations of pedogenesis. The Upper Cretaceous Tangbian Formation in Xinjiang basin is dominantly composed of red sandstone with large cross-beddings, which is a typical representative of Cretaceous greenhouse climate terrestrial deposits in South China. Based on detailed field investigation, petrological and geochemical methods were employed to study the pedogenesis of red sandstone during the Cretaceous Tangbian Formation and explore paleoclimate characteristics of the Xinjiang basin during the Upper Cretaceous. The red sandstone of Tangbian Formation in the study area is primarily medium-grained arkose. The sediments have universally experienced pedogenesis, the key identification features of red sandstone include clay films on the edge of the detrital grains, micritic-sparry carbonate cement and gleization. The CIA (Chemical Index of Alteration) ranges from 50.20 to 83.30 (58.08 on average), indicating that the red sandstone is at a low level of chemical weathering. The analysis of microelement and the recognition of pedogenesis collectively indicate that the sandstone in the study area was formed in a hot and dry paleoclimate. This may be attributed to the high coastal mountain system that emerged during the Upper Cretaceous period in Eastern China, hindering the flow of moist water vapor from the Paleo-Pacific Ocean into the inland areas of Southeast China and forming a sedimentary paleogeographic environment dominated by aridity and torridity.
Key words: red sandstone; pedogenesis; geochemistry; ancient climate;Xinjiang basin; Tangbian Formation; Upper Cretaceous
0 引言
白堊紀時期,華南總體為構造隆起區,發育許多陸相斷陷盆地,位于江西省東北部的信江盆地是其典型代表。信江盆地上白堊統塘邊組以發育紅色大型交錯層理風成砂巖為特征,在經歷了地殼抬升、流水侵蝕和風化剝蝕后形成了著名的以龍虎山—龜峰世界地質公園為代表的丹霞地貌[1-2]。前人對信江盆地的古生物化石[3]、沉積巖石特征[4-5]以及沉積環境[6-7]開展了大量的工作,主要包括利用露頭沉積組構進行沉積相分析[4,8-10]、利用礫石成分和砂巖碎屑成分分析物源和物源區構造屬性[10-12],以及研究陸相紅層與丹霞地貌的成因關系[13-14]和構造演化[15-16]等。成土作用是指殘積物及其他沉積物的表層在一定條件下形成土壤的過程。成土過程一經發生,一定與巖石的風化過程同時進行,兩個過程無法分離[17]。成土作用發生在陸相環境沉積和成巖作用初期,包含了沉積、成巖、風化和運移作用等一系列過程[18-19]。郝立波等[20]對吉林省中部地區花崗質巖石及上覆殘積土壤進行系統采樣分析,研究了表生環境中常量元素和微量元素含量變化,確定了花崗質巖石的風化特征及元素活動性規律。楊社峰等[21]對紅土型風化殼中20種微量元素含量進行了測定,發現As、Au、Bi、Cu、Mo顯著富集于高嶺土風化帶上部。目前針對成土作用的研究主要圍繞著成土過程中元素的遷移行為和成土演化過程等方面,但對成土作用表現形式的相關報道卻很少。
本文以江西省信江盆地鷹潭地區上白堊統塘邊組紅色砂巖為研究對象,在詳細的野外調查基礎上,綜合運用巖石礦物顯微分析和地球化學分析的方法,識別了成土作用的表現形式,對塘邊組紅色砂巖的母巖巖石類型和物源風化強度進行了分析,為探究信江盆地晚白堊世的古氣候和古環境提供依據,同時對熱帶亞熱帶地區生態環境的演化過程具有指示意義。
1 區域地質背景
信江盆地位于江西省東北部,地處揚子板塊和華夏板塊結合帶[4],即九嶺東西向隆起帶南緣與新華夏系懷玉山—武夷山復式隆起帶的復合部位[2],盆地整體呈近東西向展布,其延伸方向和形態明顯受控于早期近東西向構造帶。研究區鷹潭地區位于信江盆地的中部[13],地處武夷山脈向鄱陽湖平原過渡的交接地帶[22](圖1a)。信江盆地上白堊統包括贛州群(茅店組和周田組)和圭峰群(河口組、塘邊組和蓮荷組)(圖1b)。研究區塘邊組為典型的陸相沉積,以河湖相沉積為主,另常見大型交錯層理風成砂巖,可見遺跡化石[2,13,24],與下伏河口組成平行不整合接觸。塘邊組下部主要發育粉砂巖,產恐龍蛋化石;中部為紫紅色礫質粗砂巖、粉砂質細礫巖及含礫中細砂巖;上部發育磚紅色砂巖、粉砂巖和含礫砂巖。
2 樣品采集和分析方法
本次研究選取江西省信江盆地鷹潭地區塘邊組具有代表性的4個紅色砂巖剖面進行采樣(圖2a—d),其中取自b、d野外剖面的樣品中可觀察到青灰色暈斑(圖2e、f)。樣品采集時避開脈體發育的部位,共采集11件新鮮巖石樣品,切制薄片11片,樣品加工處理及地球化學分析在吉林大學地球科學學院進行。采集的樣品粉碎至200目,進行地球化學主微量元素測試分析。主量元素測試采用X射線熒光光譜分析儀,微量元素分析采用電感耦合等離子質譜儀(ICP-MS),精度誤差優于±5%。
研究中通過化學蝕變指數(CIA)計算以及A-CN-K投圖對物源區的風化程度進行判別。CIA計算公式為:CIA = Al2O3 /(Al2O3+CaO*+Na2O+K2O)×100[25],CaO*僅代表硅酸鹽礦物中Ca的質量分數,氧化物為摩爾分數。CaO*物質的量的選取采用Mclernnan的近似估計方法[26],當樣品中CaO的摩爾分數lt; Na2O的摩爾分數時,將CaO的摩爾分數視為CaO*的摩爾分數;當樣品中CaO的摩爾分數≥Na2O的摩爾分數時,將Na2O的摩爾分數視為CaO*的摩爾分數。根據A-CN-K圖解[26],將每個樣品中A(Al2O3)、CN(CaO*+Na2O)和K(K2O)的物質的量進行投圖,利用CIA數據的趨勢線,重建平行于A-CN的母巖理想風化趨勢線。校正后的CIA為砂巖樣品的投點和A端的連線與理想風化趨勢線交點處的值。
3 巖石學特征
信江盆地塘邊組紅色砂巖為中粒長石砂巖(表1,圖3,圖4),分選中等,顆粒呈次圓狀—次棱角狀(圖5a)。石英以單晶石英為主,體積分數在38%~55%之間;長石以鉀長石為主,偶爾可見斜長石和微斜長石,體積分數在31%~40%之間;巖屑主要以硅質巖屑為主,體積分數在13%~25%之間,另見安山巖巖屑和泥質巖巖屑等,體積分數在3%~6%之間。自生礦物包括次生加大石英、碳酸鹽礦物、鐵質和黏土礦物(表1)。次生加大石英與碎屑石英光性一致,在次生加大邊和碎屑石英之間存在黏土線(圖5b)。碳酸鹽礦物成分主要為方解石,包括微晶和亮晶方解石。微晶方解石形成早于亮晶方解石,方解石膠結物主要以充填孔隙和交代碎屑長石和碎屑石英兩種產狀產出(圖5c、d、e),其中微晶—亮晶方解石也被作為成土作用特征之一。鐵質體積分數為1%~2%,在單偏光鏡下呈黑色不透明狀,形狀為圓狀—似圓狀,主要生長于顆粒間的孔隙內(圖5f)。在偏光顯微鏡下能明顯觀察到碎屑長石及石英顆粒的邊緣發育呈黃色的黏土薄膜,這類薄膜為黏土膜,與碎屑顆粒邊界明顯。部分黏土膜呈全包狀包裹顆粒狀態(圖5g),部分黏土膜呈半包狀包裹顆粒狀態(圖5h),還可見黏土膜呈一個大包裹體同時包裹著多個顆粒的狀態(圖5i)。通過對比同一樣品中不同的自生礦物類型,可知黏土膜發育較好的砂巖樣品中次生加大石英發育較差(表1),這說明黏土膜形成的時間較早,其發育限制了后期石英次生加大的生長。
4 樣品測試結果
紅色砂巖樣品主量元素中w(SiO2)為79.06%~85.59%,平均值為82.52%,高于澳大利亞頁巖標準值(PASS)(62.80%);w(Al2O3)在6.93%~8.62%之間,平均值為7.52%;w(Fe2O3)在0.46%~0.96%之間,平均值為0.66%;w(MgO)在0.34%~0.65%之間,平均值為0.51%。通過與PASS平均化學成分相比較,這些主量元素除SiO2外,其他質量分數均具有不同程度上的偏低。相較于平均上地殼標準比值(UCC),研究區紅色砂巖樣品微量元素Ba、Rb、Cs、Nb等元素相對富集,Co、Cr、Sr、Sc等元素相對虧損(圖6a,表2)。樣品在稀土元素球粒隕石標準化圖解中表現出明顯的Eu負異常,其中6#樣品中的稀土元素相對富集(圖6b,表2)。
5 討論
5.1 成土作用特征
成土作用是土壤形成的一個重要過程,屬于成巖作用的早成巖機制。研究區塘邊組砂巖成土作用的主要表現形式包括發育黏土膜、微晶—亮晶碳酸鹽和青灰色暈斑。
5.1.1 黏土膜
黏土膜是成土作用的識別標志之一[30-31]。土壤學中的“黏土”是一個寬泛的術語,指的是顆粒尺寸小于2 μm的任何物質。在成土過程中,上部土壤層中的黏土和可溶性物質在滲流水(雨水)作用下向下部層遷移(淋溶作用),并在下部土壤層中沉淀(淀積作用)形成黏土膜。黏土膜可以完全由黏土礦物組成,也可以由黏土礦物和鐵氧化物或強氧化物、黏土礦物及有機質組成。黏土膠膜可描述為骨架顆粒膠膜、土體膠膜、溝道膠膜和孔隙膠膜。從時間上來說,黏土膜的形成是最早發生的成巖事件。黏土膜形成早于溶蝕作用,在鑄模孔邊緣可見完整的黏土膜保留下來,且黏土膜的存在阻礙了石英加大的生長(表1)。在較干旱的氣候條件下,當顆粒表面的水膜受到蒸發作用時,黏土礦物析出則會形成黏土膜。而在氣候濕潤、地表徑流量大和沉積物粒度較粗的條件下,黏土膜則難以保存[32]。研究區塘邊組發育全包邊、半包邊和呈大包裹體的黏土膜(圖5g、h、i),反映了當時干旱的氣候條件。
5.1.2 微晶—亮晶碳酸鹽
與成土作用(風化作用、蒸發作用和生物活動)有關的碳酸鹽稱為成土碳酸鹽。通過偏光顯微鏡觀察到塘邊組砂巖發育微晶—亮晶方解石,這類呈環帶狀包裹碎屑顆粒的微晶方解石一般形成于滲流帶,多發育于干旱炎熱的大陸環境[33],部分微晶方解石通過重結晶作用會形成后期的亮晶方解石(圖5d、e)。
5.1.3 潛育作用
塘邊組紅色砂巖中可見一些青灰色的暈斑(圖2e、f),暈斑分布不均,大小不一,直徑在0.1~1.0 cm之間,青灰色暈斑主要為潛育作用的產物。由于潛育作用發生的兩個必要條件為漬水和有機質嫌氣性分解[34],因此推測塘邊組砂巖可能在成巖過程中周期性或長期處于漬水條件下,進而廣泛發生潛育作用。大量有機質在分解的過程中產生還原物質,使下層的土壤長期處于還原狀態,三價鐵被還原成二價鐵,表現為青灰色暈斑。
5.2 風化程度與古氣候條件
除4#樣品的CIA為83.30外,其他塘邊組紅色砂巖樣品的CIA分布在50.20~63.68之間,整體平均值為58.08。對比主量元素特征可知,4#樣品的Na2O和K2O質量分數明顯偏低,可知是Na元素和K元素的質量分數過低導致CIA偏大。但對比采集部位、外觀以及鏡下特征,4#樣品與其他樣品并沒有很大區別,因此整體上認為,塘邊組紅色砂巖處于較弱的風化程度,其沉積期以物理風化作用為主,化學風化程度較低。根據Nesbitt等[25]的A-CN-K三角圖解校正(圖7),紅色砂巖樣品都位于低化學風化區,且整體趨勢與A-CN線平行,表明物源區相對缺乏斜長石。
相對于主量元素,微量元素對環境的變化更加敏感,可以更好地指示氧化還原條件。由于沉積環境的氧化還原條件不同,導致水體微量元素發生遷移、沉淀、自生貧化或富集,這些微量元素被稱為氧化還原敏感微量元素。U、V、Co、Cr、Cu等元素均屬于氧化還原敏感微量元素,處于氧化環境下U、V、Cr、Co、Cu等元素表現為溶解態,處于還原環境下為不溶解狀態,在弱還原環境中會以硫化物、低價氧化物或絡合物形態沉積富集,因此可以將他們作為劃分氧化還原環境的指標[35-37]。國內外學者[38-43]利用微量元素地球化學指標來示蹤古沉積環境,并建立了U/Th、V/(Ni+V)、V/Cr、Ni/Co等地球化學指標判別氧化還原環境。通過計算,研究區U/Th的平均值為0.21、V/(Ni+V)的平均值為0.70、V/Cr的平均值為1.33、Ni/Co的平均值為3.67,暗示了研究區主體為氧化的沉積環境(圖8)。
此外,Al、K、Rb和Ga元素質量分數也記錄了氣候的變化[44]。Ga/Rb值和K2O/Al2O3值已被用作風化作用指標。Al和Ga主要與細晶硅酸鋁體積分數有關,富集在與溫暖潮濕氣候有關的高嶺石中[35];K和Rb與伊利石弱化學風化有關[34]。因此,富伊利石沉積物應具有低Ga/Rb值和高K2O/Al2O3值,而富含高嶺石的沉積物則具有高Ga/Rb值和低K2O/Al2O3值。分析結果顯示,在Ga/Rb-K2O/Al2O3二元圖(圖9)中,K2O/Al2O3值較高、Ga/Rb值較低,表明伊利石豐度較高,可能與干燥的氣候條件有關,以物理風化作用為主。
塘邊組紅色砂巖在沉積過程中經常暴露于大氣中,使得該區廣泛發育古土壤層[46],為成土作用提供了時間和條件。微量元素分析、CIA的計算以及成土作用的識別都指示著塘邊組形成于極度干燥炎熱的環境。前人[47-52]研究認為,K、Na和Ca元素在早期風化成土過程中易被淋失,所以后期淋溶較弱。同時,該地區保有豐富的鈣板層和鈣質結核,這是古土壤淋溶淀積的產物,這些地質現象的出現充分證實了研究區的古環境為高溫干燥的氧化沉積環境。塘邊組砂巖中的動物潛穴遺跡、植物根跡、青灰色暈斑以及干裂構造等都為研究該地區成土作用提供了理想的條件。另外,前人[46]利用碳氧同位素的研究結果顯示,塘邊組的碳氧同位素變化范圍較小,可能沉積于干旱的氣候背景。前人在該地區有關化石(恐龍蛋化石及孢粉)[53-55]、CIA[56]、風成沙丘和沖積扇體系[4]的研究總體上表明塘邊組為干旱炎熱的古氣候條件,這與晚白堊世華東南地區亞熱帶干燥炎熱的古氣候背景一致[57-59]。這種干燥炎熱的古氣候與現今濕潤的亞熱帶氣候形成了鮮明的對比,可能與中國東部在晚白堊世時期發育高大沿岸山系(古武夷山脈、仙霞嶺、戴云山、鷲峰山、雁蕩山等)有關[57-58],晚白堊世早中期中國東南沿岸山脈的高度在海拔3 500~4 000 m之間,東西寬度近500 km,這樣高大而寬闊的屏障,阻礙了古太平洋濕潤水汽向華東南內陸地區的侵入并抑制對流降水,使得當時的沿岸山脈西側氣候干旱炎熱,環境逐漸干旱化[24],一直持續到晚白堊世末。
6 結論
1)江西省信江盆地上白堊統塘邊組紅色砂巖為中粒長石砂巖,自生礦物包括次生加大石英、碳酸鹽礦物、鐵質和黏土礦物,成土作用主要識別特征包括黏土膜、微晶—亮晶碳酸鹽和潛育作用。
2)塘邊組砂巖的物源主要來自富含石英質的沉積巖。化學蝕變指數在50.20~83.30之間,平均值為58.08,處于弱化學風化水平,說明沉積作用以物理風化為主,化學風化的程度偏低。結合微量元素的分析和成土作用的識別,說明信江盆地晚白堊世塘邊組為干旱、炎熱的古氣候條件。
參考文獻(References):
[1] Guo Fusheng, Chen Liuqin, Xu Huan, et al. Origin of Beaded Tafoni in Cliffs of Danxia Landscapes, Longhushan Global Geopark, South China[J]. Journal of Mountain Science, 2018, 15(11): 2398-2408.
[2] 陳留勤, 郭福生, 邵崇建, 等.江西省丹霞地貌特征及其控制因素探討[J].地質學報, 2022, 96(11): 4023-4037.
Chen Liuqin, Guo Fusheng, Shao Chongjian, et al. Characteristics and Controlling Factors of Danxia Landscapes in Jiangxi Province[J]. Acta Geologica Sinica, 2022, 96(11): 4023-4037.
[3] 巫建華.江西信江盆地早白堊世晚期輪藻及其地層意義[J].微體古生物學報, 1995, 12(1): 79-88.
Wu Jianhua. Late Early Cretaceous Charophytes from the Xinjiang Basin, Jiangxi and Their Stratigraphic Significance[J]. Acta Micropaleontologica Sinica, 1995, 12(1): 79-88.
[4] 郭福生, 朱志軍, 黃寶華, 等.江西信江盆地白堊系沉積體系及其與丹霞地貌的關系[J].沉積學報, 2013, 31(6): 954-964.
Guo Fusheng, Zhu Zhijun, Huang Baohua, et al. Cretaceous Sedimentary System and Their Relationship with Danxia Landform in Xinjiang Basin, Jiangxi[J]. Acta Sedimentologica Sinica, 2013, 31(6): 954-964.
[5] 李余亮, 劉鑫, 陳留勤, 等.江西貴溪塘邊組細粒碎屑巖地球化學特征及其地質意義[J].地層學雜志, 2018, 42(2): 224-237.
Li Yuliang, Liu Xin, Chen Liuqin, et al. Geochemistry and Geological Significance of Fine-Grained Sandstone of the Tangbian Formation in the Guixi Area of Northeastern Jiangxi Province[J]. Journal of Stratigraphy, 2018, 42(2): 224-237.
[6] 王宇佳, 陳留勤, 李文灝, 等.江西弋陽晚白堊世塘邊組風成砂巖碎屑鋯石U-Pb定年及其物源意義[J].地質通報, 2019, 38(4): 667-679.
Wang Yujia, Chen Liuqin, Li Wenhao, et al. Detrital Zircon U-Pb Dating of the Late Cretaceous Aeolian Sandstones from the Tangbian Formation in the Yiyang Area of Jiangxi Province and Its Provenance Significance[J]. Geological Bulletin of China, 2019, 38(4): 667-679.
[7] 李二恒.信江地區晚石炭世早期沉積背景的研究[D].南京: 南京大學, 2012.
Li Erheng. Study on Depositional Background (Earlier Late Carboniferous) in Xinjiang Area, Jiangxi Province[D]. Nanjing: Nanjing University, 2012.
[8] 巫建華.贛東北白堊紀沉積相及其構造意義[J].華東地質學院學報, 1994, 17(4): 313-319.
Wu Jianhua. Sedimentary Facies of the Cretaceous in the Northeastof Jiangxi Province and Its Tectonic Significance[J]. Journal of East China Geological Institute, 1994, 17(4): 313-319.
[9] 廖瑞君, 衷存堤, 肖曉林.江西白堊紀—新近紀陸相紅色盆地的盆緣類型劃分與盆地充填樣式[J].地質通報, 2003, 22(9): 680-685.
Liao Ruijun, Zhong Cundi, Xiao Xiaolin. Basin-Margin Types and Basin-Fill Types of Cretaceous-Neogene Terrestrial Red Basins in Jiangxi[J]. Geological Bulletin of China, 2003, 22(9): 680-685.
[10] 陳留勤, 郭福生, 楊慶坤, 等.江西永豐—崇仁盆地晚白堊世沉積體及其演化模式[J].山地學報, 2015, 33(4): 416-424.
Chen Liuqin, Guo Fusheng, Yang Qingkun, et al. The Late Cretaceous Depositional Systems and Evolution Model of the Yongfeng-Chongren Basin in Jiangxi Province[J]. Journal of Mountain Science, 2015, 33(4): 416-424.
[11] 陳留勤, 郭福生, 梁偉, 等.江西撫崇盆地上白堊統河口組礫石統計特征及其地質意義[J].現代地質, 2013, 27(3): 568-576.
Chen Liuqin, Guo Fusheng, Liang Wei, et al. Gravel Fabric Characteristics of the Upper Cretaceous Hekou Formation in Fuzhou-Chongren Basin, Jiangxi and the Geological Significance[J]. Geoscience, 2013, 27(3): 568-576.
[12] 唐超, 陳留勤, 郭福生, 等.江西永豐—崇仁盆地上白堊統礫石巖性和磨圓度列聯表分析及其對物源的指示[J].現代地質, 2014, 28(5): 971-979.
Tang Chao, Chen Liuqin, Guo Fusheng, et al. Contingency Table Analysis of Pebble Lithology and Roundness and Provenance Implications for the Upper Cretaceous of Yongfeng-Chongren Basin, Jiangxi[J]. Geoscience, 2014, 28(5): 971-979.
[13] 姜勇彪, 郭福生, 胡中華, 等.江西信江盆地紅層及其地貌發育研究[J].資源調查與環境, 2010, 31(4): 235-244.
Jiang Yongbiao, Guo Fusheng, Hu Zhonghua, et al. A Study on the Red Beds and Its Landforms in Xinjiang Basin[J]. Resource Survey amp; Environment, 2010, 31(4): 235-244.
[14] 朱志軍, 黃寶華, 郭福生, 等.江西龍虎山世界地質公園白堊系辮狀河相沉積及其丹霞地貌發育特征[J].地球學報, 2012, 33(3): 379-387.
Zhu Zhijun, Huang Baohua, Guo Fusheng, et al. Cretaceous Braided River Facies Sediments and Danxia Landform Development Characteristics in Longhushan World Geopark, Jiangxi[J]. Acta Geogeologica Sinica, 2012, 33(3): 379-387.
[15] 張志, 薛重生, 趙良政, 等.贛東北白堊紀盆地等時性地層界面識別及意義[J].國土資源遙感, 1998, 17(2): 35-42.
Zhang Zhi, Xue Chongsheng, Zhao Liangzheng, et al. Picking Out Chronostratigraphic Interface and Their Importance on Cretaceous Period Basin in the North-Eastern of Jiangxi Province[J]. Remote Sensing for Land amp; Resources, 1998, 17(2): 35-42.
[16] 張志, 廖群安.江西信江白堊紀陸相盆地地質作用與構造演化[J].中國區域地質, 2000, 19(1): 39-43.
Zhang Zhi, Liao Qun’an. Geological Process and Tectonic Evolution of the Cretaceous Xinjing Terrestrial Basin, Jiangxi Province[J]. Regional Geology of China, 2000, 19(1): 39-43.
[17] 王數.地質學與地貌學[M].北京: 中國農業大學出版社, 2013.
Wang Shu. Geology and Geomorphology[M]. Beijing: China Agricultural University Press, 2013.
[18] 朱錦旗, 龔緒龍, 茍富剛, 等.長江三角洲北翼第一硬土層理化特征及其地質成因[J].地質通報, 2024, 43(1): 1-12.
Zhu Jinqi, Gong Xulong, Gou Fugang, et al. Physicochemical Characteristics and Geological Formation of the First Hard Soil Layer of the North Wing of the Yangtze River Delta[J]. Geological Bulletin of China, 2024, 43(1): 1-12.
[19] 邱甜, 邱運鑫, 鄭朝群, 等.硅酸鹽溶解與成土作用[J].貴州地質, 2008, 25(1): 51-58.
Qiu Tian, Qiu Yunxin, Zheng Chaoqun, et al. The Silicate Solution and the Soil Formation Process[J]. Guizhou Geology, 2008, 25(1): 51-58.
[20] 郝立波, 董菁, 趙玉巖, 等.吉林省中部地區花崗質巖石風化地球化學特征[J].吉林大學學報(地球科學版), 2011, 41(5): 1441-1447.
Hao Libo, Dong Jing, Zhao Yuyan, et al. Geochemical Characteristics of Granite Weathering in Central Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1441-1447.
[21] 楊社鋒, 方維萱, 胡瑞忠, 等.老撾南部安東花崗閃長巖磚紅土型風化殼分帶及微量元素地球化學特征[J].地質與勘探, 2006, 42(5): 46-51.
Yang Shefeng, Fang Weixuan, Hu Ruizhong, et al. Geochemical Character Istics of Trace Elements in Lateritic Regolith Profile of Granodiorite in Area, Laos [J]. Geology and Prospecting, 2006, 42(5): 46-51.
[22] 曹珂.中國陸相白堊系地層對比[J].地質論評, 2013, 59(1): 24-40.
Cao Ke. Stratigraphic Correlation of Continental Cretaceous in China[J]. Geological Review, 2013, 59(1): 24-40.
[23] 江西省地質礦產廳.江西省巖石地層[M].武漢: 中國地質大學出版社, 1997.
Jiangxi Province Department of Geology and Mineral Resources. Rock Stratigraphy in Jiangxi Province[M]. Wuhan: China University of Geosciences Press, 1997.
[24] 王鳳之.信江盆地晚白堊世塘邊組沉積特征與古氣候研究[D].贛州: 東華理工大學, 2017.
Wang Fengzhi. Sedimentary Characteristics and Paleoclimate of Late Cretaceous Tangbian Formation of the Xinjiang Basin in Jiangxi Province[D]. Ganzhou: East China University of Technology, 2017.
[25] Nesbitt H W ,Young G M. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites[J]. Nature, 1982, 299: 715-717.
[26] Mclennan S M. Weathering and Global Denudation[J]. Journal of Geology, 1993, 101(2): 295-303.
[27] Herron M M.Geochemical Classification of Terrigenous Sands and Shales from Cores or Log Data[J]. Journal of Sedimentary Research, 1988, 58(5): 820-829.
[28] Mclennan S M. Relationships Between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust[J].Geochemistry Geophysics Geosystems, 2001, 2(4): 1021.
[29] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution[J]. Blackwell Scientific Publications, 1985, 122(6): 673-674.
[30] 張惠良, 張榮虎, 王月華, 等.黏土膜對砂巖儲集性能的影響:以塔里木盆地群6井區泥盆系東河塘組下段為例[J].石油實驗地質, 2006, 28(5): 493-498.
Zhang Huiliang, Zhang Ronghu, Wang Yuehua, et al. Influence of Clay Minerals Membrane on Sandstone Reservoirs:A Case Study on the Lower Donghetang Reservoirs of the Devonian of Well Qun 6 in the Tarim Basin[J]. Petroleum Geology amp; Experiment, 2006, 28(5): 493-498.
[31] 田建鋒, 喻建, 張慶洲.孔隙襯里綠泥石的成因及對儲層性能的影響[J].吉林大學學報(地球科學版), 2014, 44(3): 741-748.
Tian Jianfeng, Yu Jian, Zhang Qingzhou. The Pore-Lining Chlorite Formation Mechanism and Its Contribution to Reservoir Quality[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3): 741-748.
[32] 伏美燕, 張哨楠, 丁曉琪, 等.松遼盆地松科1井明水組砂巖黏土膜特征及油氣地質意義[J].石油實驗地質, 2012, 34(6): 587-592.
Fu Meiyan, Zhang Shaonan, Ding Xiaoqi, et al. Characteristics and Petroleum Geologic Significances of Clay Rims in Sandstones of Mingshui Formation, Well Songke 1, Songliao Basin[J]. Petroleum Geology amp; Experiment, 2012, 34(6): 587-592.
[33] Hameed A, Raja P, Ali M, et al. Micromorphology, Clay Mineralogy, and Geochemistry of Calcic Soils from Western Thar Desert: Implications for Origin of Palygorskite and Southwestern Monsoonal Fluctuations over the Last 30 ka[J]. Catena, 2018, 163: 378-398.
[34] 董元華, 徐琪.土壤潛育化作用的特點及其研究進展[J].土壤學進展, 1990, 18(1): 9-15.
Dong Yuanhua, Xu Qi. Characteristics of Soil Gleization and Its Research Progress[J]. Advances in Soil Science, 1990, 18(1): 9-15.
[35] Tribovillard N, Algeo J T, Lyons T, et al.Trace Metals as Paleoredox and Paleoproductivity Proxies: Anupdate[J]. Chemical Geology, 2006, 232(1): 12-32.
[36] 王國平, 張玉霞, 翟正麗, 等.半干旱區沼澤沉積剖面特征元素比值及其物源、氧化還原變化信息[J].吉林大學學報(地球科學版) , 2006, 36(3): 449-454.
Wang Guoping, Zhang Yuxia, Zhai Zhengli, et al. Ratios of Specific Elements and Their Implications for Original Source of Sediments and Redox Condition Within Sedimentation on Profile of the Marsh in Semi-Arid Areas[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(3): 449-454.
[37] 蔡靈慧, 余燁, 郭建華, 等.湘中南地區中奧陶統煙溪組黑色頁巖地球化學特征與有機質富集[J].吉林大學學報(地球科學版), 2023, 53(5): 1362-1379.
Cai Linghui, Yu Ye, Guo Jianhua,et al. Geochemical Characteristicsand Organic Matter Enrichment of Black Shale in the Middle Ordovician Yanxi Formation in Centraland Southern Hunan[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(5): 1362-1379.
[38] 張桓, 陳亞軍, 伍宏美, 等.火山噴發間歇期沉積巖層古沉積環境的地球化學示蹤與判別[J].吉林大學學報(地球科學版), 2023, 53(5): 1417-1436.
Zhang Huan, Chen Yajun, Wu Hongmei,et al. Geochemical Trancing and Discrimination of Paleosedimentary Environment of Sedimentary Rock Intercalation During Volcanic Eruption Intervals[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(5): 1417-1436.
[39] 張國賓, 陳興凱, 趙越, 等.張廣才嶺南部中侏羅世似斑狀二長花崗巖年代學、地球化學特征及其地質意義[J].吉林大學學報(地球科學版), 2022, 52 (6): 1907-1925.
Zhang Guobin, Chen Xingkai, Zhao Yue, et al. Geochronology, Geochemistry and Geological Significance of the Middle Jurassic Porphyritic Monzogranite in the Southern Zhangguangcai Range, Heilongjiang Province[J]. Journal of Jilin University (Earth Science Edition), 2022, 52 (6): 1907-1925.
[40] Elderfiel D H, Greaves M J. The Rare Earth Elements Distribution in Seawater[J]. Nature, 1982, 296: 214-219.
[41] Jones B, Manning D A C. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mud Rock[J]. Chemical Geology, 1994, 111(1): 111-129.
[42] Hatch J R, Leventhal J S. Relationship Between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Penn-Sylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
[43] 張茜, 王劍, 余謙, 等.川西南構造復雜區龍馬溪組泥頁巖地球化學特征及古環境[J].新疆石油地質, 2017, 38(4): 399-405.
Zhang Qian, Wang Jian, Yu Qian, et al. Geochemical Features and" Paleoenvironment of Shales in Longmaxi Formation of Complicated Structure Area, Southwestern Sichuan Basin[J]. Petroleum Geology of Xinjiang, 2017, 38(4): 399-405.
[44] 解興偉, 袁華茂, 宋金明, 等.東海季節性低氧海區柱狀沉積物中氧化還原敏感元素對沉積環境變化的響應[J].海洋學報, 2020, 42(2): 30-43.
Xie Xingwei, Yuan Huamao, Song Jinming, et al. Response of Redox Sensitive Elements to Changes of Sedimentary Environment in Core Sediments of Seasonal Low-Oxygen Zone in East China Sea[J]. Journal of Oceanography, 2020, 42(2): 30-43.
[45] 馮興雷, 付修根, 譚富文, 等.羌塘盆地沃若山地區上三疊統土門格拉組烴源巖沉積環境分析[J].沉積與特提斯地質, 2018, 38(2): 3-13.
Feng Xinglei, Fu Xiugen, Tan Fuwen, et al. Sedimentary Environment of the Upper Triassic Tumengela Formation in Woruo Area in the Qiangtang Basin, Xizang[J]. Sedimentation and Tethys Geology, 2018, 38(2): 3-13.
[46] 王鳳之, 陳留勤, 郭福生, 等.江西信江盆地晚白堊世塘邊組成壤碳酸鹽巖碳、氧同位素特征[J].巖石礦物學雜志, 2018, 37(1): 143-151.
Wang Fengzhi, Chen Liuqin, Guo Fusheng, et al.Carbon and Oxygen Isotopic Compositions of Pedogenic Carbonates from the Late Cretaceous Tangbian Formation in the Xinjiang Basin, Jiangxi Province[J]. Acta Petrologica et Mineralogica, 2018, 37(1): 143-151.
[47] Huang C M, Gong Z T, He Y R. Elemental Geochemistry of a Soil Chronosequence on Basalt on Northern Hainan Island, China[J]. Chinese Journal of Geochemistry, 2004, 23(3): 245-254.
[48] 張新榮, 焦潔鈺.黑土形成與演化研究現狀[J].吉林大學學報(地球科學版), 2020, 50(2): 553-568.
Zhang Xinrong,Jiao Jieyu. Formation and Evolution of Black Soil[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 553-568.
[49] 田密, 王志華, 白榮杰, 等.長白山區暗棕壤成土作用地球化學特征[J].世界地質, 2014, 33(3): 695-701.
Tian Mi, Wang Zhihua, Bai Rongjie,et al. Geochemistry of Pedogenesis of Dark Brown Soil in Changbai Mountain Area[J]. Global Geology, 2014, 33(3): 695-701.
[50] 武鵬飛, 毛深秋, 趙旭陽, 等.西秦嶺尖藏花崗閃長巖地球化學特征、巖石成因及構造背景[J].世界地質, 2020, 39(4): 784-795.
Wu Pengfei, Mao Shenqiu, Zhao Xuyang,et al. Geochemical Characteristics, Petrogenesis and Tectonic Setting of Jianzang Granodiorite in Western Qinling[J]. Global Geology, 2020, 39(4): 784-795.
[51] 鞠楠, 張森, 畢中偉, 等.遼寧鳳城賽馬鈮礦床成礦巖體地球化學特征及其地質意義[J].世界地質, 2019, 38 (1): 130-139.
Ju Nan, Zhang Sen, Bi Zhongwei,et al. Geochemical Characteristics and Geological Significance of Metallogenic Rock Bodies of Saima Niobium Deposit in Fengcheng, Liaoning[J]. Global Geology, 2019, 38 (1): 130-139.
[52] 師文文, 楊兆林, 尹洪榮, 等.米倉山構造帶下寒武統筇竹寺組砂巖球狀風化特征及成因機制[J].世界地質, 2022, 41(1): 173-185.
Shi Wenwen,Yang Zhaolin, Yin Hongrong, et al. Characteristics and Formation Mechanism of Sandstone Spherical Weathering in Lower Cambrian Qiongzhusi Formation, Micangshan Structural Zone [J]. Global Geology, 2022, 41(1): 173-185.
[53] 高遠, 秦天, 李瑞紅, 等.松遼盆地梨樹斷陷嫩江組孢粉記錄及古氣候特征[J].吉林大學學報(地球科學版), 2023, 53(5): 1391-1402.
Gao Yuan, Qin Tian, Li Ruihong, et al. Palynological Records and Paleoclimatic Characteristics of Nenjiang Formation in Lishu Fault Depression, Songliao Basin [J]. Journal of Jilin University (Earth Science Edition), 2023, 53(5): 1391-1402.
[54] 陳平, 王任, 覃軍干, 等.瓊東南盆地深水區WN-A井漸新世—中新世孢粉地層學及古氣候[J].吉林大學學報(地球科學版), 2022, 52 (2): 390-402.
Chen Ping, Wang Ren, Qin Jungan,et al. Oligocene-Miocene Palynostratigraphy and Paleoclimate of Well WN-A from Deep Water Area, Southeast Hainan Basin [J]. Journal of Jilin University (Earth Science Edition), 2022, 52 (2): 390-402.
[55] 許玩宏.江西信江盆地周家店組的介形類化石[J].微體古生物學報, 1993, 10(3): 337-362.
Xu Wanhong. Ostracoid Fossils from the Zhoujiadian Formation in Xinjiang Basin, Jiangxi Province[J]. Journal of Micropaleontology, 1993, 10(3): 337-362.
[56] 趙英利, 劉永江, 韓國卿, 等.大興安嶺中南段二疊紀砂巖主量元素地球化學特征及物源區構造環境的判別[J].吉林大學學報(地球科學版), 2012, 42(2): 285-297.
Zhao Yingli, Liu Yongjiang, Han Guoqing, et al.Geochemical Characteristics of Major Elements in the Permian Sandstones from the Central and Southern Great Xing’an Ranges and Discriminations on Their Tectonic Environment of the Provenance [J]. Journal of Jilin University (Earth Science Edition), 2012, 42(2): 285-297.
[57] 陳云華.中國東南地區晚白堊世沉積響應與古氣候[D].成都: 成都理工大學, 2008.
Chen Yunhua. Late Cretaceous Sedimentary Response to the “Coast Range” and Paleoclimate Changes in Southeast China[D]. Chengdu: Chengdu University of Technology, 2008.
[58] 陳丕基.晚白堊世中國東南沿岸山系與中南地區的沙漠和鹽湖化[J].地層學雜志, 1997, 21(3): 44-54.
Chen Peiji. Coastal Mountains of SE China, Desertization and Saliniferous Lakes of Central China During the Upper Cretaceous[J]. Journal of Stratigraphy, 1997, 21(3): 44-54.
[59] 張旗, 王元龍, 金惟俊, 等.晚中生代的中國東部高原證據、問題和啟示[J].地質通報, 2008, 27(9): 1404-1430.
Zhang Qi, Wang Yuanlong, Jin Weijun, et al. Eastern China Plateau During the Late Mesozoic: Evidence, Problems and Implication[J]. Geological Bulletin of China, 2008, 27(9): 1404-1430.