999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

中國高溫、干旱及其復合事件的研究進展和展望

2025-03-19 00:00:00祝亞麗劉洋孔祥慧王曉欣張夢琪洪曉瑋陳活潑孫建奇
大氣科學學報 2025年1期

摘要 干旱是全球最主要、影響最嚴重的氣象災害之一。隨著全球變暖,干旱更易與高溫同時發生,干旱與高溫的正反饋過程導致極端事件持續更久、強度更強,形成高溫干旱復合極端事件,對農業、生態環境等造成更為嚴重的影響。本文通過對中國高溫、干旱及其復合事件研究進展的回顧,總結了中國高溫、干旱及其復合事件的變化事實,并對影響中國高溫、干旱的關鍵因子及物理機制進行了梳理;指出了當前研究存在的不足,并提出系統研究海溫-陸面-海冰-大氣多因子、多過程協同影響中國復合高溫干旱事件的必要性;最后,對當前高溫干旱的預測現狀進行了簡要回顧,指出在系統認識復合高溫干旱事件發生發展機制的基礎上,亟須發展動力-統計相結合的方法,以提升其預測水平。

關鍵詞熱浪;干旱;極端事件;復合高溫干旱事件;復合事件

地球分為濕潤區、半濕潤區、干旱區和半干旱區。干旱區和半干旱區長期處于年平均降水小于蒸散發的動態平衡,而濕潤區和半濕潤區則相反。作為全球最主要、影響最嚴重的氣象災害,干旱事件在上述任何地區都可能發生,同時也是中國頻發的主要氣象災害之一。據統計,在中國,平均每年干旱致災面積超過2 000萬hm 占農作物受災面積一半以上,約占耕地總面積的1/6(黃榮輝和杜振彩,2010;陳方藻等,2011;張強等,2015)。過去幾十年,中國干旱頻次和強度均發生了顯著變化,對社會經濟、區域水資源安全、生態環境等造成了深遠影響。如2022年夏季,中國南方出現了歷史罕見的持續性大范圍干旱,長江流域的干旱為有完整監測資料以來最嚴重,全國共有5 245.2萬人次受災,農作物受災面積達609萬hm 造成直接經濟損失512.8 億元(數據來自應急管理部網站https://www.mem.gov.cn/xw/yjglbgzdt/202301/t20230113_440478.shtml)。

高溫熱浪一般指較大范圍的持續異常熱天氣氣候事件。世界氣象組織(WMO)指出,高溫熱浪會加劇健康風險和經濟風險,導致人類死亡率、干旱和水質問題、野火、電力短缺及農業損失增加(https://wmo.int/topics/heatwave)。隨著全球變暖,高溫熱浪頻次增多、強度增強,對人類生存環境及人體健康的威脅加劇。2000—2019年,高溫熱浪導致全球范圍內平均每年約489 000人死亡(Zhao et al.,2021)。世界衛生組織(WHO)指出,在2003年歐洲熱浪期間有超過70 000人死亡(https://www.who.int/health-topics/heatwaves/)。Yan et al.(2022)的研究顯示,超過17 000例死亡與2017年中國夏季熱浪有關。

在全球變化背景下,高溫熱浪易更易與干旱同時或相繼發生,形成高溫干旱復合極端事件,從而對農業、生態環境等造成更為嚴重的影響。干旱發生時,降水持續偏少,土壤偏干,而當高溫與干旱同時或相繼發生時,土壤蒸發更快,植被水分流失加劇,局地可蒸散水分加速減少,氣溫偏高和降水偏少之間的正反饋會使得災害更加嚴重(圖1;Hao et al.,2022)。此外,高溫干旱共同作用使得蟲害多發(Williams et al.,2010)、植被健康受損(Ciais et al.,2005),易導致樹木死亡(Allen et al.,2010)以及森林野火災害(Flannigan et al.,2009)。隨著高溫和干旱發生頻次的增加(Chen and Sun,2017;Chen et al.,2020),在全球范圍內二者同時或相繼發生的概率在增加,對糧食安全、生態系統、社會經濟等帶來比單一高溫或干旱更為嚴重的影響。在中國,近些年造成嚴重影響的極端干旱,有不少是復合高溫干旱事件。如:2013年7月上旬—8月下旬,中國南方大部分地區出現破紀錄的持續高溫,其中多地同時發生中到重度干旱,給當地農業、生態和經濟造成巨大損失(王文等,2017)。自氣象災害應急預案制定以來,中國氣象局首次啟動高溫應急響應。2016年夏季中國東北發生嚴重高溫干旱事件,造成經濟損失達156億元(Li et al.,2018)。

1 高溫干旱事件的定義和識別

根據研究角度的不同,干旱主要分為氣象、水文和農業-生態干旱(周波濤和錢進,2021;王晨鵬等,2022;IPCC,2023),它們相互聯系又有所區別。大部分干旱開始于降水的持續虧缺,表現為氣象干旱;隨著氣象干旱狀況持續,土壤濕度、徑流量和地下水以及湖泊河流和水庫等的陸地水儲量異常偏少,導致水文干旱;隨著大氣蒸發需求增加,土壤變干,植物水分脅迫增加,導致農作物發育遲緩及減產、生態系統發育受阻及生產力下降等,進而引起農業-生態干旱(Van Loon et al.,2012;Apurv et al.,2017;袁星等,2020)。氣象干旱是所有干旱事件的初期表現,而水文干旱和農業-生態干旱是氣象干旱在水文系統和農業-生態系統中進一步發展加劇的現象。

氣象干旱主要研究不同尺度干旱的變化特征和物理機制。常用的氣象干旱指數很多,包括PDSI(帕爾默干旱指數,Palmer drought severity index;Palmer,1965)、SPI(標準化降水指數,standardized precipitation index;McKee et al.,1993),以及后來考慮了蒸散發的SPEI(標準化降水蒸散發指數,standardized precipitation evapotranspiration index;Vicente-Serrano et al.,2010)等。PDSI、SPI和SPEI都可以通過計算其在不同時間尺度上的值來描述干旱狀況。而由于考慮了降水和蒸散發的共同影響,SPEI通常被認為可以更全面地反映干旱。由于土壤濕度可以直接影響農作物和生態系統的生長發育,農業-生態干旱常用SMQ(土壤濕度分位數,soil moisture quantile;Sheffield et al.,2004;Wang et al.,2011,2018)作為干旱指數。水文干旱則利用水文變量來識別干旱,常用指數有SRI(標準化徑流指數,standardized runoff index;Shukla and Wood,2008)、SSI(標準化流量指數,standardized streamflow index;Vicente-Serrano et al.,2012;Yuan et al.,2017)等。

對于高溫事件,也有多種不同的定義。一般根據溫度閾值(如絕對溫度或溫度序列的分位數)來識別,所用變量有日最高氣溫、日最低氣溫等(Alexander et al.,2006;Barriopedro et al.,2023)。IPCC第六次評估報告將熱浪定義為連續兩天至數月超過某一相對溫度閾值的異常熱事件(IPCC,2023)。對于不同地區而言,判斷高溫事件的閾值往往存在明顯差異。此外,還有一些研究利用累積日平均氣溫或累積日最高氣溫定義高溫事件的強度(Perkins and Alexander,2013;Russo et al.,2015)。

識別復合高溫干旱事件通常有兩種方法,一是在分別對高溫和干旱事件判定后尋找其交集(Hao et al.,2022);二是通過定義新的復合高溫干旱指數進行判定(Hao et al.,2018a;Feng et al.,2020)。相較而言,第一種方法更直觀易懂。但由于高溫和干旱的判定標準本身就不單一,在對復合高溫干旱事件進行判定時有更多不同的組合標準,所以識別的復合高溫干旱事件可能會隨判定標準的不同而發生變化(Yu and Zhai,2020a;Tian et al.,2021)。第二種做法一般用降水和溫度的組合來定義新的指數,如利用降水和溫度的邊緣累積密度分布構建標準化干熱指數(Hao et al.,2018a)。

2 中國高溫和干旱的變化與機制研究

近幾十年來,我國大部分地區極端高溫頻次增多、強度增強,持續時間也明顯增加(Wei and Chen,2011;Wang and Fu,2013)。干旱變化與高溫有所不同,有著明顯的區域特征(秦大河,2015;Zhang and Zhou,2015;Shi et al.,2018)。20世紀60年代以來,華北和西南的干旱更加嚴重,西北地區則因降水增加而有所緩解(Li et al.,2014;馬柱國等,2018;張強等,2020)。20世紀90年代后期以來,中國東部(尤其是東北)干旱發生頻次增多、強度增強(鄒旭愷等,2010;Yu et al.,2014;Zhang et al.,2019)。

目前,關于中國高溫和干旱變化的影響機制已取得了一些認識。高溫或干旱區上空往往會伴隨顯著的反氣旋性環流異常(衛捷和孫建華,2007;Chen and Lu,2015;王文等,2017)。除局地環流因素的直接影響外,大尺度環流模態異常也可通過影響區域環流,進而誘發高溫或干旱事件的發生。如通過沿急流傳播的絲綢之路遙相關或環球遙相關,北大西洋濤動可以為華北高溫事件(Sun,2012;Hong et al.,2017;王文等,2017)以及華北干旱(Du et al.,2020)提供有利的環流背景。此外,除了大氣環流的直接調控,海溫、海冰和陸面過程均可通過調整大尺度環流影響區域系統,進而影響高溫或干旱事件的發生。

中國的高溫和干旱與全球多個海溫模態存在顯著聯系(Li C X et al.,2020;Wei et al.,2020)。厄爾尼諾-南方濤動(ENSO)可以調控中國東部高溫的年際變化(Zhou et al.,2014;Chen and Zhou,2018;Luo and Lau,2019)。在厄爾尼諾衰減年的夏季,海氣相互作用使得西北太平洋副熱帶高壓增強,導致中國江南和西南地區被異常反氣旋控制,有利于高溫熱浪的發生(Hu et al.,2013;馬雙梅等,2021)。2019年8—10月中國東部發生的嚴重干旱也是由熱帶中東太平洋偏暖所致(Ma et al.,2020)。太平洋年代際振蕩通過調控東亞地區的大氣環流(楊修群等,2004;馬柱國和邵麗娟,2006;Zhu et al.,2011,2015),進而影響華北干旱的年代際變化。大西洋海溫異常可以激發向下游傳播的Rossby波,對江南高溫(Sun,2014)、中國北方干旱(Han et al.,2019;Wang et al.,2019)、西南干旱(Feng et al.,2014;Yuan et al.,2022)等產生顯著影響。大西洋多年代際振蕩可以顯著調制中國東北干旱的發生頻次(Qian et al.,2014;Hu et al.,2021;Yue et al.,2021),并通過調整年代際氣溫(Hong et al.,2017;Sun et al.,2019)影響中國高溫熱浪強度和頻次(Li H X et al.,2020)的年代際變化。印度洋海盆一致增暖可以激發東傳的開爾文波,有利于華南地區反氣旋性環流異常的形成和增強,進而使中國南方極端熱事件增多、持續時間增長(Hu et al.,2012;Liu et al.,2015;曾剛和高琳慧,2017)。

北極海冰異常也可以顯著調節北半球中高緯度大氣環流和行星波活動,進而對中緯度的極端氣候產生影響(Cohen et al.,2014;Tang et al.,2014;Coumou et al.,2018)。北極海冰減少可以激發往東南方向傳播的羅斯貝波,造成夏季中國西南出現異常反氣旋,導致高溫熱浪發生(Wu and Francis,2019;Deng et al.,2020)。冬春季北極海冰減少可以通過歐亞遙相關型影響貝加爾湖高壓,使得中國東北上空出現異常反氣旋并盛行下沉運動,有利于干旱事件的發生(Wang and He,2015;Li et al.,2018;Du et al.,2022)。

北極地區某些關鍵區域海冰對中國高溫干旱具有重要影響。春季巴倫支海海冰的減少可激發歐亞波列,在西南地區引發異常反氣旋,導致熱浪發生(Deng et al.,2020)。夏季巴倫支海海冰異常偏多的情況可持續到秋季,并引發西南地區的干旱,這種聯系在20世紀90年代后期尤為顯著(宦杜斌等,2022)。中國東北地區的干旱狀況在20世紀90年代中期后加劇,可能與春季巴倫支海海冰變化有關(Li et al.,2018,2022;Du et al.,2022;Hu et al.,2023)。春季巴倫支海海冰減少可能通過陸氣相互作用和北極-歐亞環流型異常加劇我國東北夏季高溫干旱(Li et al.,2018;Du et al.,2022)。除了巴倫支海海冰的影響外,其他區域(如白令海和喀拉-拉普捷夫海)的海冰異常也可通過調整大尺度環流來影響中國東部的干旱(Liu et al.,2020,2023)。前期格陵蘭海海冰異常可以通過遙相關波列對西北地區春夏季高溫干旱產生影響(王岱等,2021;Liu and Chen,2024)。

陸氣相互作用對高溫和干旱事件的形成和發展也有重要影響(張井勇和吳凌云,2011;Wang and Dickinson,2012;管曉丹等,2018)。局地陸氣反饋使得土壤干燥度增加,大氣中的熱量累積,從而觸發高溫熱浪的發生或使其增強(Miralles et al.,2014;Seo and Ha,2022)。除局地陸氣反饋外,其他關鍵區的陸氣相互作用也可以通過激發大氣遙相關波列引起高溫或干旱的發生,如:歐亞大陸春季土壤濕度異常能顯著影響華北夏季高溫(Liu et al.,2014;Zhang et al.,2015);中亞5月土壤溫度偏高預示東北夏季高溫日數偏多(Yang et al.,2024);青藏高原春季土壤溫度偏低可導致下游夏季長江流域出現嚴重干旱(Xue et al.,2018);前期春季上游貝加爾湖南部地區土壤偏濕對2017年東北地區的春夏連旱事件有顯著影響(Zeng and Yuan,2021)。此外,前期歐亞大陸積雪異常也可通過改變陸表反照率調整大氣環流,進而影響東北夏季高溫干旱事件的發生(Li et al.,2018)。

除了氣候系統內部變率調控外,人類活動對極端氣候的影響也日益凸顯。工業革命以來的人類活動已經導致大氣、海洋和陸地變暖這一結論是毋庸置疑的,人類活動引起的溫室氣體排放是觀測到的全球(幾乎確定)和大部分陸地(很可能)極端溫度事件變化、陸地強降水增強的主要驅動因子(IPCC,2023)。在區域極端事件的變化中也能檢測到人類活動信號。如:過去幾十年亞洲中高緯極端強降水增加(Dong et al.,2020)、2012—2014年加利福尼亞的異常干旱(Williams et al.,2015)、2014年歐洲高溫熱浪(Uhe et al.,2016)、非洲東部近年來干旱的加劇(Hoell et al.,2017)等均與人類活動密切相關。在中國,過去幾十年極端高溫事件的增多增強也可檢測到人類活動的影響(Sun et al.,2014;Lu et al.,2016;Ma et al.,2017;Yin et al.,2017;Wang et al.,2018;Chen et al.,2019)。另外也有研究指出,近幾十年中國區域干旱發生頻次增加、強度增強,人類活動在其中可能起到了重要作用(Chen and Sun,2017;Wang and Yuan,2021)。

3 結論與討論

綜上所述,海洋、海冰、陸面要素異常均可通過復雜的大氣動力學過程影響大尺度和區域環流,調制中國高溫和干旱事件的發生發展,且在高溫和干旱事件的變化中可檢測到人類活動的影響。但是當前的機制研究多從海氣、陸氣、冰氣相互作用之中的某一方面展開。而事實上,極端事件的發生,往往受到多圈層、多因子的共同調制,影響機制極其復雜,研究單一因素的影響對全面理解極端事件的變化機制有很大的局限性。如2022年盛夏中國南方出現的嚴重高溫干旱復合事件,除了受到西太平洋副熱帶高壓偏強、中緯度西風帶和熱帶海溫異常的共同影響(孫博等,2023)外,局地陸氣耦合過程(Ni et al.,2024)和上游青藏高原的熱力異常也是重要影響因素(Xu et al.,2022),同時人類活動則大大增加了此類事件的發生概率(Chen et al.,2024)。雖然已有個別研究對多因子的協同影響開展了探索,如Sun et al.(2022)指出巴倫支海海冰減少與拉尼娜共同作用導致了2020/2021年華南持續性干旱的發生,但要對極端事件的復雜發生機制獲得系統認知,仍有許多未解答的問題。另一方面,目前的機制研究多是針對高溫或干旱事件單獨開展的,對高溫干旱復合極端事件的研究仍然相對有限(Hao et al.,2018a,2022;Feng et al.,2020;Liu et al.,2022;Zeng et al.,2024),尤其對多要素協同影響其發生發展物理機制的研究更少。另外,高溫和干旱之間具體存在怎樣的關系,如在什么樣的天氣氣候背景下,高溫和干旱之間的正反饋過程可以發生并得以持續,影響高溫、干旱及復合高溫干旱事件的環流特征有何區別與聯系,也是值得深入研究的問題。

因此,在近幾十年中國地區高溫和干旱不斷加劇(Chen and Sun,2017;Chen et al.,2020)、復合高溫干旱極端事件明顯增多增強(Hao et al.,2018b;Yu and Zhai,2020b)的背景下,亟須系統開展復合高溫干旱極端事件的變化機制和歸因研究。對復合高溫干旱事件發生規律與機制的系統認識,可為改進極端天氣氣候事件的預測提供科學基礎,為國家防災減災政策措施的制定和實施提供重要科技支撐。具體而言,需要從海-陸-冰-氣多圈層協同影響的角度開展中國復合高溫干旱極端事件的變化機制研究,并進一步探究人類活動等外強迫因子在其中的作用及貢獻,為職能部門防災減災及氣候變化應對工作提供科技支撐。

目前關于復合高溫干旱的有限研究多從季節或月尺度開展(Hao et al.,2018a;Zeng et al.,2024),但實際上持續數日的復合高溫干旱事件也可帶來重要的影響。尤其在中緯度地區,氣候系統存在明顯的準雙周振蕩(Quasi-Biweekly Oscillation,QBWO)。季節或月尺度的研究不能揭示出極端天氣氣候事件在更短時間尺度上的演變特征,因此有必要利用更為精細的日資料對其變化規律和演變過程開展研究。

另外,盡管高溫干旱事件的影響不斷加劇,然而目前對高溫干旱事件的預測水平仍然相當有限(Hao et al.,2018b,2019;Domeisen et al.,2023)。這一方面是由于當前模式對天氣氣候的預測能力本身有諸多局限(Wang et al.,2022)。動力模式對一周以內的天氣具有較高的預報水平;通過結合統計方法,對季節尺度的短期氣候預測也有一定技巧。而周至月尺度的次季節預測以及多年至年代際預測是當前天氣氣候預測領域的難點,同時又是防災減災的迫切需求。另一方面,對高溫干旱事件發生發展機制的認識嚴重不足,而模式距離完整再現其復雜機制更是有較大差距。因此,要提升對復合高溫干旱事件的預測水平,需要在系統認識復合高溫干旱事件發生機制的基礎上,改進動力模式對關鍵物理過程的模擬和預測水平。同時應結合統計預測和機器學習方法,構建有效的動力-統計機器學習相結合的預測模型。

參考文獻(References)

Alexander L V,Zhang X,Peterson T C,et al.,2006.Global observed changes in daily climate extremes of temperature and precipitation[J].J Geophys Res:Atmos,111(D5):D05109.DOI:10.1029/2005JD006290.

Allen C D,Macalady A K,Chenchouni H,et al.,2010.A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J].For Ecol Manag,259(4):660-684.DOI:10.1016/j.foreco.2009.09.001.

Apurv T,Sivapalan M,Cai X M,2017.Understanding the role of climate characteristics in drought propagation[J].Water Resour Res,53(11):9304-9329.DOI:10.1002/2017WR021445.

Barriopedro D,García-Herrera R,Ordóez C,et al.,2023.Heat waves:physical understanding and scientific challenges[J].Rev Geophys,61(2):e2022rg000780.DOI:10.1029/2022rg000780.

Chen D,Qiao S B,Yang J,et al.,2024.Contribution of anthropogenic influence to the 2022-like Yangtze River valley compound heatwave and drought event[J].npj Clim Atmos Sci,7:172.DOI:10.1038/s41612-024-00720-3.

陳方藻,劉江,李茂松,2011.60年來中國農業干旱時空演替規律研究[J].西南師范大學學報(自然科學版),36(4):111-114. Chen F Z,Liu J,Li M S,2011.Researches on spatial and temporal succession law of agricultural drought in the past 60 years in China[J].J Southwest China Norm Univ (Nat Sci Ed),36(4):111-114.DOI:10.13718/j.cnki.xsxb.2011.04.002.(in Chinese).

Chen H P,Sun J Q,2017.Anthropogenic warming has caused hot droughts more frequently in China[J].J Hydrol,544:306-318.DOI:10.1016/j.jhydrol.2016.11.044.

Chen H P,Sun J Q,Lin W Q,et al.,2020.Comparison of CMIP6 and CMIP5 models in simulating climate extremes[J].Sci Bull,65(17):1415-1418.DOI:10.1016/j.scib.2020.05.015.

Chen R D,Lu R Y,2015.Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China[J].J Climate,28(14):5830-5844.DOI:10.1175/jcli-d-14-00818.1.

Chen X L,Zhou T J,2018.Relative contributions of external SST forcing and internal atmospheric variability to Jul-August heat waves over the Yangtze River valley[J].Climate Dyn,51(11):4403-4419.DOI:10.1007/s00382-017-3871-y.

Chen Y,Chen W,Su Q,et al.,2019.Anthropogenic warming has substantially increased the likelihood of July 2017:like heat waves over central eastern China[J].Bull Amer Meteor Soc,100(1):S91-S95.DOI:10.1175/bams-d-18-0087.1.

Ciais P,Reichstein M,Viovy N,et al.,2005.Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J].Nature,437(7058):529-533.DOI:10.1038/nature03972.

Cohen J,Screen J A,Furtado J C,et al.,2014.Recent Arctic amplification and extreme mid-latitude weather[J].Nat Geosci,7:627-637.DOI:10.1038/ngeo2234.

Coumou D,Di Capua G,Vavrus S,et al.,2018.The influence of Arctic amplification on mid-latitude summer circulation[J].Nat Commun,9(1):2959.DOI:10.1038/s41467-018-05256-8.

Deng K Q,Jiang X W,Hu C D,et al.,2020.More frequent summer heat waves in southwestern China linked to the recent declining of Arctic sea ice[J].Environ Res Lett,15(7):074011.DOI:10.1088/1748-9326/ab8335.

Domeisen D I V,Eltahir E A B,Fischer E M,et al.,2023.Prediction and projection of heatwaves[J].Nat Rev Earth Environ,4:36-50.DOI:10.1038/s43017-022-00371-z.

Dong S Y,Sun Y,Li C,2020.Detection of human influence on precipitation extremes in Asia[J].J Climate,33(12):5293-5304.DOI:10.1175/jcli-d-19-0371.1.

Du Y B,Zhang J,Zhao S W,et al.,2020.Impact of the eastward shift in the negative-phase NAO on extreme drought over northern China in summer[J].J Geophys Res:Atmos,125(16):e2019JD032019.DOI:10.1029/2019JD032019.

Du Y B,Zhang J,Zhao S W,et al.,2022.A mechanism of spring Barents sea ice effect on the extreme summer droughts in northeastern China[J].Climate Dyn,58(3):1033-1048.DOI:10.1007/s00382-021-05949-9.

Feng L,Li T,Yu W D,2014.Cause of severe droughts in Southwest China during 1951—2010[J].Climate Dyn,43(7):2033-2042.DOI:10.1007/s00382-013-2026-z.

Feng S F,Wu X Y,Hao Z C,et al.,2020.A database for characteristics and variations of global compound dry and hot events[J].Weather Clim Extrem,30:100299.DOI:10.1016/j.wace.2020.100299.

Flannigan M D,Krawchuk M A,de Groot W J,et al.,2009.Implications of changing climate for global wildland fire[J].Int J Wildland Fire,18(5):483.DOI:10.1071/wf08187.

管曉丹,石瑞,孔祥寧,等,2018.全球變化背景下半干旱區陸氣機制研究綜述[J].地球科學進展,33(10):995-1004. Guan X D,Shi R,Kong X N,et al.,2018.An overview of researches on land-atmosphere interaction over semi-arid region under global changes[J].Adv Earth Sci,33(10):995-1004.(in Chinese).

Han T T,Wang H J,Hao X,et al.,2019.Seasonal prediction of midsummer extreme precipitation days over Northeast China[J].J Appl Meteor Climatol,58(9):2033-2048.DOI:10.1175/jamc-d-18-0253.1.

Hao Z C,Hao F H,Singh V P,et al.,2018a.Changes in the severity of compound drought and hot extremes over global land areas[J].Environ Res Lett,13(12):124022.DOI:10.1088/1748-9326/aaee96.

Hao Z C,Singh V P,Xia Y L,2018b.Seasonal drought prediction:advances,challenges,and future prospects[J].Rev Geophys,56(1):108-141.DOI:10.1002/2016RG000549.

Hao Z C,Hao F H,Xia Y L,et al.,2019.A monitoring and prediction system for compound dry and hot events[J].Environ Res Lett,14(11):114034.DOI:10.1088/1748-9326/ab4df5.

Hao Z C,Hao F H,Xia Y L,et al.,2022.Compound droughts and hot extremes:characteristics,drivers,changes,and impacts[J].Earth Sci Rev,235:104241.DOI:10.1016/j.earscirev.2022.104241.

Hoell A,Hoerling M,Eischeid J,et al.,2017.Reconciling theories for human and natural attribution of recent East Africa drying[J].J Climate,30(6):1939-1957.DOI:10.1175/jcli-d-16-0558.1.

Hong X W,Lu R Y,Li S L,2017.Amplified summer warming in Europe-West Asia and Northeast Asia after the mid-1990s[J].Environ Res Lett,12(9):094007.DOI:10.1088/1748-9326/aa7909.

Hu K M,Huang G,Qu X,et al.,2012.The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer[J].Adv Atmos Sci,29(1):91-100.DOI:10.1007/s00376-011-0209-2.

Hu K M,Huang G,Wu R G,2013.A strengthened influence of ENSO on August high temperature extremes over the southern Yangtze River valley since the late 1980s[J].J Climate,26(7):2205-2221.DOI:10.1175/jcli-d-12-00277.1.

Hu Y P,Zhou B T,Han T T,et al.,2021.Out of phase decadal change in drought over Northeast China between early spring and late summer around 2000 and its linkage to the Atlantic sea surface temperature[J].J Geophys Res:Atmos,126(9):e2020JD034048.DOI:10.1029/2020JD034048.

Hu Y P,Zhou B T,Li H X,et al.,2023.Enhanced intensity of interannual variability of may drought in Northeast China after 2000 and its connection with the Barents sea ice[J].J Geophys Res: Atmos,128(20):e2023JD039617.DOI:10.1029/2023JD039617.

宦杜斌,范可,徐志清,2022.自20世紀90年代中后期夏季巴倫支海海冰與秋季中國西南地區干旱的聯系加強[J].大氣科學學報,45(2):167-178. Huan D B,Fan K,Xu Z Q,2022.Strengthened relationship between summer Barents Sea ice and autumn Southwest China drought after the mid- and late-1990s[J].Trans Atmos Sci,45(2):167-178.DOI:10.13878/j.cnki.dqkxxb.20211113002.(in Chinese).

黃榮輝,杜振彩,2010.全球變暖背景下中國旱澇氣候災害的演變特征及趨勢[J].自然雜志,32(4):184,187-195. Huang R H,Du Z C,2010.Evolution characteristics and trend of droughts and floods in China under the background of global warming[J].Chin J Nat,32(4):184,187-195.DOI:10.3969/j.issn0253-9608.2010.04.001.(in Chinese).

IPCC,2023.Climate change 2022:impacts,adaptation,and vulnerability[R].Cambridge,United Kingdom and New York:Cambridge University Press.

Li C X,Wang C Z,Zhao T B,2020.Seasonal covariability of dryness or wetness in China and global sea surface temperature[J].J Climate,33(2):727-747.DOI:10.1175/JCLI-D-19-0250.1.

Li H X,Chen H P,Wang H J,et al.,2018.Can Barents sea ice decline in spring enhance summer hot drought events over northeastern China?[J].J Climate,31(12):4705-4725.DOI:10.1175/JCLI-D-17-0429.1.

Li H X,He S P,Gao Y Q,et al.,2020.North Atlantic modulation of interdecadal variations in hot drought events over northeastern China[J].J Climate,33(10):4315-4332.DOI:10.1175/JCLI-D-19-0440.1.

Li H X,Sun B,Wang H J,et al.,2022.Mechanisms and physical-empirical prediction model of concurrent heatwaves and droughts in July—August over northeastern China[J].J Hydrol,614:128535.DOI:10.1016/j.jhydrol.2022.128535.

Li Y J,Ren F M,Li Y P,et al.,2014.Characteristics of the regional meteorological drought events in Southwest China during 1960—2010[J].J Meteor Res,28(3):381-392.DOI:10.1007/s13351-014-3144-1.

Liu D,Wang G L,Mei R,et al.,2014.Impact of initial soil moisture anomalies on climate mean and extremes over Asia[J].J Geophys Res:Atmos,119(2):529-545.DOI:10.1002/2013jd020890.

Liu G,Wu R G,Sun S Q,et al.,2015.Synergistic contribution of precipitation anomalies over northwestern India and the South China Sea to high temperature over the Yangtze River valley[J].Adv Atmos Sci,32(9):1255-1265.DOI:10.1007/s00376-015-4280-y.

Liu G Y,Li J,Ying T,et al.,2023.Increasing fire weather potential over Northeast China linked to declining Bering sea ice[J].Geophys Res Lett,50(19):e2023GL105931.DOI:10.1029/2023gl105931.

Liu M Y,Yin Y X,Wang X J,et al.,2022.More frequent,long-lasting,extreme and postponed compound drought and hot events in eastern China[J].J Hydrol,614:128499.DOI:10.1016/j.jhydrol.2022.128499.

Liu Y,Chen H P,2025.Role of the Greenland sea ice anomaly in the late-spring drought over Northwest China[J].Atmos Ocean Sci Lett,18(1):100488.DOI:10.1016/j.aosl.2024.100488.

Liu Y,Zhu Y L,Wang H J,et al.,2020.Role of autumn Arctic sea ice in the subsequent summer precipitation variability over East Asia[J].Int J Climatol,40(2):706-722.DOI:10.1002/joc.6232.

Lu C H,Sun Y,Wan H,et al.,2016.Anthropogenic influence on the frequency of extreme temperatures in China[J].Geophys Res Lett,43(12):6511-6518.DOI:10.1002/2016gl069296.

Luo M,Lau N C,2019.Amplifying effect of ENSO on heat waves in China[J].Climate Dyn,52(5):3277-3289.DOI:10.1007/s00382-018-4322-0.

Ma S M,Zhou T J,Stone D A,et al.,2017.Attribution of the July—August 2013 heat event in central and eastern China to anthropogenic greenhouse gas emissions[J].Environ Res Lett,12(5):054020.DOI:10.1088/1748-9326/aa69d2.

Ma S M,Zhu C W,Liu J,2020.Combined impacts of warm central equatorial Pacific sea surface temperatures and anthropogenic warming on the 2019 severe drought in East China[J].Adv Atmos Sci,37(11):1149-1163.DOI:10.1007/s00376-020-0077-8.

馬雙梅,祝從文,劉伯奇,2021.2019年4~6月云南持續性高溫天氣的大氣環流異常成因[J].大氣科學,45(1):165-180. Ma S M,Zhu C W,Liu B Q,2021.Possible causes of persistently extreme-hot-days-related circulation anomalies in Yunnan from April to June 2019[J].Chin J Atmos Sci,45(1):165-180.DOI:10.3878/j.issn.1006-9895.2004.19226.(in Chinese).

馬柱國,邵麗娟,2006.中國北方近百年干濕變化與太平洋年代際振蕩的關系[J].大氣科學,30(3):464-474. Ma Z G,Shao L J,2006.Relationship between dry/wet variation and the Pacific Decade Oscillation(PDO) in northern China during the last 100 years[J].Chin J Atmos Sci,30(3):464-474.(in Chinese).

馬柱國,符淙斌,楊慶,等,2018.關于我國北方干旱化及其轉折性變化[J].大氣科學,42(4):951-961. Ma Z G,Fu C B,Yang Q,et al.,2018.Drying trend in northern China and its shift during 1951—2016[J].Chin J Atmos Sci,42(4):951-961.(in Chinese).

Mckee T, Doesken N, Kleist J, 1993.The relationship of drought frequency and duration to time scales[C]//Eighth Conference on Applied Climatology.Anaheim, California.

Miralles D G,Teuling A J,van Heerwaarden C C,et al.,2014.Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J].Nat Geosci,7:345-349.DOI:10.1038/ngeo2141.

Ni Y Y,Qiu B,Miao X,et al.,2024.Shift of soil moisture-temperature coupling exacerbated 2022 compound hot-dry event in eastern China[J].Environ Res Lett,19(1):014059.DOI:10.1088/1748-9326/ad178c.

Palmer W C, 1965.Meteorological drought[R].Washington D C:U S Government Printing Office.

Perkins S E,Alexander L V,2013.On the measurement of heat waves[J].J Climate,26(13):4500-4517.DOI:10.1175/jcli-d-12-00383.1.

Qian C C,Yu J Y,Chen G,2014.Decadal summer drought frequency in China:the increasing influence of the Atlantic Multi-decadal Oscillation[J].Environ Res Lett,9(12):124004.DOI:10.1088/1748-9326/9/12/124004.

秦大河,2015.中國極端天氣氣候事件和災害風險管理與適應國家評估報告[M].北京:科學出版社. Qin D H, 2015.National assessment report on climate extremes and disaster risk management and adaptation in China[M].Beijing: Science Express.(in Chinese).

Russo S,Sillmann J,Fischer E M,2015.Top ten European heatwaves since 1950 and their occurrence in the coming decades[J].Environ Res Lett,10(12):124003.DOI:10.1088/1748-9326/10/12/124003.

Seo Y W,Ha K J,2022.Changes in land-atmosphere coupling increase compound drought and heatwaves over northern East Asia[J].npj Clim Atmos Sci,5:100.DOI:10.1038/s41612-022-00325-8.

Sheffield J,Goteti G,Wen F H,et al.,2004.A simulated soil moisture based drought analysis for the United States[J].J Geophys Res,109(D24):e2004jd005182.DOI:10.1029/2004jd005182.

Shi J,Cui L L,Wen K M,et al.,2018.Trends in the consecutive days of temperature and precipitation extremes in China during 1961—2015[J].Environ Res,161:381-391.DOI:10.1016/j.envres.2017.11.037.

Shukla S,Wood A W,2008.Use of a standardized runoff index for characterizing hydrologic drought[J].Geophys Res Lett,35(2):L02405.DOI:10.1029/2007gl032487.

Sun B,Wang H J,Li H X,et al.,2022.A long-lasting precipitation deficit in South China during autumn-winter 2020/2021:combined effect of ENSO and Arctic Sea ice[J].J Geophys Res:Atmos,127(6):e2021JD035584.DOI:10.1029/2021JD035584.

孫博,王會軍,黃艷艷,等,2023.2022年夏季中國高溫干旱氣候特征及成因探討[J].大氣科學學報,46(1):1-8. Sun B,Wang H J,Huang Y Y,et al.,2023.Climatic characteristics and causes of high temperature and drought in China in summer of 2022[J].Trans Atmos Sci,46(1):1-8.DOI:10.13878/j.cnki.dqkxxb.20220916003.(in Chinese).

Sun J Q,2012.Possible impact of the summer North Atlantic Oscillation on extreme hot events in China[J].Atmos Ocean Sci Lett,5(3):231-234.DOI:10.1080/16742834.2012.11446996.

Sun J Q,2014.Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai-Jiangnan region of China in 2013[J].Chin Sci Bull,59(27):3465-3470.DOI:10.1007/s11434-014-0425-0.

Sun X Q,Li S L,Hong X W,et al.,2019.Simulated influence of the Atlantic Multidecadal Oscillation on summer Eurasian nonuniform warming since the mid-1990s[J].Adv Atmos Sci,36(8):811-822.DOI:10.1007/s00376-019-8169-z.

Sun Y,Zhang X B,Zwiers F W,et al.,2014.Rapid increase in the risk of extreme summer heat in eastern China[J].Nat Clim Change,4:1082-1085.DOI:10.1038/nclimate2410.

Tang Q H,Zhang X J,Francis J A,2014.Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere[J].Nat Clim Change,4:45-50.DOI:10.1038/nclimate2065.

Tian F X,Klingaman N P,Dong B W,2021.The driving processes of concurrent hot and dry extreme events in China[J].J Climate,34(5):1809-1824.DOI:10.1175/jcli-d-19-0760.1.

Uhe P,Otto F E L,Haustein K,et al.,2016.Comparison of methods:attributing the 2014 record European temperatures to human influences[J].Geophys Res Lett,43(16):8685-8693.DOI:10.1002/2016gl069568.

Van Loon A F,Van Huijgevoort M H J,Van Lanen H A J,2012.Evaluation of drought propagation in an ensemble mean of large-scale hydrological models[J].Hydrol Earth Syst Sci,16(11):4057-4078.DOI:10.5194/hess-16-4057-2012.

Vicente-Serrano S M,Beguería S,López-Moreno J I,2010.A multiscalar drought index sensitive to global warming:the standardized precipitation evapotranspiration index[J].J Climate,23(7):1696-1718.DOI:10.1175/2009JCLI2909.1.

Vicente-Serrano S M,López-Moreno J I,Beguería S,et al.,2012.Accurate computation of a streamflow drought index[J].J Hydrol Eng,17(2):318-332.DOI:10.1061/(asce)he.1943-5584.0000433.

Wang A H,Lettenmaier D P,Sheffield J,2011.Soil moisture drought in China,1950—2006[J].J Climate,24(13):3257-3271.DOI:10.1175/2011jcli3733.1.

Wang A H,Fu J J,2013.Changes in daily climate extremes of observed temperature and precipitation in China[J].Atmos Ocean Sci Lett,6(5):312-319.DOI:10.1080/16742834.2013.11447100.

王晨鵬,黃萌田,翟盤茂,2022.IPCC AR6報告關于不同類型干旱變化研究的新進展與啟示[J].氣象學報,80(1):168-175. Wang C P,Huang M T,Zhai P M,2022.New progress and enlightenment on different types of drought changes from IPCC Sixth Assessment Report[J].Acta Meteor Sinica,80(1):168-175.DOI:10.11676/qxxb2022.017.(in Chinese).

王岱,王素艷,王璠,等,2021.寧夏夏季極端高溫變化特征及其與北極海冰的關系[J].干旱區研究,38(5):1285-1294. Wang D,Wang S Y,Wang F,et al.,2021.Characteristics of summer extremely high temperature in Ningxia in connection with Arctic sea ice[J].Arid Zone Res,38(5):1285-1294.DOI:10.13866/j.azr.2021.05.10.(in Chinese).

Wang H J,He S P,2015.The North China/northeastern Asia severe summer drought in 2014[J].J Climate,28(17):6667-6681.DOI:10.1175/jcli-d-15-0202.1.

Wang H J,Dai Y J,Yang S,et al.,2022.Predicting climate anomalies:a real challenge[J].Atmos Ocean Sci Lett,15(1):100115.DOI:10.1016/j.aosl.2021.100115.

Wang J,Tett S F B,Yan Z W,et al.,2018.Have human activities changed the frequencies of absolute extreme temperatures in eastern China?[J].Environ Res Lett,13(1):014012.DOI:10.1088/1748-9326/aa9404.

Wang K C,Dickinson R E,2012.A review of global terrestrial evapotranspiration:observation,modeling,climatology,and climatic variability[J].Rev Geophys,50(2):RG2005.

Wang S S,Yuan X,Wu R G,2019.Attribution of the persistent spring-summer hot and dry extremes over Northeast China in 2017[J].Bull Amer Meteor Soc,100(1):S85-S89.DOI:10.1175/bams-d-18-0120.1.

王文,許金萍,蔡曉軍,等,2017.2013年夏季長江中下游地區高溫干旱的大氣環流特征及成因分析[J].高原氣象,36(6):1595-1607. Wang W,Xu J P,Cai X J,et al.,2017.Analysis of atmospheric circulation characteristics and mechanism of heat wave and drought in summer of 2013 over the middle and lower reaches of Yangtze River basin[J].Plateau Meteor,36(6):1595-1607.DOI:10.7522/j.issn.1000-0534.2016.00129.(in Chinese).

Wang Y M,Yuan X,2021.Anthropogenic speeding up of South China flash droughts as exemplified by the 2019 summer-autumn transition season[J].Geophys Res Lett,48(9): e2020GL091901.DOI:10.1029/2020gl091901.

衛捷,孫建華,2007.華北地區夏季高溫悶熱天氣特征的分析[J].氣候與環境研究,12(3):453-463. Wei J,Sun J H,2007.The analysis of summer heat wave and sultry weather in North China[J].Clim Environ Res,12(3):453-463.DOI:10.3969/j.issn.1006-9585.2007.03.025.(in Chinese).

Wei J,Wang W G,Shao Q X,et al.,2020.Heat wave variations across China tied to global SST modes[J].J Geophys Res:Atmos,125(6):e2019JD031612.DOI:10.1029/2019JD031612.

Wei K,Chen W,2011.An abrupt increase in the summer high temperature extreme days across China in the mid-1990s[J].Adv Atmos Sci,28(5):1023-1029.DOI:10.1007/s00376-010-0080-6.

Williams A P,Allen C D,Millar C I,et al.,2010.Forest responses to increasing aridity and warmth in the southwestern United States[J].Proc Natl Acad Sci U S A,107(50):21289-21294.DOI:10.1073/pnas.0914211107.

Williams A P,Seager R,Abatzoglou J T,et al.,2015.Contribution of anthropogenic warming to California drought during 2012—2014[J].Geophys Res Lett,42(16):6819-6828.DOI:10.1002/2015gl064924.

Wu B Y,Francis J A,2019.Summer Arctic cold anomaly dynamically linked to East Asian heat waves[J].J Climate,32(4):1137-1150.DOI:10.1175/jcli-d-18-0370.1.

Xu H,Liang X Z,Xue Y,2022.Regional climate modeling to understand Tibetan heating remote impacts on East China precipitation [J].Climate Dyn,62:2683-2701.DOI: 10.1007/s00382-022-06266-5.

Xue Y K,Diallo I,Li W K,et al.,2018.Spring land surface and subsurface temperature anomalies and subsequent downstream late spring-summer droughts/floods in North America and East Asia[J].J Geophys Res:Atmos,123(10):5001-5019.DOI:10.1029/2017jd028246.

Yan M L,Xie Y,Zhu H H,et al.,2022.The exceptional heatwaves of 2017 and all-cause mortality:an assessment of nationwide health and economic impacts in China[J].Sci Total Environ,812:152371.DOI:10.1016/j.scitotenv.2021.152371.

楊修群,朱益民,謝倩,等,2004.太平洋年代際振蕩的研究進展[J].大氣科學,28(6):979-992. Yang X Q,Zhu Y M,Xie Q,et al.,2004.Advances in studies of Pacific Decadal Oscillation[J].Chin J Atmos Sci,28(6):979-992.(in Chinese).

Yang Z M,Zhang J Y,Liu Y,et al.,2024.The substantial role of May soil temperature over central Asia for summer surface air temperature variation and prediction over northeastern China[J].Climate Dyn,62(4):2719-2733.DOI:10.1007/s00382-022-06360-8.

Yin H,Sun Y,Wan H,et al.,2017.Detection of anthropogenic influence on the intensity of extreme temperatures in China[J].Int J Climatol,37(3):1229-1237.DOI:10.1002/joc.4771.

Yu M X,Li Q F,Hayes M J,et al.,2014.Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index:1951-2010?[J].Int J Climatol,34(3):545-558.DOI:10.1002/joc.3701.

Yu R,Zhai P M,2020a.Changes in compound drought and hot extreme events in summer over populated eastern China[J].Weather Clim Extrem,30:100295.DOI:10.1016/j.wace.2020.100295.

Yu R,Zhai P M,2020b.More frequent and widespread persistent compound drought and heat event observed in China[J].Sci Rep,10(1):14576.DOI:10.1038/s41598-020-71312-3.

Yuan C X,Zhang W,Zhong Y H,et al.,2022.North Atlantic forcing of autumn drought in Southwest China[J].Atmos Ocean Sci Lett,15(1):100152.DOI:10.1016/j.aosl.2022.100152.

Yuan X,Zhang M,Wang L Y,et al.,2017.Understanding and seasonal forecasting of hydrological drought in the Anthropocene[J].Hydrol Earth Syst Sci,21(11):5477-5492.DOI:10.5194/hess-21-5477-2017.

袁星,馬鳳,李華,等,2020.全球變化背景下多尺度干旱過程及預測研究進展[J].大氣科學學報,43(1):225-237. Yuan X,Ma F,Li H,et al.,2020.A review on multi-scale drought processes and prediction under global change[J].Trans Atmos Sci,43(1):225-237.DOI:10.13878/j.cnki.dqkxxb.20191105005.(in Chinese).

Yue Y,Liu H F,Mu X X,et al.,2021.Spatial and temporal characteristics of drought and its correlation with climate indices in Northeast China[J].PLoS One,16(11):e0259774.DOI:10.1371/journal.pone.0259774.

Zeng D W,Yuan X,2021.Modeling the influence of upstream land-atmosphere coupling on the 2017 persistent drought over Northeast China[J].J Climate,34(12):4971-4988.DOI:10.1175/jcli-d-20-0650.1.

曾剛,高琳慧,2017.華南秋季干旱的年代際轉折及其與熱帶印度洋熱含量的關系[J].大氣科學學報,40(5):596-608. Zeng G,Gao L H,2017.Decadal shift of autumn drought in South China and its relationship with heat content in tropical Indian Ocean[J].Trans Atmos Sci,40(5):596-608.DOI:10.13878/j.cnki.dqkxxb.20170124002.(in Chinese).

Zeng J N,Li H X,Sun B,et al.,2024.Summertime compound heat wave and drought events in China:interregional and subseasonal characteristics,and the associated driving factors[J].Environ Res Lett,19(7):074046.DOI:10.1088/1748-9326/ad5576.

Zhang J,Liu Z Y,Chen L,2015.Reduced soil moisture contributes to more intense and more frequent heat waves in northern China[J].Adv Atmos Sci,32(9):1197-1207.DOI:10.1007/s00376-014-4175-3.

Zhang J,Chen H S,Zhang Q,2019.Extreme drought in the recent two decades in Northern China resulting from Eurasian warming[J].Climate Dyn,52(5):2885-2902.DOI:10.1007/s00382-018-4312-2.

張井勇,吳凌云,2011.陸-氣耦合增加中國的高溫熱浪[J].科學通報,56(23):1905-1909. Zhang J Y, Wu L Y,2011.Land-atmosphere coupling amplifies hot extremes over China[J].Chinese Sci Bull, 56(23):1905-1909.DOI: 10.1007/s11434-011-4628-3.(in Chinese).

Zhang L X,Zhou T J,2015.Drought over East Asia:a review[J].J Climate,28(8):3375-3399.DOI:10.1175/jcli-d-14-00259.1.

張強,韓蘭英,郝小翠,等,2015.氣候變化對中國農業旱災損失率的影響及其南北區域差異性[J].氣象學報,73(6):1092-1103. Zhang Q, Han L Y, Hao X C, et al.,2015.On the impact of the climate change on the agricultural disaster loss caused by drought in China and the regional differences between the North and the South[J].Acta Meteor Sinica, 73(6): 1092-1103.DOI:10.11676/qxxb2015.083.(in Chinese).

張強,姚玉璧,李耀輝,等,2020.中國干旱事件成因和變化規律的研究進展與展望[J].氣象學報,78(3):500-521. Zhang Q,Yao Y B,Li Y H,et al.,2020.Progress and prospect on the study of causes and variation regularity of droughts in China[J].Acta Meteor Sinica,78(3):500-521.DOI:10.11676/qxxb2020.032.(in Chinese).

Zhao Q,Guo Y M,Ye T T,et al.,2021.Global,regional,and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019:a three-stage modelling study[J].Lancet Planet Health,5(7):e415-e425.DOI:10.1016/S2542-5196(21)00081-4.

周波濤,錢進,2021.IPCC AR6報告解讀:極端天氣氣候事件變化[J].氣候變化研究進展,17(6):713-718. Zhou B T,Qian J,2021.Changes of weather and climate extremes in the IPCC AR6[J].Clim Change Res,17(6):713-718.DOI:10.12006/j.issn.1673-1719.2021.167.(in Chinese).

Zhou T J, Ma S M, Zou L W, 2014.Understanding a hot summer in central eastern China: summer 2013 in context of multi-model trend analysis [J].Bull Amer Meteor Soc, 95: S54-S57.

Zhu Y L,Wang H J,Zhou W,et al.,2011.Recent changes in the summer precipitation pattern in East China and the background circulation[J].Climate Dyn,36(7):1463-1473.DOI:10.1007/s00382-010-0852-9.

Zhu Y L,Wang H J,Ma J H,et al.,2015.Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall[J].J Geophys Res: Atmos,120(17):8817-8827.DOI:10.1002/2015jd023545.

鄒旭愷,任國玉,張強,2010.基于綜合氣象干旱指數的中國干旱變化趨勢研究[J].氣候與環境研究,15(4):371-378. Zou X K, Ren G Y, Zhang Q, 2010.Droughts variations in China based on a compound index of meteorological drought [J].Climatic Environ Res, 2010, 15: 371-378.DOI:10.3878/j.issn.1006-9585.2010.04.04.(in Chinese).

·ARTICLE·

Research progress and prospect on the drought,heatwave,and compound drought and heatwave events in China

ZHU Yali 2,LIU Yang KONG Xianghui 2,WANG Xiaoxin3,ZHANG Mengqi HONG Xiaowei3,CHEN Huopo 2,SUN Jianqi

Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;

2National Key Laboratory of Earth System Numerical Modeling and Application,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;

3Climate Change Research Center,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

Abstract Drought,as one of the leading and most severe meteorological disasters globally,occurs frequently in China.Between 2001 and 2020,approximately 48% of the crop area affected by meteorological disasters in China were due to drought (Li et al.,2021).Heatwaves are believed to be increasing under global warming,while droughts exhibit more regionalized patterns.The simultaneous occurrence of drought and heatwave has become more frequent,mainly due to increase in high temperature events driven by global warming.High temperature and soil moisture deficit can reinforce each other,likely leading to more frequent,longer-lasting,and stronger extreme events,known as compound drought and heatwave events (CDHEs).CDHEs have more severe and persistent impact on agriculture and ecological environment through the positive feedback between drought and high temperature.This work provides a brief review of research progress on drought,heatwave,and CDHE events in China.First,the various definitions of drought,heatwave,and CDHE are summarized.The influencing factors,including sea surface temperature (SST) and sea ice,land surface conditions,atmospheric circulation patterns,and the underlying physical processes,are then reviewed.

Northeast China (NEC) is a typical region where drought,heatwave,and CDHE events often occur.Previous studies have identified several factors that influence these events in NEC.As an example,we integrate the effects of sea-land-ice-air system on NEC drought,heatwave,and CDHE events based on prior research,constructing a simplified physical framework.The key mechanisms can be briefly depicted as follows:

Local anomalous anticyclone plays a central role in drought,heatwave,and CDHE events.These local circulation anomalies can be induced by Rossby wave train in the upper atmosphere,which are influenced by climate variations in the upstream,including the North Atlantic Oscillation (NAO),Atlantic Multidecadal Oscillation (AMO),North Atlantic SST,polar sea ice,and soil temperature in Central Asia.Additionally,phenomena like El Nio and Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) can significantly affect the drought,heatwave,CDHE events in NEC.

Despite the identification of several local,regional,remote natural climate systems contributing to drought,heatwave,CDHE events in China,a comprehensive understanding of the synergistic physical and dynamical mechanisms behind these events remains lacking.These processes are complicated by the interplay between regional SST,sea ice,land surface conditions,and atmospheric dynamics.In addition to natural climate systems,anthropogenic activity are proposed to significantly drive the increasing frequency and intensity of drought,heatwave,CDHE events in China.However,the relative contribution of natural climate variation and anthropogenic forcing remain unclear and require further investigation.

Although the impact of drought,heatwave,CDHE events is growing rapidly,predictive skills remain limited.Numerical weather forecast based on state-of-the-art models have a skill horizon of only about one week.These limitations arise from our incomplete understanding of the underlying physical processes and the imperfect representation of the real world by current numerical models.The first step in improving prediction skills is to systematically enhance our understanding of the physical processes driving extreme climate events.Developing effective dynamical-statistical methods,including deep-learning techniques,is essential for improving the predictability of drought,heatwave,CDHE events over various timescales,addressing the urgent need to prevent disasters and reduce damages under global warming.

Keywords heatwave;drought;extreme event;compound drought and heatwave event(CDHE);compound event

DOI:10.13878/j.cnki.dqkxxb.20240911002

(責任編輯:袁東敏)

主站蜘蛛池模板: 国产成人精品男人的天堂下载| 国产精品国产三级国产专业不| 国产又粗又爽视频| 国产午夜不卡| 国产成熟女人性满足视频| 国产免费精彩视频| 国产91高跟丝袜| 久久久波多野结衣av一区二区| 日韩国产亚洲一区二区在线观看| 日韩精品一区二区三区swag| 午夜a级毛片| 亚洲国产精品一区二区第一页免 | 日韩高清中文字幕| 欧美三级自拍| 久久香蕉国产线| 全部无卡免费的毛片在线看| 欧美日韩亚洲国产| 成AV人片一区二区三区久久| 国产理论最新国产精品视频| 日韩A∨精品日韩精品无码| 美女无遮挡免费视频网站| av手机版在线播放| 亚洲高清国产拍精品26u| 无套av在线| 日韩精品资源| 好紧太爽了视频免费无码| 青青草原国产| 亚洲人成亚洲精品| 久久天天躁狠狠躁夜夜躁| 中文字幕 欧美日韩| 亚洲视频欧美不卡| 久久亚洲国产一区二区| 国外欧美一区另类中文字幕| 国产乱人激情H在线观看| a国产精品| 久久精品66| 国产精品三级专区| 91精品久久久无码中文字幕vr| 一级毛片免费高清视频| 久草热视频在线| 一区二区影院| 国产精欧美一区二区三区| 亚洲资源站av无码网址| 国产毛片基地| 亚洲综合色在线| 国产女人在线视频| 九月婷婷亚洲综合在线| 蝌蚪国产精品视频第一页| 在线播放真实国产乱子伦| 国产亚洲成AⅤ人片在线观看| 国产一在线观看| 九月婷婷亚洲综合在线| 综合社区亚洲熟妇p| 国产激爽爽爽大片在线观看| 欧美乱妇高清无乱码免费| 中文字幕免费在线视频| 色哟哟国产精品| 狠狠色香婷婷久久亚洲精品| 国产精品久久国产精麻豆99网站| 久热99这里只有精品视频6| 九九九精品成人免费视频7| 97se亚洲综合不卡| 91毛片网| 国产午夜一级淫片| 日韩视频福利| 亚洲小视频网站| 亚洲免费人成影院| 国产精品自在在线午夜区app| 亚洲第一成年网| 日本高清在线看免费观看| 一区二区三区在线不卡免费| 国内精品手机在线观看视频| 成人国产一区二区三区| 无码内射在线| 色国产视频| 亚洲欧美一区二区三区麻豆| 蜜芽一区二区国产精品| 香蕉国产精品视频| 欧美a级完整在线观看| 欧美有码在线| 99在线观看免费视频| 国产国拍精品视频免费看|