










摘要:目的本文旨在肌肉脂肪浸潤的基礎上,利用分層分析的方法將肌肉內部按照不同的密度范圍劃分成不同的亞分區,進一步研究肌肉密度改變對原位肝移植術(OLT)后并發癥(Clavien-Dindo≥Ⅲ)的影響。方法回顧性分析2013年5月—2020年9月于吉林大學第一醫院行OLT的145例患者,以患者腰3椎體水平最大層面的CT平掃圖像作為原始數據,利用Neusoft Fatanalysis軟件對圖像進行相關肌肉參數的測量。符合正態分布的計量資料組間比較采用成組t檢驗;不符合正態分布的組間比較采用Mann-Whitney U秩和檢驗。計數資料組間比較采用χ2或Fisher檢驗。利用RIAS軟件進行臨床特征提取及分析建模,分別建立邏輯回歸(LR)、支持向量機(SVM)、隨機森林(RFC)3種機器學習模型,并繪制不同模型的受試者操作特征曲線(ROC曲線)、校正曲線、決策分析曲線,計算ROC曲線下面積(AUC)、靈敏度、特異度、精確率、F1分數、準確率。結果采用肌肉分層分析前的7種臨床特征建立LR-C、SVM-C、RFC-C 3種機器學習模型,其中RFC-C模型測試集的AUC值為0.803、靈敏度0.588,特異度0.778。采用肌肉分層分析后的16種臨床特征建立的LR-CS、SVM-CS、RFC-CS模型中,LR-CS及SVM-CS模型測試集的AUC值較高,均為0.852,靈敏度分別為0.765、0.706,特異度分別為0.889、0.926,通過對比肌肉分層分析前后各模型測試集的AUC、靈敏度、特異度、精確率、F1分數、準確率后發現,肌肉分層分析后預測模型的參數均有所提升。通過對比各預測模型的決策分析曲線和校正曲線,發現LR-CS及SVM-CS模型對于預測OLT患者術后并發癥(Clavien-Dindo≥Ⅲ)具有良好效能。結論在肌肉脂肪浸潤的基礎上,利用分層分析的方法將肌肉內部按照不同的密度劃分成不同子區,對于OLT患者術后并發癥有一定預測價值。
關鍵詞:肌肉脂肪浸潤;肝移植;手術后并發癥
基金項目:吉林省科技發展計劃基金(20220505017ZP)
Value of internal stratification analysis of abdominal wall muscles in predicting complications after orthotopic liver transplantation
SHI Xina,LIANG Chongxiaob,ZHANG Beia,WANG Jipinga
a.Department of Radiology,b.Department of Cardiac Ultrasound,The First Hospital of Jilin University,Changchun 130012,China
Corresponding author:WANG Jiping,jiping@jlu.edu.cn(ORCID:0000-0003-1991-4104)
Abstract:Objective To divide the muscle into different subzones according to different density ranges using the stratified analysis on the basis of myosteatosis,and to investigate the effect of muscle density changes on complications(Clavien-Dindo grade≥Ⅲ)after orthotopic liver transplantation(OLT).Methods A retrospective analysis was performed for the medical records of 145 patients who underwent OLT in The First Hospital of Jilin University from May 2013 to September 2020,and with the plain CT scan images of the largest level of lumbar 3 vertebrae of each patient as the original data,Neusoft Fatanalysis software was used to measure related muscle parameters.The independent-samples t test was used for comparison of normally distributed continuous data between two groups,and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups.The chi-square test or Fisher test was for comparison of categorical data between two groups.RIAS software was used to extract clinical features and performanalysis and modeling,and three machine learning models of logistic regression(LR),support vector machine(SVM),and random forest(RFC)were constructed.The receiver operating characteristic(ROC)curve,the calibration curve,and the decision curve were plotted for each model to calculate the area under the ROC curve(AUC),sensitivity,specificity,precision,F1 score,and accuracy.Results The three machine learning models of LR-C,SVM-C,and RFC-C were established based on the 7 clinical features before muscle stratification analysis,among which the RFC-C model had an AUC of 0.803,asensitivity of 0.588,and a specificity of 0.778 in the test set.Among the models of LR-CS,SVM-CS,and RFC-CS established based on the 16 clinical features after muscle stratification analysis,the LR-CS and SVM-CS models had an AUC of 0.852 in the test set,with a sensitivity of 0.765 and 0.706,respectively,and a specificity of 0.889 and 0.926,respectively.Comparison of the AUC,sensitivity,specificity,precision,F1 score,and accuracy of each model in the test set before and after muscle stratification analysis showed that there were improvements in the parameters of the predictive model after muscle stratification analysis.Comparison of the decision curves and calibration curves of each predictive model showed that the LR-CS and SVM-CS models had good efficacy in predicting postoperative complications(Clavien-Dindo grade≥Ⅲ)in OLT patients.Conclusion On the basis of myosteatosis,the division of the muscle into different subzones according"to different densities using the stratified analysis has a certain value in predicting postoperative complications in patients with OLT.
Key words:Myosteatosis;Liver Transplantation;Postoperative Complications
Research funding:Science and Technology Development Plan Fund of Jilin Province(20220505017ZP)
肌肉脂肪浸潤是指骨骼肌內出現了異常的脂肪沉積,這是一種異位的脂肪儲存形式,隨著年齡的增長而逐漸增加,被認為與肌肉質量、力量和活動能力下降等密切相關,并且可擾亂新陳代謝[1]。目前對肌肉脂肪浸潤的發生機制研究甚少,但也有學者提出了一些理論及觀點,包括瘦素信號傳導缺陷[2],骨骼肌前體干細胞[3]或成纖維脂肪前體細胞[4]相關信號傳導機制破壞以及線粒體功能障礙等[5]。肝移植是終末期肝病有效的治療手段[6]。肝移植患者門靜脈壓力的調節、混合供體手術以及圍手術期患者肌肉質量的改變,都會對術后短期預后產生影響[7]。因此,在肝移植過程中,供受體的手術風險評估尤為重要。在此之前已經開發了多種風險評估模型,對肝移植患者術后預后評估具有一定的價值[8-12]。但在這些風險評估模型中,并沒有將身體成分改變納入評估標準。Czigany等[13]首次將肌肉脂肪浸潤作為評估指標與Dutkowski等[8]提出的BAR評分(Balance-of-Risk-Score)相結合,建立了全新的肝移植術后評估模型,其研究結果表明肌肉脂肪浸潤是預測同種異體原位肝移植術(orthotopic liver transplantation,OLT)患者圍手術期預后的重要參數。越來越多的證據表明肌肉脂肪浸潤在肝移植預后評估中起到重要作用[14-16]。目前,關于肌肉脂肪浸潤的評估可以通過侵入性的肌肉活檢進行量化,也可以通過使用非侵入性的成像設備進行量化,例如CT、定量CT(QCT)、磁共振成像(MRI)、定量超聲、磁共振波譜(MRS)等[1]。通過總結和歸納后發現,目前診斷肌肉脂肪浸潤的影像學方法大多采用腹部CT平掃[17-18]。因此,本研究通過腹部CT平掃對肌肉內部進行分層分析,進一步探索肌肉內部密度改變,對肝移植術后并發癥的預測能力。由于肝移植術后并發癥種類較多且復雜,本研究采用國際通用的外科并發癥分級系統(Clavien-Dindo)對肝移植患者術后并發癥進行嚴重程度分級[19]。
1資料與方法
1.1研究對象納入2013年5月—2020年9月于本院行OLT的患者145例。納入標準:(1)患者年齡≥18歲;(2)患者術前1個月內接受過腹部CT平掃檢查。排除標準:(1)腹部CT平掃圖像質量差、偽影重,導致無法對腰3椎體水平肌肉進行相關指標的測量;(2)患者術后半年內病歷信息不完整,未能按照規定時間隨訪。本研究所有合并肝細胞癌的患者均符合肝移植杭州標準[20]。
1.2研究方法
1.2.1臨床數據收集通過臨床病歷系統收集患者的人口學信息、入院時實驗室檢查以及既往病史,包括性別、年齡、身高、體質量、身體質量指數(BMI)、MELD評分、Child-Pugh評分、AST、ALT、總膽紅素、直接膽紅素、白蛋白、白細胞、PLT、PT、國際標準化比值(INR)、血Na+、肌酐、既往腹部手術史、是否合并糖尿病、肝細胞癌射頻消融治療情況、肝細胞癌動脈栓塞治療情況、是否存在難以控制的靜脈曲張出血、是否存在肝性腦病、是否存在移植術前感染等。
1.2.2 CT掃描參數及圖像獲取腹部CT平掃圖像來自于兩臺CT設備。第1臺CT:西門子雙源CT(Somatam Definition)。掃描參數:層厚為5.0 mm,螺距為0.8 mm,旋轉時間為0.5 s,管電壓為120 kV,管電流為300 mA。第2臺CT:飛利浦Brilliance iCT。掃描參數:層厚為5.0 mm,螺距為0.9 mm,旋轉時間為0.5 s,管電壓為120 kV,管電流為282 mA。通過放射科東軟工作站導出所有患者L3椎體水平最大層面CT平掃圖像(層厚5 mm)的DICOM數據作為原始圖像數據,導入Neusoft Fatanalysis軟件(AVW 2.0.36.1237 2020/6/10)進行相關處理。
1.2.3 CT圖像處理及分層分析利用Neusoft Fatanalysis軟件按照閾值?30~150 HU半自動識別L3椎體水平最大層面全腹壁肌肉,再按照閾值為?190~?50 HU半自動識別皮下脂肪、腹腔脂肪,繼而得到皮下脂肪面積(SFA)、腹腔脂肪面積(VFA)、脂肪總面積(TFA)、VFA/TFA、腰圍、脂肪的平均CT值、肌肉指數(SMI)、全腹壁肌肉的平均CT值(SMRA)(圖1)。進一步通過軟件按照不同的密度范圍將肌肉內部劃分成3種不同的亞分區,并用不同的偽彩表示(圖2),分別定義為正常肌肉(NAMA)(30~150 HU,紅色)、輕度脂肪浸潤肌肉(LAMA)(0~30 HU,綠色)、嚴重脂肪浸潤肌肉(HAMA)(lt;0 HU,藍色),通過軟件自動計算NAMA、LAMA、HAMA 3種不同亞分區的面積、所占全腹壁肌肉總面積的百分比以及不同亞分區的SMRA。肌肉脂肪浸潤評估依據Martin等[21]建議的診斷截斷值得出,當BMIlt;25 kg/m2時,SMRAlt;41 HU;當BMI≥25 kg/m2時,SMRAlt;33 HU診斷為肌肉脂肪浸潤。
1.2.4臨床特征的篩選及模型的建立首先利用RIAS[22-23](www.riascloud.com)軟件將145例患者按照7∶3的比例隨機分成訓練集(n=101)和測試集(n=44),然后將訓練集中的患者按照是否出現并發癥(Clavien-Dindo≥Ⅲ)分成并發癥組和非并發癥組,比較兩組患者各項臨床特征的差異,將Plt;0.05的特征指標用于臨床預測模型的建立。本研究在建立機器學習模型的過程中對訓練集采用了5折交叉驗證的方法,目的在于客觀綜合評估篩選出的臨床特征對研究問題的預測能力。首先將訓練集平均分成5份,隨機選取其中1份作為驗證集,其余4份作為內部訓練集進行模型建立,該過程重復5次;然后利用整個訓練集建立模型,利用測試集進行獨立驗證。本研究利用肌肉分層分析前后篩選出的臨床特征分別建立邏輯回歸(LR)、支持向量機(SVM)、隨機森林(RFC)3種機器學習模型。
1.3統計學方法應用SPSS 25.0、RAIS、Medcalc 20.0.3軟件進行統計學分析。符合正態分布的計量資料采用±s表示,2組間比較采用成組t檢驗;不符合正態分布的計量資料用M(P25~P75)表示,2組間比較采用Mann-Whitney U秩和檢驗。計數資料2組間比較采用χ2檢驗或Fisher檢驗。利用RIAS軟件構建LR、SVM、RFC機器學習模型,并繪制模型的受試者操作特征曲線(ROC曲線)、校正曲線、決策分析曲線,計算AUC值、靈敏度、特異度、精確率、F1分數、準確率,利用上述指標綜合評估各模型的診斷價值。利用Medcalc 20.0.3對各模型的ROC曲線進行Delong檢驗。Plt;0.05為差異有統計學意義。
2結果
2.1基本資料及臨床特征篩選共納入145例OLT患者,平均年齡(50.58±9.82)歲,其中乙型肝炎肝硬化88例(34例合并肝細胞癌、1例合并膽管細胞癌、1例合并肝性脊髓病),丙型肝炎肝硬化8例(2例合并肝細胞癌),酒精性肝硬化15例(1例合并肝細胞癌),乙型肝炎合并丙型肝炎肝硬化1例,原發性膽汁性肝硬化12例,不明原因肝硬化3例,原發性硬化性膽管炎2例,膽汁淤積性肝硬化2例,藥物性肝硬化4例,自身免疫性肝炎3例,單純肝細胞癌1例,肝門部膽管細胞癌1例,多囊肝1例,肝血吸蟲病1例,肝豆狀核變性1例,肝臟未分化胚胎肉瘤1例,特發性門靜脈高壓1例。
6個月內出現并發癥(Clavien-Dindo≥Ⅲ)的患者共49例,訓練集中有并發癥32例,測試集中有并發癥17例(表1)。CT圖像分析在觀察者間及觀察者內顯示出了良好的重復性好,組內相關系數(ICC)均gt;0.75。最終通過對訓練集并發癥組與非并發癥組患者各項臨床指標的差異性比較,在肌肉分層分析前共篩選出了7個臨床特征包括:MELD評分、Child-Pugh評分、AST、白蛋白、糖尿病、肌肉脂肪浸潤、SMRA。肌肉分層分析后,通過組間差異性比較,又新篩選出了9個臨床特征,包括各亞區的SMI、所占全腹壁肌肉面積的百分比、SMRA,分別為NAMA-SMI、NAMA百分比、NAMA-SMRA、LAMA-SMI、LAMA百分比、LAMA-SMRA、HAMA-SMI、HAMA百分比、HAMA-SMRA。上述指標在訓練集與測試集間均無統計學差異(P值均gt;0.05)(表2)。
2.2臨床預測模型的建立首先利用分層分析前篩選出的7個臨床特征建立LR-C、SVM-C、RFC-C模型,其中RFC-C模型(測試集)的AUC值較高(圖3),AUC值為0.803、靈敏度為0.588、特異度為0.778。其次,利用肌肉分層分析后共篩選出的16個臨床特征建立LR-CS、SVM-CS、RFC-CS模型,其中LR-CS及SVM-CS模型的AUC值相對較高(圖4、5),AUC值均為0.852,靈敏度分別為0.765、0.706,特異度分別為0.889、0.926,結果顯示肌肉分層分析后建立的臨床模型的ROC曲線各項參數相比肌肉分層分析前均有所提升,并且Delong檢驗顯示LR-CS與LR-C模型的AUC值存在明顯統計學差異(P=0.005)(表3)。繪制肌肉分層分析前后各模型的決策分析曲線及校正曲線,決策分析曲線顯示肌肉分層分析后預測模型的凈收益明顯高于分層分析前,校準曲線顯示分層分析后預測模型在實際概率和預測概率之間具有良好的預測準確性(圖6、7)。
3討論
既往多項研究已經表明肌肉脂肪浸潤對OLT患者的預后存在一定的潛在影響[13,16,24-25],通過本次回顧性研究發現,肌肉脂肪浸潤在OLT患者中普遍存在,并且在出現術后并發癥的患者中,發生率相對較高。本研究在肌肉脂肪浸潤的基礎上,通過對L3椎體水平全腹壁肌肉進行分層分析后發現,將肌肉內部按照不同密度范圍劃分成不同的亞分區,不僅為臨床提供了更多的影像學測量參數,而且還提升了術后并發癥預測模型的效能,相比肌肉分層分析前的預測模型,LR-CS、RFC-CS、SVM-CS模型的AUC值有了一定的提升,并且通過Delong檢驗證實LR-C和LR-CS模型測試集的AUC存在明顯統計學差異(Plt;0.05),而且在模型靈敏度、特異度等相關參數方面均有良好提升。其實,2019年Zhuang等[26]在一項關于胃癌的研究中就曾提出過將肌肉內部劃分成不同的亞分區,這對了解肌肉密度改變對胃癌術后不良結局的影響是有價值的。此外,在2020年也有研究提出使用肌肉質量圖來展示肌間脂肪區域、低密度肌肉區域和正常密度肌肉區域[27]。本研究通過對肌肉內部進行分層分析后發現,該方法在一定程度上彌補了目前肌肉脂肪浸潤評價方式的不足,原因在于目前大多數研究采用的是Martin等[21]通過最優分層方法提出的適用于胃腸道腫瘤患者預后評價的方法,但是當部分患者腹壁肌肉出現了局部重度脂肪化,而SMRA確處于正常范圍時,該方法就會將其誤判為正常,這與實際情況并不相符合,此時肌肉內部分層分析就顯得尤為重要。其次該方法也并不一定適用于OLT患者肌肉脂肪浸潤的評價。目前肺癌[28-29]、卵巢癌[30-31]、壺腹周圍癌[32]、胰腺癌[33]、食管癌及食管胃結合部癌[34]、彌漫大B細胞淋巴瘤[35]患者肌肉脂肪浸潤的特異性診斷截斷值相繼出現,同時有研究根據研究樣本的中位數[36]、三分位數[37]或四分位數[38]來定義肌肉脂肪浸潤的發生。雖然本研究通過肌肉分層分析方法建立的肝移植術后并發癥預測模型有著相對良好的效能,但是肌肉脂肪浸潤作為建立模型過程中重要的臨床特征,仍然受到SMRA值的影響。因此,未來應該嘗試發掘適用于肝移植患者肌肉脂肪浸潤評估的方法及SMRA診斷截斷值,繼續探索更加全面的肌肉內部分層分析方法,實現肌肉內部的精細管理,為評價患者預后提供更有價值的影像學參數。此外,本次研究仍存在一定的局限性,本研究是一項單中心、回顧性研究,并且缺乏外部驗證。另外,本研究中的肌肉相關參數是基于二維圖像測量得出的,缺乏肌肉相關的三維信息,三維圖像中肌肉內部的分層分析方法同樣值得進一步研究及探討。
倫理學聲明:本研究方案于2021年1月8日經由吉林大學第一醫院倫理委員會審批,批號:2022-164,臨床試驗注冊機構注冊號:ChiCTR2200059026。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:石鑫、張蓓負責設計論文框架,起草論文;石鑫、梁重霄負責實驗操作,研究過程的實施;石鑫、張蓓、梁重霄負責數據收集,統計學分析、繪制圖表;王繼萍、石鑫負責論文修改;王繼萍負責擬定寫作思路,指導撰寫文章并最后定稿。
參考文獻:
[1]CORREA-DE-ARAUJO R,ADDISON O,MILJKOVIC I,et al.Myoste?atosis in the context of skeletal muscle function deficit:An interdisci?plinary workshop at the national institute on aging[J].Front Physiol,2020,11:963.DOI:10.3389/fphys.2020.00963.
[2]KOTEISH A,DIEHL AM.Animal models of steatosis[J].Semin LiverDis,2001,21(1):89-104.DOI:10.1055/s-2001-12932.
[3]KIRKLAND JL,TCHKONIA T,PIRTSKHALAVA T,et al.Adipogen?esis and aging:Does aging make fat go MAD?[J].Exp Gerontol,2002,37(6):757-767.DOI:10.1016/s0531-5565(02)00014-1.
[4]FARUP J,MADARO L,PURI PL,et al.Interactions between muscle stem cells,mesenchymal-derived cells and immune cells in muscle homeostasis,regeneration and disease[J].Cell Death Dis,2015,6(7):e1830.DOI:10.1038/cddis.2015.198.
[5]SCHRAUWEN-HINDERLING VB,KOOI ME,HESSELINK MC,et al.Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects[J].Diabetologia,2007,50(1):113-120.DOI:10.1007/s00125-006-0475-1.
[6]HIBI T,WEI CHIEH AK,CHAN AC,et al.Current status of liver trans?plantation in Asia[J].Int J Surg,2020,82S:4-8.DOI:10.1016/j.ijsu.2020.05.071.
[7]KAIDO T.Recent evolution of living donor liver transplantation at Kyoto University:How to achieve a one-year overall survival rate of 99%?[J].Hepatobiliary Pancreat Dis Int,2020,19(4):328-333.DOI:10.1016/j.hbpd.2020.06.006.
[8]DUTKOWSKI P,OBERKOFLER CE,SLANKAMENAC K,et al.Are there better guidelines for allocation in liver transplantation?A novel score targeting justice and utility in the model for end-stage liver dis?ease era[J].Ann Surg,2011,254(5):745-753;discussion753.DOI:10.1097/SLA.0b013e3182365081.
[9]BRAAT AE,BLOK JJ,PUTTER H,et al.The Eurotransplant donor risk index in liver transplantation:ET-DRI[J].Am J Transplant,2012,12(10):2789-2796.DOI:10.1111/j.1600-6143.2012.04195.x.
[10]RANA A,JIE T,PORUBSKY M,et al.The survival outcomes follow?ing liver transplantation(SOFT)score:Validation with contempora?neous data and stratification of high-risk cohorts[J].Clin Transplant,2013,27(4):627-632.DOI:10.1111/ctr.12181.
[11]POMMERGAARD HC,DAUGAARD TR,ROSTVED AA,et al.Model for end-stage liver disease score predicts complications after liver transplantation[J].Langenbecks Arch Surg,2021,406(1):55-65.DOI:10.1007/s00423-020-02018-3.
[12]SCHLEGEL A,LINECKER M,KRON P,et al.Risk assessment inhigh-and low-MELD liver transplantation[J].Am J Transplant,2017,17(4):1050-1063.DOI:10.1111/ajt.14065.
[13]CZIGANY Z,KRAMP W,BEDNARSCH J,et al.Myosteatosis to pre?dict inferior perioperative outcome in patients undergoing orthotopic liver transplantation[J].Am J Transplant,2020,20(2):493-503.DOI:10.1111/ajt.15577.
[14]CZIGANY Z,KRAMP W,LURJE I,et al.The role of recipient myoste?atosis in graft and patient survival after deceased donor liver trans?plantation[J].J Cachexia Sarcopenia Muscle,2021,12(2):358-367.DOI:10.1002/jcsm.12669.
[15]MEISTER FA,BEDNARSCH J,AMYGDALOS I,et al.Various myoste?atosis selection criteria and their value in the assessment of short-and long-term outcomes following liver transplantation[J].Sci Rep,2021,11(1):13368.DOI:10.1038/s41598-021-92798-5.
[16]SHENVI SD,TABER DJ,HARDIE AD,et al.Assessment of magnetic resonance imaging derived fat fraction as a sensitive and reliable predictor of myosteatosis in liver transplant recipients[J].HPB(Ox?ford),2020,22(1):102-108.DOI:10.1016/j.hpb.2019.06.006.
[17]AHN H,KIM DW,KO Y,et al.Updated systematic review and meta-analysis on diagnostic issues and the prognostic impact of myoste?atosis:A new paradigm beyond sarcopenia[J].Ageing Res Rev,2021,70:101398.DOI:10.1016/j.arr.2021.101398.
[18]FARON A,SPRINKART AM,KUETTING DLR,et al.Body composi?tion analysis using CT and MRI:Intra-individual intermodal comparison of muscle mass and myosteatosis[J].Sci Rep,2020,10(1):11765.DOI:10.1038/s41598-020-68797-3.
[19]DINDO D,DEMARTINES N,CLAVIEN PA.Classification of surgical complications:A new proposal with evaluation in a cohort of 6 336 patients and results of a survey[J].Ann Surg,2004,240(2):205-213.DOI:10.1097/01.sla.0000133083.54934.ae.
[20]XU X,YANG JY,ZHONG L,et al.The clinical value of“Hangzhou Criteria”in the selection of patients with hepatocellular carcinoma for liver transplantation:A report of 1 163 cases on a multi-center basis[J].Chin J Organ Transplant,2013,34(9):524-527.DOI:10.3760/cma.j.issn.0254-1785.2013.09.004.
徐驍,楊家印,鐘林,等.肝癌肝移植“杭州標準”的多中心應用研究:1 163例報道[J].中華器官移植雜志,2013,34(9):524-527.DOI:10.3760/cma.j.issn.0254-1785.2013.09.004.
[21]MARTIN L,BIRDSELL L,MACDONALD N,et al.Cancer Cachexia in the age of obesity:Skeletal muscle depletion is a powerful prognos?tic factor,independent of body mass index[J].J Clin Oncol,2013,31(12):1539-1547.DOI:10.1200/JCO.2012.45.2722.
[22]LI MY,LI XY,GUO Y,et al.Development and assessment of an indi?vidualized nomogram to predict colorectal cancer liver metastases[J].Quant Imaging Med Surg,2020,10(2):397-414.DOI:10.21037/qims.2019.12.16.
[23]van GRIETHUYSEN JJM,FEDOROV A,PARMAR C,et al.Computa?tional radiomics system to decode the radiographic phenotype[J].Cancer Res,2017,77(21):e104-e107.DOI:10.1158/0008-5472.CAN-17-0339.
[24]HAMAGUCHI Y,KAIDO T,OKUMURA S,et al.Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplan?tation[J].Liver Transpl,2014,20(11):1413-1419.DOI:10.1002/lt.23970.
[25]HAMAGUCHI Y,KAIDO T,OKUMURA S,et al.Proposal for new se?lection criteria considering pre-transplant muscularity and visceral adiposity in living donor liver transplantation[J].J Cachexia Sarco?penia Muscle,2018,9(2):246-254.DOI:10.1002/jcsm.12276.
[26]ZHUANG CL,SHEN X,HUANG YY,et al.Myosteatosis predicts prognosis after radical gastrectomy for gastric cancer:A propensity score-matched analysis from a large-scale cohort[J].Surgery,2019,166(3):297-304.DOI:10.1016/j.surg.2019.03.020.
[27]KIM DW,KIM KW,KO Y,et al.Assessment of myosteatosis on com?puted tomography by automatic generation of a muscle quality map using a web-based toolkit:Feasibility study[J].JMIR Med Inform,2020,8(10):e23049.DOI:10.2196/23049.
[28]SJ?BLOM B,GR?NBERG BH,WENTZEL-LARSEN T,et al.Skeletal muscle radiodensity is prognostic for survival in patients with advanced non-small cell lung cancer[J].Clin Nutr,2016,35(6):1386-1393.DOI:10.1016/j.clnu.2016.03.010.
[29]BOWDEN JS,WILLIAMS LJ,SIMMS A,et al.Prediction of 90 day and overall survival after chemoradiotherapy for lung cancer:Role of performance status and body composition[J].Clin Oncol(R Coll Radiol),2017,29(9):576-584.DOI:10.1016/j.clon.2017.06.005.
[30]KUMAR A,MOYNAGH MR,MULTINU F,et al.Muscle composition measured by CT scan is a measurable predictor of overall survival in advanced ovarian cancer[J].Gynecol Oncol,2016,142(2):311-316.DOI:10.1016/j.ygyno.2016.05.027.
[31]AUST S,KNOGLER T,PILS D,et al.Skeletal muscle depletion and markers for cancer Cachexia are strong prognostic factors in epithe?lial ovarian cancer[J].PLoS One,2015,10(10):e0140403.DOI:10.1371/journal.pone.0140403.
[32]van RIJSSEN LB,van HUIJGEVOORT NM,COELEN RS,et al.Skel?etal muscle quality is associated with worse survival after pancreato?duodenectomy for periampullary,nonpancreatic cancer[J].Ann Surg Oncol,2017,24(1):272-280.DOI:10.1245/s10434-016-5495-6.
[33]OKUMURA S,KAIDO T,HAMAGUCHI Y,et al.Visceral adiposity and sarcopenic visceral obesity are associated with poor prognosis after resection of pancreatic cancer[J].Ann Surg Oncol,2017,24(12):3732-3740.DOI:10.1245/s10434-017-6077-y.
[34]TAMANDL D,PAIREDER M,ASARI R,et al.Markers of sarcopenia quantified by computed tomography predict adverse long-term out?come in patients with resected oesophageal or gastro-oesophageal junction cancer[J].Eur Radiol,2016,26(5):1359-1367.DOI:10.1007/s00330-015-3963-1.
[35]CHU MP,LIEFFERS J,GHOSH S,et al.Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy[J].J Cachexia Sarcopenia Muscle,2017,8(2):298-304.DOI:10.1002/jcsm.12161.
[36]BOER BC,de GRAAFF F,BRUSSE-KEIZER M,et al.Skeletal muscle mass and quality as risk factors for postoperative outcome after open colon resection for cancer[J].Int J Colorectal Dis,2016,31(6):1117-1124.DOI:10.1007/s00384-016-2538-1.
[37]van DIJK DPJ,BAKENS MJAM,COOLSEN MME,et al.Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pan?creatic cancer[J].J Cachexia Sarcopenia Muscle,2017,8(2):317-326.DOI:10.1002/jcsm.12155.
[38]AKAHORI T,SHO M,KINOSHITA S,et al.Prognostic significance of muscle attenuation in pancreatic cancer patients treated with neoad?juvant chemoradiotherapy[J].World J Surg,2015,39(12):2975-2982.DOI:10.1007/s00268-015-3205-3.
收稿日期:2024-06-21;錄用日期:2024-07-26
本文編輯:劉曉紅