[摘要]"急性髓系白血病(acute"myeloid"leukemia,AML)是一種預后不良的血液系統惡性腫瘤。研究證實黏連蛋白突變可增強造血干細胞/祖細胞的自我更新能力并抑制其分化,進而驅動髓系惡性腫瘤的發生與發展。本文旨在系統梳理黏連蛋白突變在AML中的臨床意義及其促進疾病進展的作用機制,并以此為基礎,探討其潛在靶向治療前景。
[關鍵詞]"急性髓系白血病;黏連蛋白;突變;作用機制
[中圖分類號]"R733.71""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.05.027
急性髓系白血病(acute"myeloid"leukemia,AML)是一種最常見的血液系統惡性腫瘤。AML起源于造血干細胞/祖細胞的克隆性增殖和分化成熟障礙,具有高度異質性、進展迅速、預后不良的特點[1]。目前,治療AML的標準誘導方案是阿糖胞苷聯合柔紅霉素。不同年齡段AML患者的5年總生存率存在顯著差異;年輕AML患者的5年總生存率為50%,而60歲及以上AML患者的5年總生存率則不足10%[2-3]。分子遺傳學的最新突破加深人們對AML發病機制的認識,同時明晰AML患者相較于健康人群患病風險升高的內在機制[4]。
在眾多類型腫瘤中,黏連蛋白被視為常見的突變蛋白復合體之一[5]。髓系腫瘤、膠質母細胞瘤、乳腺癌、膀胱癌、黑色素瘤及尤因肉瘤等的多種惡性腫瘤中均已鑒定出黏連蛋白環亞基及其調節因子突變[6-7]。研究表明黏連蛋白的核心亞基(STAG2、SMC1、SMC3和RAD21)及其關鍵調節因子(PDS5、NIPBL)在13%的初診AML患者、21%的繼發性AML患者中發生突變[8]。全基因組測序結果揭示AML患者存在黏連蛋白復合體突變現象,攜帶t(8;21)(q22;q22.1)染色體易位的AML表現出顯著的臨床與生物學異質性特征,導致約40%的AML患者疾病復發[9-11]。在唐氏綜合征相關急性巨核細胞白血病(acute"megakaryoblastic"leukemia"with"Down"syndrome,DS-AMKL)中,高達50%的患者檢測出黏連蛋白基因突變[12-13]。本文就黏連蛋白突變在AML發病中的作用機制、臨床意義研究進展作一綜述。
1""黏連蛋白的結構及生物學功能
黏連蛋白由SMC1、SMC3、RAD21、STAG1/2"""4個核心亞基組成。SMC1和SMC3各自折疊,分別形成反向平行的卷曲螺旋,其中具有鉸鏈結構域的一端緊密結合形成異二聚體;另一端通過球狀ATP酶的“頭部”與RAD21相連,形成黏連蛋白環狀結構[14]。SMC1與SMC3通過構建環狀結構緊密環繞姐妹染色單體,精密調控染色體的結構、拓撲學特性及姐妹染色單體間的黏連狀態[15-16]。STAG1與STAG2作為高度保守的黏連蛋白亞基,在促進黏連蛋白與DNA有效結合的過程中發揮不可或缺的作用。STAG1/2與黏連蛋白復合物其他核心亞基間存在功能上的相似性。敲除STAG1和STAG2的小鼠可迅速出現骨髓再生障礙和全血細胞減少癥[17]。
黏連蛋白還包括調節亞基,如NIPBL、MAU2、WAPL、PDS5A和PDS5B[18-20]。RAD21除在黏連蛋白環形成中發揮作用外,還可為其他調節亞基提供結合平臺。PDS5結合RAD21的N端部分,PDS5A和PDS5B蛋白表現出很強的序列保守性,且是互斥的黏連蛋白輔助亞基,在阻止黏連蛋白介導的環擠出中發揮作用。PDS5的翻譯后修飾可調節黏連蛋白的分解[21]。WAPL不僅通過RAD21的相互作用與粘連蛋白結合,還可與SMC3、PDS5和STAG1/2結合[22]。
2""黏連蛋白突變在AML預后中的意義
目前人們對黏連蛋白突變在AML預后中的意義仍存在爭議。核心亞基STAG2突變被認為是預測患者不良預后的關鍵生物標志物,此發現強調STAG2在腫瘤發生發展過程中發揮重要作用,并為臨床風險評估提供新視角。近期一項關于髓系惡性腫瘤黏連蛋白突變亞基特異性分析結果顯示,所有診斷為髓系惡性腫瘤患者的STAG2突變最常見;72.5%的攜帶黏連蛋白突變的AML患者中,存在核心亞基STAG2突變,且STAG2突變型AML患者的總生存期顯著低于STAG2野生型AML[23]。
然而,人們對黏連蛋白復合體其他成員突變在髓系腫瘤發展中的確切作用也存在爭議。目前對黏連蛋白復合體其他亞基在AML中的具體作用尚未得到充分驗證,如RAD21。一項回顧性隊列研究分析14例發生RAD21基因突變AML患者的基因組、形態學和免疫表型特征,觀察到RAD21突變與其他黏連蛋白復合體成員的突變是相互排斥的,這與既往研究結果一致[24-27]。關于RAD21突變在AML預后中的意義,Eckardt等[28]研究發現RAD21突變型AML患者與RAD21野生型AML患者的完全緩解率和總生存期等比較差異無統計學意義;該研究證實與野生型AML患者相比,SMC1A突變患者和SMC3突變患者的完全緩解率比較差異亦無統計學意義。然而,較低的SMC3蛋白水平與歐洲白血病網不良風險組別分類有顯著相關性[29]。
3""黏連蛋白突變在AML中的作用機制
3.1""造血干細胞/祖細胞自我更新能力增強及分化紊亂
在不同的造血細胞群及AML細胞系中,大量研究將造血分化和表型變化與染色質可及性的變化聯系起來。在早期造血和髓系分化中,造血干細胞/祖細胞的自我更新能力增強,而造血干細胞/祖細胞的分化則因黏連蛋白突變或缺失受損[30]。研究認為,STAG2的缺失可顯著影響AML及造血干細胞/祖細胞的染色質折疊模式、啟動子活性及基因表達調控機制。研究表明STAG2缺失的造血干細胞/祖細胞表現出與AML相似的轉錄失調水平[31]。下調STAG2的表達將導致原代人CD34+細胞中造血干細胞特異性基因增加[32]。在具有黏連蛋白突變的造血干細胞/祖細胞中,敲低造血干細胞/祖細胞調節因子ERG、GATA2或RUNX1可逆轉由黏連蛋白突變引起的分化阻滯[33]。
多梳抑制復合物(polycomb"repressive"complex,PRC)1和PRC2是促進轉錄基因沉默保守的表觀遺傳調節因子。研究表明黏連蛋白亞基RAD21突變可促進PRC2募集,上調PRC2靶基因HoxA7與HoxA9的表達水平,促進造血干細胞的自我更新[34]。研究揭示黏連蛋白調節亞基PDS5A是PRC1誘導基因沉默的新型調節因子[35]。黏連蛋白已被證明通過與組織特異性轉錄因子(如Etv6)相互作用,在誘導紅系分化中發揮作用。黏連蛋白的缺失導致被Etv6抑制的基因無法被激活,進而導致紅細胞分化異常[30]。由于SMC3單倍體不足,造血干細胞/祖細胞的自我更新能力增強,但SMC3與FLT3-ITD共同沉默可導致AML進展[36]。另有研究表明僅黏連蛋白的缺失不足以完全誘導AML,黏連蛋白雜合突變可能依賴與其他蛋白突變的協同作用引發AML。
3.2""黏連蛋白復合體突變對轉錄調控的影響
黏連蛋白與增強子或啟動子的相互作用可調控TAL1和ERG等特定造血轉錄因子的表達和功能。最新一項研究揭示STAG2和RUNX1在維系短程染色質相互作用和轉錄調控過程中存在獨特相互作用,導致骨髓增生異常綜合征[37]。在人白血病K562細胞系的RUNX1基因座內鑒定出保守調控元件/啟動子區域中存在黏連蛋白亞基,推斷黏連蛋白復合體的突變可通過影響增強子及其靶基因的活性狀態在AML發展進程中扮演關鍵角色。
4""粘連蛋白突變AML的治療靶點
既往研究證實,去甲基化藥物對攜帶STAG2或RAD21基因突變的骨髓增生異常綜合征患者有效,且對伴有SMC3基因突變的CD34+細胞有不同程度的抑制作用。研究發現溴結構域和超末端基序(bromodomain"and"extra-terminal"motif,BET)抑制劑JQ1可減少STAG2突變細胞中異常RUNX1和ERG的轉錄,并降低STAG2突變體的白血病干細胞特征[38]。攜帶黏連蛋白突變的成人AML患者過表達自我更新基因HoxA7/HoxA9,而2種類端粒沉默干擾體1(disruptor"of"telomeric"silencing"1-like,DOT1L)抑制劑EPZ-4777、EPZ-5676可阻斷RAD21或SMC3突變雜合子小鼠造血干細胞的異常自我更新,減少黏連蛋白突變細胞中HoxA7/HoxA9的異常表達[39]。在MLL基因重排急性淋巴細胞白血病中,DOT1L抑制劑被認為是一種潛在的治療策略。研究表明STAG2的丟失可導致結構域環的大小發生變化及基因組區室化發生改變。基因組變化導致基因表達改變,包括HoxA基因座的失調,導致疾病進展。基因組結構的改變還可導致絲裂原活化蛋白激酶信號通路發生改變,這可能是治療STAG2突變AML的策略之一。多聚ADP核糖聚合酶(poly"ADP"ribose"polymerase,PARP)家族成員參與多個生物學過程,特別是DNA損傷反應。STAG2突變可促進AML的高水平DNA損傷,增加對PARP抑制劑的敏感度,這在體外和體內研究中均得到證實。黏連蛋白復合體的另外2個成員SMC1和RAD21發生失活突變時,U937和K562細胞表現出與STAG2突變細胞相似的對PARP抑制劑的反應特性[8]。
5""小結
通過遺傳篩選技術,人們首次在酵母中發現黏連蛋白復合體亞基結構。自此人們在揭示黏連蛋白復合體塑造基因組結構、調控基因表達及維護基因組完整性方面取得長足進展。目前證據表明AML中觀察到的黏連蛋白突變可導致干細胞樣表型變化、造血分化受損和疾病進展。黏連蛋白復合體在AML及其他血液系統惡性腫瘤中的突變頻率較高,預示其作為潛在治療靶點的廣闊前景。但對黏連蛋白突變如何觸發一系列下游效應、這些效應中哪些是關鍵性驅動腫瘤轉化的因素仍是亟待解決的科學問題。因此,深入探索粘連蛋白突變的疾病轉化機制并尋求更有效的治療策略是當前研究的迫切需求。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] POLLYEA"D"A,"ALTMAN"J"K,"ASSI"R,"et"al."Acute"myeloid"leukemia,"version"3."2023,"NCCN"clinical"practice"guidelines"in"oncology[J]."J"Natl"Compr"Canc"Netw,"2023,"21(5):"503–513.
[2] SHIMONY"S,"STAHL"M,"STONE"R"M."Acute"myeloid"leukemia:"2023"update"on"diagnosis,"risk-stratification,"and"management[J]."Am"J"Hematol,"2023,"98(3):"502–526.
[3] SASAKI"K,"RAVANDI"F,"KADIA"T"M,"et"al."De"novo"acute"myeloid"leukemia:"A"population-based"study"of"outcome"in"the"United"States"based"on"the"surveillance,"epidemiology,"and"end"results"(SEER)"database,"1980"to"2017[J]."Cancer,"2021,"127(12):"2049–2061.
[4] NEWELL"L"F,"COOK"R"J."Advances"in"acute"myeloid"leukemia[J]."BMJ,"2021,"375:"n2026.
[5] DI"NARDO"M,"PALLOTTA"M"M,"MUSIO"A."The"multifaceted"roles"of"cohesin"in"cancer[J]."J"Exp"Clin"Cancer"Res,"2022,"41(1):"96.
[6] JANN"J"C,"TOTHOVA"Z."Cohesin"mutations"in"myeloid"malignancies[J]."Blood,"2021,"138(8):"649–661.
[7] ANTONY"J,"CHIN"C"V,"HORSFIELD"J"A."Cohesin"mutations"in"cancer:"Emerging"therapeutic"targets[J]."Int"J"Mol"Sci,"2021,"22(13):"6788.
[8] TOTHOVA"Z,"VALTON"A"L,"GORELOV"R"A,"et"al."Cohesin"mutations"alter"DNA"damage"repair"and"chromatin"structure"and"create"therapeutic"vulnerabilities"in"MDS/AML[J]."JCI"Insight,"2021,"6(3):"e142149.
[9] JAHN"N,"TERZER"T,"STR?NG"E,"et"al."Genomic"heterogeneity"in"core-binding"factor"acute"myeloid"leukemia"and"its"clinical"implication[J]."Blood"Adv,"2020,"4(24):"6342–6352.
[10] QIN"W,"CHEN"X,"SHEN"H"J,"et"al."Comprehensive"mutation"profile"in"acute"myeloid"leukemia"patients"with"RUNX1-RUNX1T1"or"CBFB-MYH11"fusions[J]."Turk"J"Haematol,"2022,"39(2):"84–93.
[11] CHRISTEN"F,"HOYER"K,"YOSHIDA"K,"et"al."Genomic"landscape"and"clonal"evolution"of"acute"myeloid"leukemia"with"t(8;21):"An"international"study"on"331"patients[J]."Blood,"2019,"133(10):"1140–1151.
[12] BARWE"S"P,"SEBASTIAN"A,"SIDHU"I,"et"al."Modeling"down"syndrome"myeloid"leukemia"by"sequential"introduction"of"GATA1"and"STAG2"mutations"in"induced"pluripotent"stem"cells"with"trisomy"21[J]."Cells,"2022,"11(4):"628.
[13] DE"CASTRO"C"P"M,"CADEFAU"M,"CUARTERO"S."The"mutational"landscape"of"myeloid"leukaemia"in"down"syndrome[J]."Cancers"(Basel),"2021,"13(16):"4144.
[14] RITTENHOUSE"N"L,"DOWEN"J"M."Cohesin"regulation"and"roles"in"chromosome"structure"and"function[J]."Curr"Opin"Genet"Dev,nbsp;2024,"85:"102159.
[15] COLLIER"J"E,"NASMYTH"K"A."DNA"passes"through"cohesin’s"hinge"as"well"as"its"Smc3-kleisin"interface[J]."Elife,"2022,"11:"e80310.
[16] HASEEB"M"A,"WENG"K"A,"BICKEL"S"E."Chromatin-"associated"cohesin"turns"over"extensively"and"forms"new"cohesive"linkages"in"Drosophila"oocytes"during"meiotic"prophase[J]."Curr"Biol,"2024,"34(13):"2868–2879.
[17] VINY"A"D,"BOWMAN"R"L,"LIU"Y,"et"al."Cohesin"members"STAG1"and"STAG2"display"distinct"roles"in"chromatin"accessibility"and"topological"control"of"HSC"self-renewal"and"differentiation[J]."Cell"Stem"Cell,"2019,"25(5):"682–696.
[18] LOSADA"A."Cohesin"innbsp;cancer:"Chromosome"segregation"and"beyond[J]."Nat"Rev"Cancer,"2014,"14(6):"389–393.
[19] LITWIN"I,"WYSOCKI"R."New"insights"into"cohesin"loading[J]."Curr"Genet,"2018,"64(1):"53–61.
[20] DAUBAN"L,"MONTAGNE"R,"THIERRY"A,"et"al."Regulation"of"cohesin-mediated"chromosome"folding"by"Eco1"and"other"partners[J]."Mol"Cell,"2020,"77(6):"1279–1293.
[21] PSAKHYE"I,"BRANZEI"D."SMC"complexes"are"guarded"by"the"SUMO"protease"Ulp2"against"SUMO-chain-"mediated"turnover[J]."Cell"Rep,"2021,"36(5):"109485.
[22] YUAN"X,"YAN"L,"CHEN"Q,"et"al."Molecular"mechanism"and"functional"significance"of"Wapl"interaction"with"the"cohesin"complex[J]."Proc"Natl"Acad"Sci"U"S"A,"2024,"121(33):"e2405177121.
[23] JANN"J"C,"HERGOTT"C"B,"WINKLER"M,"et"al."Subunit-specific"analysis"of"cohesin-mutant"myeloid"malignancies"reveals"distinct"ontogeny"and"outcomes[J]."Leukemia,"2024,"38(9):"1992–2002.
[24] LACZKO"D,"POVEDA-ROGERS"C,"MATTHEWS"A"H,"et"al."RAD21"mutations"in"acute"myeloid"leukemia[J]."Leuk"Lymphoma,"2024,"65(7):"958–964.
[25] KON"A,"SHIH"L"Y,"MINAMINO"M,"et"al."Recurrent"mutations"in"multiple"components"of"the"cohesin"complex"in"myeloid"neoplasms[J]."Nat"Genet,"2013,"45(10):"1232–1237.
[26] THOL"F,"BOLLIN"R,"GEHLHAAR"M,"et"al."Mutations"in"the"cohesin"complex"in"acute"myeloid"leukemia:"Clinical"and"prognostic"implications[J]."Blood,"2014,"123(6):"914–920.
[27] HAN"C,"GAO"X,"LI"Y,"et"al."Characteristics"of"cohesin"mutation"in"acute"myeloid"leukemia"and"its"clinical"significance[J]."Front"Oncol,"2021,"11:"579881.
[28] ECKARDT"J"N,"STASIK"S,"R?LLIG"C,"et"al."Alterations"of"cohesin"complex"genes"in"acute"myeloid"leukemia:"Differential"co-mutations,"clinical"presentation"and"impact"on"outcome[J]."Blood"Cancer"J,"2023,"13(1):"18.
[29] KRAFT"B,"LOMBARD"J,"KIRSCH"M,"et"al."SMC3"protein"levels"impact"on"karyotype"and"outcome"in"acute"myeloid"leukemia[J]."Leukemia,"2019,"33(3):"795–799.
[30] SASCA"D,"YUN"H,"GIOTOPOULOS"G,"et"al."Cohesin-dependent"regulation"of"gene"expression"during"differentiation"is"lost"in"cohesin-mutated"myeloid"malignancies[J]."Blood,"2019,"134(24):"2195–2208.
[31] FISCHER"A,"HERNáNDEZ-RODRíGUEZ"B,"MULET-"LAZARO"R,"et"al."STAG2"mutations"reshape"the"cohesin-structured"spatial"chromatin"architecture"to"drive"gene"regulation"in"acute"myeloid"leukemia[J]."Cell"Rep,"2024,"43(8):"114498.
[32] GALEEV"R,"BAUDET"A,"KUMAR"P,"et"al."Genome-"wide"RNAi"screen"identifies"cohesin"genes"as"modifiers"of"renewal"and"differentiation"in"human"HSCs[J]."Cell"Rep,"2016,"14(12):"2988–3000.
[33] MAZUMDAR"C,"SHEN"Y,"XAVY"S,"et"al."Leukemia-"associated"cohesin"mutants"dominantly"enforce"stem"cell"programs"and"impair"human"hematopoietic"progenitor"differentiation[J]."Cell"Stem"Cell,"2015,"17(6):"675–688.
[34] FISHER"J"B,"PETERSON"J,"REIMER"M,"et"al."The"cohesin"subunit"Rad21"is"a"negative"regulator"of"hematopoietic"self-renewal"through"epigenetic"repression"of"HoxA7"and"HoxA9[J]."Leukemia,"2017,"31(3):"712–719.
[35] BSTEH"D,"MOUSSA"H"F,"MICHLITS"G,"et"al."Loss"of"cohesin"regulator"PDS5A"reveals"repressive"role"of"polycomb"loops[J]."Nat"Commun,"2023,"14(1):"8160.
[36] VINY"A"D,"OTT"C"J,"SPITZER"B,"et"al."Dose-dependent"role"of"the"cohesin"complex"in"normal"and"malignant"hematopoiesis[J]."J"Exp"Med,"2015,"212(11):"1819–1832.
[37] OCHI"Y,"KON"A,"SAKATA"T,"et"al."Combined"cohesin-"RUNX1"deficiency"synergistically"perturbs"chromatin"looping"and"causes"myelodysplastic"syndromes[J]."Cancer"Discov,"2020,"10(6):"836–853.
[38] ANTONY"J,"GIMENEZ"G,"TAYLOR"T,"et"al."BET"inhibition"prevents"aberrant"RUNX1"and"ERG"transcription"in"STAG2"mutant"leukaemia"cells[J]."J"Mol"Cell"Biol,"2020,"12(5):"397–399.
[39] HEIMBRUCH"K"E,"FISHER"J"B,"STELLOH"C"T,"et"al."DOT1L"inhibitors"block"abnormal"self-renewal"induced"by"cohesin"loss[J]."Sci"Rep,"2021,"11(1):"7288.
(收稿日期:2024–10–28)
(修回日期:2024–12–15)

(上接第98頁)
[17] MENG"K,"XIN"Y,"TAN"Z,"et"al."Key"points"of"surgical"anatomy"for"endoscopic"thyroidectomy"via"a"gasless"unilateral"axillary"approach[J]."Langenbecks"Arch"Surg,"2024,"409(1):"294.
[18] LI"X,"DING"W,"ZHANG"H."Surgical"outcomes"of"endoscopic"thyroidectomy"approaches"for"thyroid"cancer:"A"systematic"review"and"network"Meta-analysis[J]."Front"Endocrinol"(Lausanne),"2023,"14:"1256209.
[19] LIU"C,"HUANG"T,"WU"C"W,"et"al."New"developments"in"anterior"laryngeal"recording"technique"during"neuro-"monitored"thyroid"and"parathyroid"surgery[J]."Front"Endocrinol"(Lausanne),"2021,"12:"763170.
[20] WU"C"W,"RANDOLPH"G"W,"LU"I"C,"et"al."Intraoperative"neural"monitoring"in"thyroid"surgery:"Lessons"learned"from"animal"studies[J]."Gland"Surg,"2016,"5(5):"473–480.
[21] VELAYUTHAM"P,"THIAGARAJAN"S,"DHAR"H,"et"al."A"nationwide"survey"to"assess"the"practices"and"patterns"of"use"of"intraoperative"nerve"monitoring"during"thyroid"surgery"among"surgeons"in"india[J]."Indian"J"Surg"Oncol,"2024,"15(1):"18–24.
(收稿日期:2024–11–09)
(修回日期:2024–12–10)