
摘要:肝衰竭是常見的嚴(yán)重肝病綜合征,病死率高。腸道屏障作為一個(gè)整體,其功能和結(jié)構(gòu)的完整性與肝衰竭發(fā)生發(fā)展密切相關(guān)。環(huán)鳥苷酸-腺苷酸合酶(cGAS)-干擾素基因刺激因子(STING)信號(hào)通路通過識(shí)別病原體入侵及宿主自身細(xì)胞損傷產(chǎn)生的DNA,誘導(dǎo)Ⅰ型干擾素的產(chǎn)生,參與先天免疫反應(yīng)。大量研究表明,cGAS-STING通路的激活對(duì)腸道屏障的細(xì)胞結(jié)構(gòu)、黏膜成分及共生菌群均能產(chǎn)生影響。本文概述了cGAS-STING信號(hào)通路與肝衰竭腸道屏障損傷之間的關(guān)系,希望為臨床肝衰竭的治療提供新思路。
關(guān)鍵詞:肝功能衰竭;胃腸道微生物組;信號(hào)通路
基金項(xiàng)目:“十三五”國(guó)家科技重大專項(xiàng)課題(2018ZX10725-505-001-010);國(guó)家自然科學(xué)基金青年項(xiàng)目(82305067)
Association between intestinal barrier disruption in liver failure and the cGAS-STING signaling pathway
TANG Qiao 1,2 ,ZHOU Chao 1 ,ZHANG Ning 1 ,GONG Man 1
1. Department of Traditional Chinese Medicine Liver Disease,The Fifth Medical Center of Chinese PLA General Hospital,Beijing100039,China;2. School of Traditional Chinese Medicine,Southern Medical University,Guangzhou 510515,China
Corresponding author:GONG Man,gongman302@ 163.com (ORCID:0000-0003-2716-4331)
Abstract:Liver failure is a common severe syndrome of liver diseases with high mortality. The function and structural integrity of the intestinal barrier as an entity are closely associated with the development and progression of liver failure. The cGAS-STING signaling pathway can participate in innate immune response by recognizing DNA produced by pathogen invasion and host cell damage and inducing the production of type I interferon. Numerous studies have shown that activation of the cGAS-STING pathway can significantly impact the cellular structure,mucosal components,and commensal bacteria of the intestinal barrier. This article reviews the interplay between the cGAS-STING signaling pathway and intestinal barrier disruption in liver failure,in order to provide novel insights for the clinical management of liver failure.
Key words:Liver Failure;Gastrointestinal Microbiome;Signaling Pathway
Research funding:Major National Science and Technology Projects in the 13th Five-Year Plan (2018ZX10725-505-001-010);Natural Science Foundation for the Youth of China (82305067)
肝衰竭是多種因素引起的嚴(yán)重肝損傷,導(dǎo)致合成、解毒、代謝和生物轉(zhuǎn)化功能嚴(yán)重障礙或失代償,出現(xiàn)以黃疸、凝血功能障礙、肝腎綜合征、肝性腦病、腹水等為主要表現(xiàn)的一組臨床綜合征[1-2]。疾病進(jìn)展迅猛,短期病死率高,且臨床上尚缺乏特效內(nèi)科治療手段。肝臟與腸道、腸道菌群之間通過“肝-腸軸”相互影響,腸道屏障結(jié)構(gòu)與功能的破壞對(duì)肝衰竭患者的生存率與并發(fā)癥的發(fā)生都具有巨大的影響[3]。肝衰竭的發(fā)病機(jī)制與免疫損傷相關(guān)[4],環(huán)鳥苷酸-腺苷酸合酶(cyclic guanosine monophosphate-adenosine monophosphate synthase,cGAS)-干擾素基因刺激因子(stimulator of interferon gene,STING)信號(hào)通路能夠監(jiān)測(cè)由病原體入侵及自身細(xì)胞損傷產(chǎn)生的 DNA,調(diào)節(jié)Ⅰ型干擾素(IFN-Ⅰ)、IL-6及腫瘤壞死因子(TNF)α的產(chǎn)生,參與固有免疫[5]。cGAS-STING通路及腸道屏障完整性存在密切聯(lián)系,且兩者間相互作用可能與肝衰竭發(fā)生機(jī)制相關(guān)。
1 腸道屏障與肝衰竭
1.1 腸道屏障概述
宿主與腸道菌群的共同進(jìn)化造就了具有高度特異性的腸道黏膜,在消化、吸收食物營(yíng)養(yǎng)的同時(shí),維持腸道內(nèi)多種微生物的和平共棲,是宿主面對(duì)外來病原體及有害物質(zhì)的第一道屏障[6],其在保證營(yíng)養(yǎng)物質(zhì)順利代謝的同時(shí),也限制了病原體的入侵或擴(kuò)散。因此,腸黏膜的各種化學(xué)、物理及生物成分又被稱為腸道屏障。腸道屏障最外層是由黏液層、腸道共生菌群以及一些與防御功能相關(guān)的蛋白,如抗菌肽(antimicrobial peptide,AMP)及免疫球蛋白A(IgA)等組成;中間的一層包括腸上皮細(xì)胞;最里面一層則是由各種免疫細(xì)胞構(gòu)成[7],其組成結(jié)構(gòu)見圖1。
1.1.1 腸道黏液層、IgA及AMP 腸黏膜上皮細(xì)胞分泌的黏液與腸道寄生菌產(chǎn)生的抑菌物質(zhì)AMP共同構(gòu)成化學(xué)屏障。黏液層是腸道宿主免疫的首道防線,黏蛋白(mucins,MUC)是黏液層的主要組成部分,為糖蛋白類,含有高達(dá)80%的碳水化合物,以密集的0-鏈低聚糖的形式排列存在,分為跨膜黏蛋白和凝膠形成黏蛋白,前者主要包括MUC1/3/4/12/13/15/17/20/21,由腸細(xì)胞合成分泌;后者代表種類則包括MUC2/5B/6等,由杯狀細(xì)胞負(fù)責(zé)合成及分泌[8]。
腸道上皮細(xì)胞分泌的各種AMP同樣是腸道屏障外層的重要組成部分,AMP的合成及分泌受多重因素影響調(diào)控,一些AMP需要通過細(xì)菌信號(hào)激活相關(guān)信號(hào)通路后刺激其分泌,另一些AMP受宿主免疫功能影響,不需要細(xì)菌激活即可分泌[9]。
1.1.2 腸道菌群 腸道微生態(tài)環(huán)境中既存在有益菌,也存在著潛在致病菌。正常情況下,它們之間相互制約,維持著動(dòng)態(tài)平衡。物理、免疫以及微生物(包括細(xì)菌、真菌、病毒、古細(xì)菌等)組成的腸道屏障阻擋了腸道內(nèi)致病菌向腸道外擴(kuò)散與易位[3]。腸道共生菌可以通過與潛在致病菌競(jìng)爭(zhēng)營(yíng)養(yǎng)與生長(zhǎng)空間產(chǎn)生定植抗性[10],直接限制潛在致病菌的生長(zhǎng)與易位。除此以外,腸道共生菌還能通過提供持續(xù)的低強(qiáng)度的免疫刺激,促進(jìn)黏蛋白、IgA及AMP的產(chǎn)生,部分共生菌還能夠通過代謝產(chǎn)生短鏈脂肪酸,為腸細(xì)胞更新提供所必需的營(yíng)養(yǎng),有助于腸道屏障結(jié)構(gòu)與功能的維持[11]。
1.1.3 腸上皮細(xì)胞及其連接結(jié)構(gòu) 腸上皮細(xì)胞包括5種不同的類型:腸細(xì)胞、杯狀細(xì)胞、腸內(nèi)分泌細(xì)胞、潘氏細(xì)胞及微皺褶細(xì)胞,它們一起構(gòu)成腸道上皮細(xì)胞屏障[12]。
腸上皮細(xì)胞間存在緊密連接(tight junction,TJ),TJ是由完整的膜蛋白,包括閉鎖蛋白、胞質(zhì)附著蛋白、連接黏附分子和閉鎖小帶蛋白-1(zonula occluden-1,ZO-1)組成的多蛋白復(fù)合物與肌動(dòng)蛋白細(xì)胞骨架構(gòu)成,緊密連接的破壞會(huì)導(dǎo)致腸屏障受損,腸道通透性增加,導(dǎo)致細(xì)菌易位的發(fā)生。除TJ以外,腸上皮細(xì)胞之間還通過黏著小帶、細(xì)胞橋粒、間隙連接等結(jié)構(gòu)進(jìn)行連接及信號(hào)傳遞[13]。
1.1.4 腸道免疫細(xì)胞
腸道正常免疫功能主要是依靠腸道內(nèi)各種固有及適應(yīng)性免疫細(xì)胞如巨噬細(xì)胞、DC及各種淋巴細(xì)胞包括B淋巴細(xì)胞、T淋巴細(xì)胞、非傳統(tǒng)T淋巴細(xì)胞、上皮內(nèi)淋巴細(xì)胞維持[14]。
1.1.4.1 巨噬細(xì)胞 巨噬細(xì)胞是正常人群腸道固有層中最常見的白細(xì)胞[14],可分為上皮下巨噬細(xì)胞、血管相關(guān)巨噬細(xì)胞及腸神經(jīng)元相關(guān)巨噬細(xì)胞。功能主要包括吞噬和降解病原微生物及壞死細(xì)胞,促進(jìn)腸道上皮細(xì)胞更新,還能夠促進(jìn)IL-10的產(chǎn)生,防止炎癥反應(yīng)的同時(shí)輔助維持腸道中FOXP3 + 調(diào)節(jié)性T淋巴細(xì)胞功能。腸神經(jīng)元相關(guān)巨噬細(xì)胞能夠通過調(diào)節(jié)前列腺素E2旁分泌影響腸道收縮性[15]。
1.1.4.2 DC DC 主要分布于腸道固有層或腸道組織相關(guān)淋巴組織中,根據(jù)是否表達(dá)溶菌酶及CD11b可分為不同亞群,DC在感知病原體后,能夠通過調(diào)節(jié)IL-17及IL-22 的產(chǎn)生防止系統(tǒng)性炎癥反應(yīng),增強(qiáng)腸道免疫屏障[16]。還能夠?qū)淋巴細(xì)胞分泌的IgA進(jìn)行調(diào)節(jié)[17]。
1.1.4.3 B淋巴細(xì)胞 腸道中的B淋巴細(xì)胞根據(jù)所處部位及功能不同分為兩個(gè)細(xì)胞系,位于腸道相關(guān)淋巴組織的B淋巴細(xì)胞能夠表達(dá)CD20;而位于固有層的B淋巴細(xì)胞則大多數(shù)不表達(dá) CD20,是 CD19 + 漿細(xì)胞的前體,或CD19 +/? 漿細(xì)胞本身[18]。短鏈脂肪酸能夠通過補(bǔ)充乙酰輔酶A池,促進(jìn)線粒體能量產(chǎn)生及糖酵解過程影響B(tài)淋巴細(xì)胞分化以及分泌型IgA(secretory IgA,sIgA)水平[19]。
1.1.4.4 T淋巴細(xì)胞 腸道固有層中還包含部分CD8 + T淋巴細(xì)胞及CD4 + T淋巴細(xì)胞,它們均由傳統(tǒng)T淋巴細(xì)胞分化而來,主要發(fā)揮記憶T淋巴細(xì)胞效應(yīng)[14]。相關(guān)研究還指出,T淋巴細(xì)胞與上皮細(xì)胞的相互作用能夠?qū)δc道屏障起到雙向調(diào)節(jié)作用,T淋巴細(xì)胞可通過影響TJ的組成及上皮細(xì)胞的形態(tài)改變腸道穩(wěn)態(tài)免疫特性[20]。
除傳統(tǒng)T淋巴細(xì)胞外,近年來還鑒定出了一些具有獨(dú)特抗原識(shí)別系統(tǒng)的非傳統(tǒng)T淋巴細(xì)胞亞群,包括先天淋巴細(xì)胞(innate lymphoid cells,ILC)、不變NKT淋巴細(xì)胞等[21]。ILC分為 ILC1、ILC2及 ILC3 3個(gè)亞型,在腸道淋巴結(jié)中,腸道菌群可以通過調(diào)節(jié)成纖維網(wǎng)狀細(xì)胞分泌IL-15 影響 ILC1 數(shù)量[22];相關(guān)研究發(fā)現(xiàn),ILC2 分泌的IL-13能夠促進(jìn)腸道杯狀細(xì)胞的分化[23];ILC3能夠通過產(chǎn)生IL-22調(diào)節(jié)AMP的產(chǎn)生發(fā)揮抗菌作用[24]。
不變NKT淋巴細(xì)胞又被稱為黏膜相關(guān)不變T淋巴細(xì)胞,在抵抗特定種類致病菌如膿腫分枝桿菌、大腸桿菌等入侵的過程中發(fā)揮重要作用,但需要核黃素激活,因此對(duì)于不合成核黃素的細(xì)菌無法起到直接殺傷作用[25]。
1.1.4.5 上皮內(nèi)淋巴細(xì)胞 腸道上皮組織中存在大量發(fā)揮免疫功能的淋巴細(xì)胞,這部分細(xì)胞稱為上皮內(nèi)淋巴細(xì)胞[26],,分為兩種亞型,分別為A型(包括CD8αβ + TCRαβ +及CD4 + TCRαβ + 上皮內(nèi)淋巴細(xì)胞)和B型(CD8αα + TCRαβ +及CD8αα + TCRγδ + 上皮內(nèi)淋巴細(xì)胞)[27]。A型上皮內(nèi)淋巴細(xì)胞可以表達(dá)抗菌因子,如Defa1,Lypd8和Reg3g直接發(fā)揮抗菌作用[28];分布于結(jié)腸的B型上皮內(nèi)淋巴細(xì)胞可以通過產(chǎn)生促炎細(xì)胞因子,以防止致病菌、共生菌穿過固有層,轉(zhuǎn)移至腸系膜淋巴結(jié)[29]。
1.1.4.6 免疫物質(zhì) 人體每日分泌3 g左右的sIgA進(jìn)入腸道幫助保護(hù)腸道黏膜完整,病原體入侵后腸道sIgA水平迅速升高[30]。25%~75%的sIgA與共生菌結(jié)合,對(duì)于腸道菌群譜的塑造也起著重要的作用。
1.2 腸道屏障功能異常參與肝衰竭的發(fā)生
1.2.1 腸道菌群易位與肝衰竭 在肝衰竭患者中,由于微生態(tài)環(huán)境被破壞,腸道黏膜受損,腸道通透性增加,條件致病菌在腸道內(nèi)快速繁殖,原本定植于腸道的菌群可以易位至身體其他部位,發(fā)生細(xì)菌易位[31]。腸道定植菌的易位與肝衰竭患者感染的發(fā)生有著密不可分的關(guān)系,可以導(dǎo)致自發(fā)性細(xì)菌性腹膜炎等并發(fā)癥,極大地降低肝衰竭患者生存率[32],其與系統(tǒng)性炎癥反應(yīng)、內(nèi)毒素血癥的發(fā)生也高度相關(guān)。
除了細(xì)菌易位以外,肝衰竭患者普遍存在腸道菌群結(jié)構(gòu)的改變。相關(guān)研究顯示,肝衰竭患者腸道潛在的致病菌豐度增加,而有益菌生長(zhǎng)受到限制[33]。一項(xiàng)納入了181例住院患者的研究發(fā)現(xiàn),潛在致病菌變形桿菌豐度增高是肝衰竭、肝外器官衰竭的獨(dú)立危險(xiǎn)因素[34]。變形桿菌家族代表性成員包括導(dǎo)致肝衰竭患者發(fā)生感染的主要致病菌,如大腸桿菌、肺炎克雷伯菌等[35]。
1.2.2 其他方面的腸道屏障異常與肝衰竭的關(guān)系 肝衰竭時(shí)常伴隨腸道物理及化學(xué)屏障的改變,表現(xiàn)為相鄰腸細(xì)胞距離擴(kuò)張,腸絨毛受損、變短,腸黏膜萎縮,炎癥細(xì)胞滲透固有肌層。腸道物理屏障破壞可導(dǎo)致AMP及sIgA分泌減少。
肝衰竭時(shí)腸道免疫屏障同樣也發(fā)生改變,終末期肝病常出現(xiàn)腸道固有層活躍T淋巴細(xì)胞、單核細(xì)胞及DC比例升高,同時(shí)伴B淋巴細(xì)胞、T淋巴細(xì)胞功能障礙及促炎細(xì)胞因子大量分泌[36]。
2 cGAS-STING 信號(hào)通路與肝衰竭
2.1 cGAS-STING信號(hào)通路概述 cGAS屬于核苷酸轉(zhuǎn)移酶家族,能夠?qū)?xì)菌或病毒入侵機(jī)體時(shí)產(chǎn)生代謝產(chǎn)物雙鏈DNA及細(xì)胞受損或壞死釋放的DNA進(jìn)行監(jiān)控,被激活后啟動(dòng)宿主防御機(jī)制[37],合成第二信使,從而激活位于內(nèi)質(zhì)網(wǎng)上的STING,轉(zhuǎn)移至高爾基體上。在這一過程中,STING募集并激活TANK結(jié)合激酶1,進(jìn)一步促進(jìn)干擾素調(diào)節(jié)因子3的磷酸化以及入核。誘導(dǎo)IFN-I的產(chǎn)生分泌。此外,cGAS-STING信號(hào)通路激活后還能進(jìn)一步誘導(dǎo)NF-κB信號(hào)通路的活化,通過以上途徑,使促炎因子(如IL-6和TNF-α)的產(chǎn)生增加[38],放大炎癥反應(yīng),甚至形成細(xì)胞因子風(fēng)暴,導(dǎo)致細(xì)胞大量死亡,組織嚴(yán)重?fù)p傷。
2.2 cGAS-STING信號(hào)通路與肝衰竭的相關(guān)研究 抑制cGAS-STING 通路能夠通過介導(dǎo)自噬從而改善肝臟炎癥,是肝臟疾病治療的具有潛力的重要靶標(biāo)[39]。目前研究表明,乙醇、藥物及膿毒血癥等因素導(dǎo)致的肝損傷中均能觀察到cGAS-STING通路的激活。
Luther等[40]發(fā)現(xiàn)乙醇導(dǎo)致肝損傷會(huì)導(dǎo)致cGAS-STING通路激活,患者肝組織cGAS-STING通路相關(guān)mRNA表達(dá)水平較正常人群顯著升高,且與疾病炎癥程度相關(guān),進(jìn)一步研究發(fā)現(xiàn),敲除小鼠cGAS基因能夠抑制小鼠肝損傷;敲除肝縫隙連接相關(guān)基因 Cx32 能夠限制 2,3-cGAMP 合成,從而進(jìn)一步阻斷 STING 通路下游信號(hào)傳導(dǎo),達(dá)到減輕肝細(xì)胞損傷及炎癥的目的,為酒精性肝病的治療提供了新的思路。
除乙醇以外,藥物也是引發(fā)肝損傷的一大因素。張浩[41]通過HBV慢性復(fù)制結(jié)合對(duì)乙酰氨基酚誘導(dǎo)急性肝損傷的方式,構(gòu)建了慢加急性肝衰竭小鼠模型。造模成功后檢測(cè)cGAS-STING通路相關(guān)蛋白及自噬標(biāo)記蛋白,發(fā)現(xiàn)cGAS-STING通路蛋白及自噬標(biāo)記蛋白的表達(dá)水平均顯著上升,后續(xù)通過流式細(xì)胞術(shù)分析巨噬細(xì)胞極化情況,發(fā)現(xiàn)肝衰竭小鼠巨噬細(xì)胞向M1促炎表型極化,提示cGAS-STING通路還可以通過介導(dǎo)自噬以及巨噬細(xì)胞極化對(duì)肝損傷的發(fā)病產(chǎn)生影響。
膿毒癥是導(dǎo)致肝損傷的另一大原因。Yu等[42]使用常春藤皂苷元成功抑制cGAS-STING通路及下游的NF-κB信號(hào)通路,發(fā)現(xiàn)抑制cGAS-STING通路對(duì)脂多糖誘導(dǎo)的膿毒癥相關(guān)肝損傷具有較好的治療效果。
以上研究表明,不同情況引起的肝損傷均可以導(dǎo)致cGAS-STING通路的激活,cGAS-STING信號(hào)通路在肝衰竭的發(fā)展中起到了重要的作用,作為新的分子靶標(biāo),可以為肝衰竭的治療提供新的策略。
3 cGAS-STING 信號(hào)通路與腸道屏障
3.1 cGAS-STING 信號(hào)通路與MUC 相關(guān)研究發(fā)現(xiàn),與野生型小鼠相比,STING敲除小鼠MUC1、MUC2含量下降,負(fù)責(zé)分泌MUC1、MUC2的杯狀細(xì)胞數(shù)量也減少[43]。這一結(jié)果表明,抑制cGAS-STING通路會(huì)對(duì)腸道MUC的合成與分泌產(chǎn)生影響。
3.2 cGAS-STING 信號(hào)通路與腸道菌群 cGAS能夠通過對(duì)入侵病原體的監(jiān)控調(diào)節(jié)下游IFN-Ⅰ的釋放,IFN-Ⅰ具有調(diào)節(jié)免疫、抗增殖以及抗病毒的作用,同時(shí)也對(duì)腸道菌群具有調(diào)節(jié)作用。當(dāng)腸道發(fā)生致病菌如李斯特菌感染時(shí),STING敲除小鼠的細(xì)菌載量及體質(zhì)量減輕程度均高于野生型小鼠,提示cGAS-STING通路在致病菌感染時(shí)被激活,起到了監(jiān)測(cè)腸道致病菌感染的重要作用[44]。Canesso等[43]發(fā)現(xiàn),STING敲除小鼠表現(xiàn)出腸道黏膜保護(hù)功能減退,腸道微生物譜向著更易發(fā)生炎癥的方向轉(zhuǎn)變,有益菌如雙歧桿菌少,同時(shí)與野生型小鼠相比,更易發(fā)生傷寒沙門菌的感染。另一項(xiàng)關(guān)于非酒精性脂肪性肝病的研究也證實(shí)了STING敲除對(duì)小鼠腸道菌群的影響,STING敲除的小鼠,無論是否使用高脂飲食進(jìn)行喂養(yǎng),都會(huì)出現(xiàn)腸道益生菌如乳桿菌的相對(duì)豐度降低,同時(shí)其菌群多樣性及豐富度也顯著降低[45]。以上研究均提示,cGAS-STING信號(hào)通路的正常激活對(duì)正常腸道微生物譜的具有保護(hù)作用,STING的缺乏或被抑制會(huì)導(dǎo)致炎癥反應(yīng)增強(qiáng),導(dǎo)致腸道屏障受損。
3.3 cGAS-STING 信號(hào)通路與腸上皮細(xì)胞及TJ 研究報(bào)道,在多種疾病中,不受程序調(diào)控的上皮細(xì)胞死亡或損傷作為損傷相關(guān)的分子模式活化 cGAS-STING信號(hào)通路,使腸道屏障完整性受到破壞。相關(guān)研究發(fā)現(xiàn),線粒體DNA能夠激活cGAS-STING信號(hào)通路,導(dǎo)致下游IFN及TNF-α產(chǎn)生增加,引起腸上皮細(xì)胞凋亡[46]。TNF-α是cGAS-STING信號(hào)通路以及NF-κB信號(hào)通路活化產(chǎn)生的重要促炎因子之一,TNF-α通過與腸上皮細(xì)胞上表達(dá)的TNF-α受體2結(jié)合,可使肌球輕鏈激酶表達(dá)上調(diào),導(dǎo)致細(xì)胞骨架收縮和中斷,抑制ZO-1、occludin的表達(dá),使得黏液層遭到破壞[47]。TJ結(jié)構(gòu)發(fā)生改變,造成細(xì)菌易位。相關(guān)研究表明,膿毒癥導(dǎo)致的腸道屏障損傷患者其外周血單核細(xì)胞及腸道固有層均檢測(cè)到STING表達(dá)水平上升,且與患者腸道炎癥程度密切相關(guān),提示膿毒癥腸道屏障損傷可能與STING信號(hào)通路激活導(dǎo)致腸上皮細(xì)胞凋亡相關(guān),除此以外,該研究還發(fā)現(xiàn),與模型組比較,STING敲除小鼠TJ蛋白表達(dá)水平上調(diào),TJ結(jié)構(gòu)也明顯改善,說明過度激活的cGAS-STING信號(hào)通路導(dǎo)致TJ受損、腸道通透性增加[48],增加細(xì)菌易位的風(fēng)險(xiǎn)。
3.4 cGAS-STING信號(hào)通路與腸道免疫細(xì)胞 相關(guān)研究顯示,STING敲除小鼠體內(nèi)巨噬細(xì)胞活化程度降低,使用STING通路激動(dòng)劑活化骨髓來源的巨噬細(xì)胞、人單核細(xì)胞白血病細(xì)胞1中的cGAS-STING通路,可以激活巨噬細(xì)胞,促進(jìn)其由M2型極化為促炎M1型,提示STING通路激活可以活化巨噬細(xì)胞,并促使其向促炎方向極化,加重腸道炎癥反應(yīng),對(duì)腸道屏障功能造成損害[49]。cGAS-STING通路對(duì)于腸道免疫功能的調(diào)控具有雙向性,正常情況下,菌群通過刺激漿細(xì)胞樣DC分泌IFN-Ⅰ,與傳統(tǒng)DC上的IFN-α/β受體結(jié)合后,刺激CD8 + T淋巴細(xì)胞的激活,以維持宿主的免疫耐受性,抵抗病原體入侵。當(dāng)IFN信號(hào)通路表達(dá)異常(如傳統(tǒng) DC表面 IFN-α/β受體被敲除),傳統(tǒng)DC無法被正常激活,宿主免疫功能失調(diào),同樣也會(huì)對(duì)腸道屏障免疫功能造成損害[50]。
4 調(diào)節(jié)cGAS-STING信號(hào)通路改善腸道屏障治療肝衰竭的可能機(jī)制及展望
腸道屏障結(jié)構(gòu)破壞,同時(shí)伴潛在致病菌的過度生長(zhǎng)及易位是肝衰竭腸道屏障受損的主要特征,抑制cGAS-STING信號(hào)通路能夠?qū)UC的合成、分泌產(chǎn)生影響,同時(shí)保護(hù)TJ的完整性,能夠?qū)δc道屏障結(jié)構(gòu)起到保護(hù)作用,同時(shí)cGAS-STING信號(hào)通路的正常激活對(duì)正常腸道微生物譜具有保護(hù)作用,相關(guān)研究顯示,乳酸菌能夠促進(jìn)STING通路下游IFN-Ⅰ的分泌,發(fā)揮免疫保護(hù)功能,防止免疫系統(tǒng)過度激活[51]。
通過總結(jié)既往研究發(fā)現(xiàn),cGAS-STING信號(hào)通路與肝衰竭腸道物理屏障的MUC、TJ及腸道微生物屏障的改變關(guān)系密切,因此,未來可進(jìn)一步研究調(diào)控cGAS-STING信號(hào)通路對(duì)肝衰竭患者腸道MUC的影響,還可通過不同方式檢測(cè) cGAS-STING 信號(hào)通路與 TJ 蛋白如 claudins、ZO-1 等之間的關(guān)系,通過宏基因測(cè)序研究調(diào)控 cGAS-STING信號(hào)通路對(duì)肝衰竭腸道菌群的影響同樣有利于為肝衰竭治療提供新的思路及治療靶點(diǎn)。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻(xiàn)聲明:宮嫚負(fù)責(zé)課題設(shè)計(jì),擬定寫作思路,指導(dǎo)撰寫文章并最后定稿;張寧、周超參與收集整理文獻(xiàn)材料,修改論文;唐巧負(fù)責(zé)撰寫論文。
參考文獻(xiàn):
[1] Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association of Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medi?cal Association. Guideline for diagnosis and treatment of liver failure(2018)[J]. J Clin Hepatol, 2019, 35(1): 38-44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.中華醫(yī)學(xué)會(huì)感染病學(xué)分會(huì)肝衰竭與人工肝學(xué)組, 中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì)重型肝病與人工肝學(xué)組. 肝衰竭診治指南(2018年版)[J]. 臨床肝膽病雜志, 2019, 35(1): 38-44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.
[2] CHEN MJ, LI X, TANG SH. Research progress in multi-dimensional evaluation of liver function in patients with liver failure[J]. Clin J Med Offic, 2023, 51(9): 901-903, 907. DOI: 10.16680/j.1671-3826.2023.09.05.陳美娟, 李雪, 湯善宏. 多維度評(píng)估肝功能在肝衰竭患者預(yù)后中研究進(jìn)展[J]. 臨床軍醫(yī)雜志, 2023, 51(9): 901-903, 907. DOI: 10.16680/j.1671-3826.2023.09.05.
[3] CHOPYK DM, GRAKOUI A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology, 2020, 159(3): 849-863. DOI: 10.1053/j.gastro.2020.04.077.
[4] QIANG R, LIU XZ, XU JC. The immune pathogenesis of acute-on-chronic liver failure and the danger hypothesis[J]. Front Immunol,2022, 13: 935160. DOI: 10.3389/fimmu.2022.935160.
[5] GAN Y, LI XY, HAN SZ, et al. The cGAS/STING pathway: A novel tar?get for cancer therapy[J]. Front Immunol, 2022, 12: 795401. DOI:10.3389/fimmu.2021.795401.
[6] ALLAIRE JM, CROWLEY SM, LAW HT, et al. The intestinal epithe?lium: Central coordinator of mucosal immunity[J]. Trends Immunol,2018, 39(9): 677-696. DOI: 10.1016/j.it.2018.04.002.
[7] DI TOMMASO N, GASBARRINI A, PONZIANI FR. Intestinal barrier in human health and disease[J]. Int J Environ Res Public Health, 2021,18(23): 12836. DOI: 10.3390/ijerph182312836.
[8] PAONE P, CANI PD. Mucus barrier, mucins and gut microbiota: The expected slimy partners?[J]. Gut, 2020, 69(12): 2232-2243. DOI: 10.1136/gutjnl-2020-322260.
[9] HENDRIKX T, SCHNABL B. Antimicrobial proteins: Intestinal guards to protect against liver disease[J]. J Gastroenterol, 2019, 54(3):209-217. DOI: 10.1007/s00535-018-1521-8.
[10] LITVAK Y, MON KKZ, NGUYEN H, et al. Commensal enterobacteria?ceae protect against Salmonella colonization through oxygen com?petition[J]. Cell Host Microbe, 2019, 25(1): 128-139. e5. DOI: 10.1016/j.chom.2018.12.003.
[11] HIIPPALA K, JOUHTEN H, RONKAINEN A, et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10(8): 988. DOI: 10.3390/nu10080988.
[12] VANCAMELBEKE M, VERMEIRE S. The intestinal barrier: A funda?mental role in health and disease[J]. Expert Rev Gastroenterol Hepa?tol, 2017, 11(9): 821-834. DOI: 10.1080/17474124.2017.1343143.
[13] WEI Q, HUANG H. Insights into the role of cell-cell junctions in physi?ology and disease[J]. Int Rev Cell Mol Biol, 2013, 306: 187-221.DOI: 10.1016/B978-0-12-407694-5.00005-5.
[14] MOWAT AM, AGACE WW. Regional specialization within the intesti?nal immune system[J]. Nat Rev Immunol, 2014, 14(10): 667-685.DOI: 10.1038/nri3738.
[15] DELFINI M, STAKENBORG N, VIOLA MF, et al. Macrophages in the gut: Masters in multitasking[J]. Immunity, 2022, 55(9): 1530-1548.DOI: 10.1016/j.immuni.2022.08.005.
[16] MARTíNEZ-LóPEZ M, IBORRA S, CONDE-GARROSA R, et al. Mi?crobiota sensing by mincle-syk axis in dendritic cells regulates inter?leukin-17 and-22 production and promotes intestinal barrier integrity[J]. Immunity, 2019, 50(2): 446-461. e9. DOI: 10.1016/j.immuni.2018.12.020.
[17] TEZUKA H, OHTEKI T. Regulation of IgA production by intestinal dendritic cells and related cells[J]. Front Immunol, 2019, 10: 1891.DOI: 10.3389/fimmu.2019.01891.
[18] SPENCER J, BEMARK M. Human intestinal B cells in inflammatory diseases[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(4): 254-265.DOI: 10.1038/s41575-023-00755-6.
[19] MANN ER, LAM YK, UHLIG HH. Short-chain fatty acids: Linking diet, the microbiome and immunity[J]. Nat Rev Immunol, 2024, 24(8): 577-595. DOI: 10.1038/s41577-024-01014-8.
[20] LE N, MAZAHERY C, NGUYEN K, et al. Regulation of intestinal epi?thelial barrier and immune function by activated T cells[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(1): 55-76. DOI: 10.1016/j.jcmgh.2020.07.004.
[21] YOO JS, OH SF. Unconventional immune cells in the gut mucosal barrier: Regulation by symbiotic microbiota[J]. Exp Mol Med, 2023,55(9): 1905-1912. DOI: 10.1038/s12276-023-01088-9.
[22] GIL-CRUZ C, PEREZ-SHIBAYAMA C, ONDER L, et al. Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs[J]. Nat Immunol, 2016, 17(12): 1388-1396.DOI: 10.1038/ni.3566.
[23] HOU QH, HUANG JX, AYANSOLA H, et al. Intestinal stem cells and immune cell relationships: Potential therapeutic targets for inflammatory bowel diseases[J]. Front Immunol, 2021, 11: 623691. DOI: 10.3389/fimmu.2020.623691.
[24] SONNENBERG GF, MONTICELLI LA, ALENGHAT T, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria[J]. Science, 2012, 336(6086): 1321-1325. DOI:10.1126/science.1222551.
[25] LE BOURHIS L, MARTIN E, PéGUILLET I, et al. Antimicrobial activity of mucosal-associated invariant T cells[J]. Nat Immunol, 2010, 11(8): 701-708. DOI: 10.1038/ni.1890.
[26] OLIVARES-VILLAGóMEZ D, VAN KAER L. Intestinal intraepithelial lymphocytes: Sentinels of the mucosal barrier[J]. Trends Immunol,2018, 39(4): 264-275. DOI: 10.1016/j.it.2017.11.003.
[27] KAYAMA H, OKUMURA R, TAKEDA K. Interaction between the mi?crobiota, epithelia, and immune cells in the intestine[J]. Annu Rev Immunol, 2020, 38: 23-48. DOI: 10.1146/annurev-immunol-070119-115104.
[28] CHEN BR, NI X, SUN R, et al. Commensal bacteria-dependent CD8αβ + T cells in the intestinal epithelium produce antimicrobial peptides[J]. Front Immunol, 2018, 9: 1065. DOI: 10.3389/fimmu.2018.01065.
[29] HOYTEMA VAN KONIJNENBURG DP, REIS BS, PEDICORD VA,et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection[J]. Cell, 2017, 171(4): 783-794.e13. DOI: 10.1016/j.cell.2017.08.046.
[30] WELLS JM, BRUMMER RJ, DERRIEN M, et al. Homeostasis of the gut barrier and potential biomarkers[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(3): G171-G193. DOI: 10.1152/ajpgi.00048.2015.
[31] ZHANG B, DILIHUMAER ZYE, ZHANG SY, et al. Progress on patho?genesis and medical treatment of hepatitis B virus-related chronic and acute liver failure[J/CD]. Chin J Liver Dis (Electronic Version),2023, 15(1): 28-33. DOI: 10.3969/j.issn.1674-7380.2023.01.005.張斌, 迪麗胡瑪爾·扎依爾, 張?jiān)娪辏?等. 乙型肝炎相關(guān)慢加急性肝衰竭發(fā)病機(jī)制及治療進(jìn)展[J/CD]. 中國(guó)肝臟病雜志(電子版), 2023, 15(1):28-33. DOI: 10.3969/j.issn.1674-7380.2023.01.005.
[32] BIGGINS SW, ANGELI P, GARCIA-TSAO G, et al. Diagnosis, evalua?tion, and management of ascites, spontaneous bacterial peritonitis and hepatorenal syndrome: 2021 practice guidance by the American association for the study of liver diseases[J]. Hepatology, 2021, 74(2): 1014-1048. DOI: 10.1002/hep.31884.
[33] KIM SE, PARK JW, KIM HS, et al. The role of gut dysbiosis in acute-on-chronic liver failure[J]. Int J Mol Sci, 2021, 22(21): 11680. DOI:10.3390/ijms222111680.
[34] BAJAJ JS, VARGAS HE, REDDY KR, et al. Association between in?testinal microbiota collected at hospital admission and outcomes of patients with cirrhosis[J]. Clin Gastroenterol Hepatol, 2019, 17(4):756-765. e3. DOI: 10.1016/j.cgh.2018.07.022.
[35] FERNáNDEZ J, ACEVEDO J, WIEST R, et al. Bacterial and fungal in?fections in acute-on-chronic liver failure: Prevalence, characteristics and impact on prognosis[J]. Gut, 2018, 67(10): 1870-1880. DOI: 10.1136/gutjnl-2017-314240.
[36] PHILIPS CA, AUGUSTINE P. Gut barrier and microbiota in cirrhosis[J]. J Clin Exp Hepatol, 2022, 12(2): 625-638. DOI: 10.1016/j.jceh.2021.08.027.
[37] FENG X, LIU DY, LI ZY, et al. Bioactive modulators targeting STING adaptor in cGAS-STING pathway[J]. Drug Discov Today, 2020, 25(1): 230-237. DOI: 10.1016/j.drudis.2019.11.007.
[38] BAI JL, LIU F. The cGAS-cGAMP-STING pathway: A molecular link between immunity and metabolism[J]. Diabetes, 2019, 68(6): 1099-1108. DOI: 10.2337/dbi18-0052.
[39] CHEN RH, DU JM, ZHU H, et al. The role of cGAS-STING signalling in liver diseases[J]. JHEP Rep, 2021, 3(5): 100324. DOI: 10.1016/j.jhepr.2021.100324.
[40] LUTHER J, KHAN S, GALA MK, et al. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation[J]. Proc Natl Acad Sci USA, 2020, 117(21): 11667-11673. DOI: 10.1073/pnas.1911870117.
[41] ZHANG H. The role of autophagy and macrophage polarization me?diated by STING pathway activation in the pathogenesis of HBV-re?lated acute liver failure and the establishment of clinical prognosis model[D]. Hefei: Anhui Medical University, 2023.張浩. STING通路活化介導(dǎo)自噬及巨噬細(xì)胞極化在HBV相關(guān)慢加急性肝衰竭發(fā)病機(jī)制的作用及臨床預(yù)后模型的建立[D]. 合肥: 安徽醫(yī)科大學(xué), 2023.
[42] YU T, CHENG HR, LI XL, et al. Design and synthesis of hederagenin derivatives modulating STING/NF-κB signaling for the relief of acute liver injury in septic mice[J]. Eur J Med Chem, 2023, 245(Pt 1):114911. DOI: 10.1016/j.ejmech.2022.114911.
[43] CANESSO MCC, LEMOS L, NEVES TC, et al. The cytosolic sensor STING is required for intestinal homeostasis and control of inflamma?tion[J]. Mucosal Immunol, 2018, 11(3): 820-834. DOI: 10.1038/mi.2017.88.
[44] LOUIE A, BHANDULA V, PORTNOY DA. Secretion of c-di-AMP by Listeria monocytogenes leads to a STING-dependent antibacterial re?sponse during enterocolitis[J]. Infect Immun, 2020, 88(12): e00407-20. DOI: 10.1128/IAI.00407-20.
[45] ZHANG Q, CHEN QY, YAN CS, et al. The absence of STING ame?liorates non-alcoholic fatty liver disease and reforms gut bacterial community[J]. Front Immunol, 2022, 13: 931176. DOI: 10.3389/fimmu.2022.931176.
[46] ZHANG XF, WU J, LIU QJ, et al. mtDNA-STING pathway promotes necroptosis-dependent enterocyte injury in intestinal ischemia reper?fusion[J]. Cell Death Dis, 2020, 11(12): 1050. DOI: 10.1038/s41419-020-03239-6.
[47] AL-SADI R, GUO SH, YE DM, et al. TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α axis activation of the canonical NF-κB pathway[J]. Am J Pathol, 2016, 186(5):1151-1165. DOI: 10.1016/j.ajpath.2015.12.016.
[48] HU QY, REN HJ, LI GW, et al. STING-mediated intestinal barrier dys?function contributes to lethal sepsis[J]. EBioMedicine, 2019, 41:497-508. DOI: 10.1016/j.ebiom.2019.02.055.
[49] MARTIN GR, BLOMQUIST CM, HENARE KL, et al. Stimulator of in?terferon genes (STING) activation exacerbates experimental colitis in mice[J]. Sci Rep, 2019, 9(1): 14281. DOI: 10.1038/s41598-019-50656-5.
[50] SCHAUPP L, MUTH S, ROGELL L, et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells[J]. Cell,2020, 181(5): 1080-1096. e19. DOI: 10.1016/j.cell.2020.04.022.
[51] GUTIERREZ-MERINO J, ISLA B, COMBES T, et al. Beneficial bacte?ria activate type-I interferon production via the intracellular cytosolic sensors STING and MAVS[J]. Gut Microbes, 2020, 11(4): 771-788.DOI: 10.1080/19490976.2019.1707015.
收稿日期:2024-06-07;錄用日期:2024-07-17
本文編輯:王亞南
引證本文:TANG Q, ZHOU C, ZHANG N, et al. Association between intestinal barrier disruption in liver failure and the cGAS-STING signaling pathway[J]. J Clin Hepatol, 2025, 41(3): 574-579.
唐巧, 周超, 張寧, 等. 肝衰竭腸道屏障損傷與環(huán)鳥苷酸-腺苷酸合酶(cGAS)-干擾素基因刺激因子(STING)信號(hào)通路的關(guān)系[J].