



[摘要]目的探討窒息性腦損傷新生兒血清神經絲蛋白(NFL)和可溶性神經調節蛋白1(sNRG1)表達及其預測價值。方法選取2021年2月—2023年2月商丘市第一人民醫院收治的212例足月新生兒作為研究對象,其中以112例足月窒息新生兒作為研究組、100例足月健康新生兒作為對照組。研究組根據窒息程度分為輕度窒息組(63例)和重度窒息組(49例),根據是否腦損傷分為腦損傷組(40例)和無腦損傷組(72例)。分析血清NFL和sNRG1檢測對窒息性腦損傷的評估價值,以及影響該病發生的風險因素。結果與對照組比較,輕度窒息組和重度窒息組病兒血清NFL均明顯升高,而sNRG1均明顯降低(F=17.787、13.044,Plt;0.05);且隨著新生兒窒息程度加重,血清NFL逐漸升高而血清sNRG1逐漸降低(Plt;0.05)。與無腦損傷組病兒比較,腦損傷組血清NFL明顯升高而sNRG1明顯降低(t=21.250、37.737,Plt;0.05)。血清NFL和sNRG1檢測對新生兒窒息性腦損傷評估的受試者工作特征曲線下面積(AUC)分別為0.736和0.829,兩者聯合評估的AUC為0.902,其特異度為85.4%,靈敏度為87.5%。多因素Logistic回歸分析顯示,臍帶異常、NFL≥61.7 ng/L和sNRG1lt;1.1 ng/L等是影響新生兒窒息性腦損傷發生的危險因素(Plt;0.05)。結論血清NFL升高和sNRG1降低均是影響新生兒窒息加重及發生腦損傷的風險因素,兩者可作為評估新生兒窒息病情及并發腦損傷的生物學標記物。
[關鍵詞]新生兒窒息;低氧,腦;神經微絲蛋白質類;神經調節蛋白1;影響因素分析[中圖分類號]R722.12;R349.12
[文獻標志碼]A[文章編號]20965532(2025)01011505" " doi:10.11712/jms.20965532.2025.61.007[HT]
[開放科學(資源服務)標識碼(OSID)]
[網絡出版]https://link.cnki.net/urlid/37.1517.r.20250305.1352.002;2025030616:26:27
[Abstract]"Objective To investigate the expression and predictive value of serum neurofilament light protein (NFL) and soluble neuregulin1 (sNRG1) in neonates with asphyxial brain injury."Methods A total of 212 fullterm neonates who were admitted to Department of Neonatology, The First People′s Hospital of Shangqiu City, from February 2021 to February 2023 were enrolled as subject, among whom there were 112 asphyxiated fullterm neonates (study group) and 100 healthy fullterm neonates (control group). According to the degree of asphyxia, the neonates in the study group were divided into mild asphyxia group with 63 neonates and severe asphyxia group with 49 neonates, and according to the presence or absence of brain injury, they were divided into brain injury group with 40 neonates and nonbrain injury group with 72 neonates. The value of serum NFL and sNRG1 in assessing asphyxial brain injury was analyzed, as well as the risk factors for this disease."Results Compared with the control group, the mild asphyxia group and the severe asphyxia group had a significant increase in the serum level of NFL and a significant reduction in the serum level of sNRG1 (F=17.787,13.044,Plt;0.05); with the aggravation of neonatal asphyxia, the serum level of NFL gradually increased, and the serum level of sNRG1 gradually decreased (Plt;0.05). Compared with the nonbrain injury group, the brain injury group had a significant increase in the serum level of NFL and a significant reduction in the serum level of sNRG1 (t=21.250,37.737,Plt;0.05). Serum NFL and sNRG1 had an area under the ROC curve (AUC) of 0.736 and 0.829, respectively, for evaluating asphyxial brain injury in neonates, and the combination of serum NFL and sNRG1 had an AUC of 0.902, with a specificity of 85.4% and a sensitivity of 87.5%. The multivariate Logistic regression analysis showed that abnormal umbilical cord, NFL ≥61.7 ng/L, and sNRG1 lt;1.1 ng/L were risk factors for asphyxial brain injury in neonates (Plt;0.05).Conclusion Both the increase in serum NFL and the reduction in sNRG1 are risk factors for the aggravation of neonatal asphyxia and the onset of brain injury, and they can used as biomarkers for evaluating the severity of neonatal asphyxia and the onset of brain injury.
組織器官損傷,而腦損傷又可導致病兒腦癱、認知功能障礙等一系列遠期神經功能障礙,嚴重影響病兒的生活質量[12]。此外,新生兒窒息性腦損傷病因復雜、臨床表現多樣,已成為臨床診治的棘手問題[3]。因此,尋找能夠早期準確診斷并預測新生兒窒息性腦損傷的生物標志物有重要的臨床意義。神經絲蛋白(NFL)是一種神經元特定的中間絲蛋白,在成人腦損傷、退行性神經疾病等領域的研究中已取得了一定進展,但在新生兒窒息性腦損傷的早期診斷和預后評估中的研究較少[4]。血清可溶性神經調節蛋白1(sNRG1)與多種神經疾病的病理生理過程有關,但其在國內新生兒窒息性腦損傷中的相關研究尚未見報道[56]。因此,本研究探討了血清NFL和sNRG1表達與新生兒窒息性腦損傷的關系及其預測價值,旨在為臨床早期干預和精準治療提供依據。現將結果報告如下。
1資料與方法
1.1調查對象
按照納入和排除標準,選取2021年2月—2023年2月商丘市第一人民醫院收治的212例足月新生兒作為研究對象,其中112例足月窒息新生兒作為研究組、100例足月健康新生兒作為對照組。對照組100例病兒中,男53例,女47例;胎齡(37.1±1.1)周;出生體質量(3.0±0.5)kg。研究組112例病兒中,男60例,女52例;胎齡(37.9±1.1)周;出生體質量(3.0±0.5)kg。兩組病兒性別、胎齡和出生體質量等比較,差異均無統計學意義(Pgt;0.05),具有可比性。
納入標準:①符合《實用新生兒學》(第5版)新生兒窒息的診斷標準[7];②胎齡37~42周;③出生體質量>2 500 g;④病兒監護人知情同意,醫院醫學倫理委員已審核批準該研究。排除標準:①先天畸形;②嚴重感染;③院內死亡;④臨床資料不全。
1.2調查方法
1.2.1資料收集收集所有研究對象的臨床資料,包括性別、胎齡、出生體質量、分娩方式、多胎妊娠、臍帶異常、胎盤異常和羊水污染等的構成比,以及血清NFL和sNRG1水平。
1.2.2窒息程度和腦損傷診斷標準通過新生兒評分(Apgar)對新生兒窒息進行分度:以8~10分為基本正常,4~7分為輕度窒息,0~3分為重度窒息。臍動脈血氣分析判斷和腦損傷診斷采用文獻標準[8]。依據窒息程度和是否腦損傷將研究組分為輕度窒息組(63例)和重度窒息組(49例)、腦損傷組(40例)和無腦損傷組(72例)。
1.2.3血清NFL和sNRG1檢測采集所有研究對象出生后48 h內的外周靜脈血2 mL,以3 500 r/min離心10 min(離心半徑為10 cm)分離血清,并置于-80 ℃冰箱待測。采用酶聯免疫吸附法檢測血清NFL和sNRG1表達,試劑盒由上海科順生物科技有限公司提供。
1.3統計學方法
采用SPSS 23.0軟件進行統計學分析。符合正態分布的計量資料數據采用[AKx-D]±s形式表示,兩組均數比較采用t檢驗,多組均數比較采單因素方差分析(多重比較采用SNKq檢驗);計數資料采用例數和百分數表示,兩組比較采用χ2檢驗;采用受試者工作特征(ROC)曲線評估血清NFL和sNRG1表達對新生兒發生窒息性腦損傷的評估價值,采用多因素Logistic逐步回歸分析影響新生兒發生窒息性腦損傷的風險因素。雙側檢驗水準為α=0.05。
2結果
2.1窒息程度對NFL和sNRG1表達影響
與對照組相比較,輕度窒息組和重度窒息組病兒的血清NFL均明顯升高,而sNRG1均明顯降低(F=17.787、13.044,Plt;0.05);且隨著新生兒窒息程度加重,血清NFL逐漸升高而血清sNRG1逐漸降低(P均lt;0.05)。提示窒息新生兒血清NFL顯著升高而血清sNRG1顯著降低,且二者表達與窒息程度顯著相關。見表1。
2.2腦損傷對血清NFL和sNRG1表達影響
腦損傷組病兒血清NFL水平明顯高于無腦損傷組,而sNRG1則明顯低于無腦損傷組,差異均有統計學意義(t=21.250、37.737,P均lt;0.05)。提示血清NFL和sNRG1表達與新生兒窒息后發生腦損傷密切相關。見表2。
2.3NFL和sNRG1對新生兒窒息性腦損傷評估價值
ROC曲線分析結果顯示,血清NFL和sNRG1表達評估新生兒窒息性腦損傷的ROC曲線下面積(AUC)分別為0.736和0.829,兩者聯合評估的AUC為0.902。提示血清NFL和sNRG1對新生兒窒息后發生腦損傷均有評估價值,且兩者聯合評估的價值更高。見表3。
2.4影響窒息性腦損傷發生的單因素分析
與無腦損傷組相比較,窒息性腦損傷組新生兒臍帶異常和羊水污染構成比均明顯升高,差異均有統計學意義(χ2=4.352、16.593,Plt;0.05)。提示臍帶異常和羊水污染可能是影響新生兒窒息后發生腦損傷的相關因素。見表4。
2.5影響窒息性腦損傷發生的多因素分析
以新生兒窒息后是否腦損傷作為因變量(否=0;是=1),以單因素分析差異有統計學意義的指標臍帶異常(是=1;否=0)、羊水污染(是=1;否=0)以及血清NFL(lt;61.7 ng/L=0;≥61.7 ng/L=1)和sNRG1(lt;1.1 ng/L=1;≥1.1 ng/L=0)作為自變量進行多因素Logistic回歸分析顯示,臍帶異常(OR=2.050,95%CI=1.263~3.327)、NFL≥61.7 ng/L(OR=3.228,95%CI=1.678~6.213)和sNRG1lt;1.1 ng/L(OR=4.419,95%CI=2.191~8.915)等均是影響新生兒窒息后發生腦損傷的危險因素(P均lt;0.05)。提示臍帶異常、血清NFL表達升高和sNRG1表達降低等危險因素與新生兒窒息后發生腦損傷密切相關,臨床上應對其進行監測并及早干預。見表5。
3討論
新生兒窒息是圍生期由于各種原因導致出生后無法實現正常呼吸而引起的低氧血癥以及全身器官損傷的一種重危急癥[910]。其中,腦損傷是最常見的損害之一,嚴重時會危及新生兒的生命[1112]。因此,尋求一種安全、高效的生物學指標,對早期診斷新生兒窒息后腦損傷有重要意義。
NFL是神經元軸突的重要組成部分,對維持神經元的形態和神經纖維的完整性起著至關重要的作用[1314]。在神經系統受損的情況下,軸突的結構被破壞,受損的神經細胞可以釋放NFL到腦脊液和血清中[15]。近年來的相關研究表明,血清NFL水平可反映早產兒的腦損傷狀況,并可作為預測其發生和發展的生物標志物[1617]。既往研究表明,NFL可用作預測和評估各種神經系統疾病預后的生物標志物,例如兒童癲癇、新生兒腦病、感染性中樞神經系統疾病等[1820]。sNRG1參與調節神經細胞的增殖、存活和修復等過程[2122]。伍明超等[23]研究顯示,血清NFL和sNRG1是阿爾茨海默病早期診斷的重要指標,且血清中sNRG1含量與病情顯著相關。在腦損傷后,sNRG1可促進神經再生和受損毛細血管的修復,因此,sNRG1在新生兒窒息性腦損傷后可能起保護性作用,其在血清中的水平變化可能與腦損傷的恢復能力有關[24]。NFL在新生兒窒息性腦損傷中的作用已經得到一定的研究和證實,而sNRG1在該領域的研究國內尚無報道,仍需進一步深化[16,25]。
本文的研究結果顯示,腦損傷組和重度窒息組血清NFL表達顯著高于無腦損傷組和輕度窒息組,而sNRG1表達則顯著低于無腦損傷組和輕度窒息組。這可能是由于新生兒窒息后,大腦供氧不足導致主要能量供應中斷,而神經細胞特別依賴氧氣和葡萄糖以維持其功能和生存[2426]。窒息引起的低氧血癥可以導致能量代謝障礙,即使在恢復供氧后,仍可能在隨后的一段時間內引發能量代謝的二次衰竭[2728]。這一過程是導致神經元變性,特別是軸突變性的關鍵因素。軸突受損后NFL可釋放到血清中,其升高的水平通常直接反映軸突結構的損傷程度[2930]。因此,血清NFL的升高可被視為新生兒窒息后神經元損傷的生物標志物。而sNRG1在新生兒窒息后腦損傷中可能發揮潛在的神經保護和修復調節作用[31]。新生兒發生窒息后,體內低氧復氧(再灌注)的啟動,會刺激細胞因子和炎癥遞質生成,進而引發神經炎癥反應[3233]。sNRG1可通過與erbB家族受體結合并激活下游信號通路,參與細胞存活信號轉導,以維持神經細胞存活并促進受損細胞的修復[3435]。此外,sNRG1還參與軸突生長、神經元遷移和髓鞘形成等調控,有助于新生兒腦損傷后腦組織的恢復[3637]。因此,對新生兒窒息性腦損傷進行血清NFL和sNRG1表達的監測,不僅能反映神經元軸突結構的損傷程度,還可評估腦損傷后的修復能力,為早期確診及干預提供重要依據。
本文ROC曲線分析顯示,血清NFL和sNRG1評估新生兒窒息性腦損傷的AUC分別為0.736和0.829,兩者聯合預測的AUC為0.902,且具有較高的特異度和靈敏度。這進一步說明二者聯合檢測可提高新生兒窒息性腦損傷的預測效能。多因素Logistic回歸分析顯示,血清NFL高表達、sNRG1低表達、臍帶異常等變量均是影響新生兒窒息后發生腦損傷的危險因素,對于此類指標異常病兒臨床可重點監測[38]。
綜上所述,血清NFL和sNRG1表達均與新生兒窒息嚴重程度和發生腦損傷相關,且二者可作為評估新生兒窒息性腦損傷的生物學標記物,值得臨床推廣應用。
[參考文獻]
[1]ZIEM M S, SAAKA F A, VICAR E K, et al. Pregnancy and the risk of NICU admissions in nandom municipality of Ghana: a crosssectional retrospective study[J]. Health Science Reports, 2023,6(1):e1070.
[2]ZIMMERMANN P, CURTIS N. COVID19 in children, pregnancy and neonates: a review of epidemiologic and clinical features[J]. The Pediatric Infectious Disease Journal, 2020,39(6):469477.
[3]劉建宏,黃方. 血清NFP、Nrf2水平與新生兒窒息早期腦損傷的關系[J]. 中國兒童保健雜志, 2022,30(7):787791.
[4]ZULEHNER G, SCHRGENHOFER C, ROMMER P, et al. Serum neurofilament light chain as an early diagnostic biomarker for critical illness polyneuropathy[J]. Minerva Anestesiologica, 2023,89(12):10991104.
[5]朱琳,李佳,賈曉雯,等. 血清可溶性神經調節蛋白1、G蛋白偶聯雌激素受體1在急性胰腺炎患者病情及預后評估中臨床價值研究[J]. 創傷與急危重病醫學, 2023,11(2):125129.
[6]黃清平,王波,林芳崇,等. 感染性休克患者血清NFL、sNRG1水平與疾病轉歸的關系[J]. 國際檢驗醫學雜志, 2023,44(18):22582261.
[7]邵肖梅,葉鴻瑁,丘小汕. 實用新生兒學[M]. 5版.北京:人民衛生出版社, 2019:390393.
[8]中華醫學會圍產醫學分會新生兒復蘇學組. 新生兒窒息診斷的專家共識[J]. 中華圍產醫學雜志, 2016(1):36.
[9]ZHU Z H, PENG K P, LIU M H, et al. Acoustic radiation force impulse imaging with virtual touch tissue quantification enables characterization of mild hypoxicischemic brain damage in neonatal rats[J]. Journal of Ultrasound in Medicine, 2019,38(7):17971805.
[10]李香鐘,秦鳳. 胎膜早破孕婦HCMV、GBS、HPV、MG、UU、CT感染對妊娠結局的影響[J]. "分子診斷與治療雜志, 2022,14(7):11091112,1116.
[11]ZHUANG X M, LIN H S, LI J W, et al. Radiomics based of deep medullary veins on susceptibilityweighted imaging in infants: predicting the severity of brain injury of neonates with perinatal asphyxia[J]. European Journal of Medical Research, 2023,28(1):9.
[12]張蕾,王文靜,許晴. 窒息新生兒發生缺氧缺血性腦損傷的高危因素分析[J]. 慢性病學雜志, 2024,25(10):15801582,1586.
[13]KIM S, LEE J J, PARK J S, et al. Neurofilament light chain as a biomarker in neuromyelitis optica spectrum disorder: a comprehensive review and integrated analysis with glial fibrillary acidic protein[J]. Neurological Sciences, 2024,45(3):12551261.
[14]曹晴祎,田毅,王金濃. 神經絲輕鏈蛋白與2型糖尿病認知功能障礙關系的研究進展[J]. "中國醫學科學院學報, 2024,46(1):98103.
[15]FRANK A, BENDIG J, SCHNALKE N, et al. Serum neurofilament indicates accelerated neurodegeneration and predicts mortality in latestage Parkinson’s disease[J]. NPJ Parkinson’s Disease, 2024,10(1):14.
[16]王鵬偉. 血清NFL、SBDP145對早產兒腦損傷早期的預測價值[D]. 大連:大連醫科大學, 2021.
[17]YANG Z H, XU H Y, SURA L, et al. Combined GFAP, NFL, Tau, and UCHL1 panel increases prediction of outcomes in neonatal encephalopathy[J]. Pediatric Research, 2023,93(5):11991207.
[18]CHEN R L, WANG M X, FU S P, et al. microRNA204 may participate in the pathogenesis of hypoxicischemic encephalopathy through targeting KLLN[J]. Experimental and Therapeutic Medicine, 2019,18(5):32993306.
[19]BARK L, LARSSON I M, WALLIN E, et al. Central nervous system biomarkers GFAp and NfL associate with postacute cognitive impairment and fatigue following critical COVID19[J]. Scientific Reports, 2023,13(1):13144.
[20]MIR I N, STEVEN BROWN L, ROSENFELD C R, et al. Placental clearance/synthesis of neurobiomarkers GFAP and UCHL1 in healthy term neonates and those with moderatesevere neonatal encephalopathy[J]. Pediatric Research, 2019,86:500504.
[21]WU X G, WANG C L, WANG J B, et al. Hypoxia preconditioning protects neuronal cells against traumatic brain injury through stimulation of glucose transport mediated by HIF1α/GLUTs signaling pathway in rat[J]. Neurosurgical Review, 2021,44(1):411422.
[22]劉近明,趙國榮,艾碧琛,等. 四逆軟肝方對人肝星狀細胞株LX2增殖、凋亡和活化的影響[J]. 中西醫結合肝病雜志, 2020,30(6):516519,585586.
[23]伍明超,萬爭艷. 血清中NFL、Ttau、sNRG1聯合對阿爾茨海默癥的診斷價值[J]. 國際檢驗醫學雜志, 2020,41(6):760763.
[24]TOORELL H, ZETTERBERG H, BLENNOW K, et al. Increase of neuronal injury markers Tau and neurofilament light proteins in umbilical blood after intrapartum asphyxia[J]. The Journal of MaternalFetal amp; Neonatal Medicine, 2018,31(18):24682472.
[25]ZHENG Y H, LI L Y, CHEN B W, et al. Chlorogenic acid exerts neuroprotective effect against hypoxiaischemia brain injury in neonatal rats by activating Sirt1 to regulate the Nrf2NFκB signaling pathway[J]. Cell Communication and Signaling, 2022,20(1):84.
[26]ALARCONMARTINEZ L, SHIGA Y, VILLAFRANCABAUGHMAN D, et al. Neurovascular dysfunction in glaucoma[J]. Progress in Retinal and Eye Research, 2023,97:101217.
[27]ZHANG X L, CHEN X, LI B B, et al. Changes in the live birth profile in Henan, China: a hospital registrybased study[J]. Birth, 2022,49(3):497505.
[28]TOORELL H, CARLSSON Y, HALLBERG B, et al. Neurospecific and immunoinflammatory biomarkers in umbilical cord blood in neonatal hypoxicischemic encephalopathy[J]. "Neonatology, 2024,121(1):2533.
[29]WANG X F, SHI Z Y, QIU Y H, et al. Peripheral GFAP and NfL as early biomarkers for dementia: longitudinal insights from the UK Biobank[J]. BMC Medicine, 2024,22(1):192.
[30]VAN TILBURG S J, TEUNISSEN C E, MAAS C C H M, et al. Dynamics and prognostic value of serum neurofilament light chain in GuillainBarré syndrome[J]. "EBioMedicine, 2024,102:105072.
[31]SYK M, TORNVIND E, GALLWITZ M, et al. An exploratory study of the damage markers NfL, GFAP, and tTau, in cerebrospinal fluid and other findings from a patient cohort enriched for suspected autoimmune psychiatric disease[J]. "Translational Psychiatry, 2024,14(1):304.
[32]ZYTKIEWICZ E, SHKEL I A, CHENG X, et al. Quantifying amidearomatic interactions at molecular and atomic levels: experimentally determined enthalpic and entropic contributions to interactions of amide sp2O, N, C and sp3C unified atoms with naphthalene sp2C atoms in water[J]. Biochemistry, 2023,62(19):28412853.
[33]KLETKIEWICZ H, KLIMIUK M, WONIAK A, et al. How to improve the antioxidant defense in asphyxiated newbornslessons from animal models[J]. Antioxidants, 2020,9(9):898.
[34]ZWIERENGA F, VAN VEGGEL B A M H, VAN DEN BERG A, et al. A comprehensive overview of the heterogeneity of EGFR exon 20 variants in NSCLC and (pre)clinical activity to currently available treatments[J]. Cancer Treatment Reviews, 2023,120:102628.
[35]MOODY T W, RAMOSALVAREZ I, JENSEN R T. Peptide Gproteincoupled receptors and ErbB receptor tyrosine kinases in cancer[J]. "Biology, 2023,12(7):957.
[36]ZWICK A, BERNHARD M, KNOERCK A, et al. Monitoring kinetics reveals critical parameters of IgAdependent granulocytemediated antitumor cell cytotoxicity[J]. Journal of Immunological Methods, 2019,473:112644.
[37]LATINI L, DE ARAUJO D S M, AMATO R, et al. A p75 neurotrophin receptorsparing nerve growth factor protects retinal ganglion cells from neurodegeneration by targeting microglia[J]. "British Journal of Pharmacology, 2024,181(23):48904919.
[38]張思穎,何子翼. 臍動脈血氣分析對新生兒窒息復蘇后發生腦損傷的預測價值[J]. "中國優生與遺傳雜志, 2022,30(8):13851390.
(本文編輯于國藝)
[收稿日期]20240305;[修訂日期]20241230
[基金項目]河南省醫學科技攻關計劃(聯合共建)項目(LHGJ20191492)
[第一作者]杜錕(1986),男,主治醫師。Email:angyzingh@126.com。