



摘""要:香蕉是典型的呼吸躍變型果實。MaERF15是定位于細胞核且具有調控香蕉果實采后成熟作用的轉錄因子,MaACO8是在香蕉果實采后成熟過程中高水平表達的1個乙烯生物合成關鍵酶-ACC氧化酶基因,但MaERF15和MaACO8的分子互作機制尚未明確。探究乙烯響應因子MaERF15對下游乙烯合成關鍵基因的轉錄調控機制,為香蕉果實采后保鮮技術的創新提供理論依據。本研究從香蕉DNA中分離出MaACO8啟動子序列,通過生物信息學分析、GUS染色等方法研究MaACO8的啟動子活性;采用酵母單雜交技術、EMSA、雙熒光素報告系統和活體成像系統研究MaERF15與MaACO8啟動子互作機制。結果表明:MaACO8的啟動子序列有11個,與AP2/ERF轉錄因子的結合元件GCC-box具有較強的啟動活性;MaERF15能與MaACO8啟動子的GCC-box特異性結合,激活MaACO8的表達,促進乙烯的生物合成進而調控果實成熟。本研究結果進一步完善了香蕉果實采后乙烯生物合成調控果實成熟的理論,為香蕉耐貯運育種和成熟調控新技術的研發分別提供基因資源和理論依據。
關鍵詞:香蕉;MaERF15;MaACO8;轉錄調控中圖分類號:S668.1""""""文獻標志碼:A
Molecular"Mechanism"of"Banana"MaERF15"Regulating"Postharvest"Fruit"Ripening"by"Directly"Binding"MaACO8"Promoter
HUANG"Bingyun1,2,"ZHENG"Yunke2,3,"ZHANG"Jianbin2,3,"LI"Xinguo1*,"LIU"Juhua2,3*
1."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China;"2."National"Key"Laboratory"for"Tropical"Crops"Breeding"/"Sanya"Research"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences,"Sanya,"Hainan"572024,"China;"3."Institute"of"Tropical"Bioscience"and"Biotechnology,"Chinese"Academy"of"Tropical"Agricultural"Sciences,"Haikou,"Hainan"571101,"China
Abstract:"Banana"isnbsp;a"typical"respiration"fruit."MaERF15"is"a"transcription"factor"located"in"the"nucleus"and"has"the"effect"of"regulating"postharvest"ripening"of"banana"fruits."MaACO8"is"a"key"ethylene"biosynthesis-ACC"oxidase"gene"expressed"at"high"levels"during"postharvest"ripening"of"banana"fruits."But"the"molecular"interaction"mechanism"between"the"two"has"not"been"clarified."To"explore"the"transcriptional"regulation"mechanism"of"ethylene"response"factor"MaERF15"on"the"key"genes"of"downstream"ethylene"synthesis"was"to"provide"a"theoretical"basis"for"the"innovation"of"postharvestnbsp;preservation"technology"of"banana"fruits."In"this"study,"the"promoter"sequence"of"MaACO8"was"isolated"from"banana"DNA,"and"the"promoter"activity"of"MaACO8"was"studied"by"bioinformatics"analysis"and"GUS"staining."Yeast"monohybridization,"EMSA,"dual"fluorescein"reporter"system"and"in"vivo"imaging"system"were"used"to"study"the"interaction"mechanism"between"MaERF15"and"MaACO8"promoter."The"results"showed"that"there"were"11"GCC-boxes"in"the"promoter"sequence"of"MaACO8"that"bind"to"AP2/ERF"transcription"factors,"which"had"strong"priming"activity."MaERF15"could"specifically"bind"to"the"GCC-box"of"the"MaACO8"promoter,"activate"the"expression"of"MaACO8,"promote"the"biosynthesis"of"ethylene,"and"regulate"fruit"ripening."The"results"further"improved"the"theory"of"postharvest"ethylene"biosynthesis"regulating"fruit"ripening"of"banana"fruits,"and"would"provide"genetic"resources"and"theoretical"basis"for"the"research"and"development"of"new"technologies"for"storage"and"transportation"tolerance"breeding"and"maturity"regulation"of"bananas,"respectively.
Keywords:"banana;"MaERF15;"MaACO8;"transcription"regulation
DOI:"10.3969/j.issn.1000-2561.2025.05.002
香蕉是全球產量最高的水果作物,也是全球水果貿易市場中重要的熱帶水果之一[1]。香蕉果實是典型的呼吸躍變型果實,含有豐富的營養物質(如纖維、淀粉、多糖、維生素),對人體健康具有重要作用[2-3]。香蕉作為全球貿易型的水果,在鮮果運輸中保鮮技術顯得尤為重要。隨著生物技術的發展,研究果實品質形成與果實成熟機制有助于果實質量的提高和鮮果儲存壽命的延長,促進果實保鮮技術的發展,減少全球鮮果產品的浪費[4-5]。
乙烯響應因子(ethylene"response"factor,ERF)是AP2/ERF(apetala2/ethylene"response"factor)大家族中的1個亞族,最早從煙草中分離發現,含有1個AP2結構域,處于乙烯信號轉導通路中的下游,調控著植物的生長、發育、成熟與衰老[6]。AP2/ERF家族廣泛參與植物生長和發育,包括組織分化和生殖器官的發育,還參與植物的生物和非生物脅迫反應[7-10]。ERF作為乙烯信號通路的最終應答基因,在果實成熟中發揮著重要作用,在多種植物水果中發現其表達調控的研究,ERF通過結合下游ACO、ACS、PG、EXP、PSY等基因的啟動子,直接調控果實成熟[11-14]。ERF與果實品質形成相關基因啟動子靶向結合,參與調控番茄(Solanum"lycopersicum"L.)、花椒(Zantho xylum"bungeanum"Maxim.)、荔枝(Litchi"chinensis"Sonn.)等果實中胡蘿卜素、花青素、酚類化合物等抗氧化物質的合成,影響果實品質的形成[15-17]。ERF調控果實果皮軟化和乙烯生物合成關鍵基因,參與果實成熟的調控。番茄中,SlERF.E4、RIN和SlASR1共同調控β-D-N-乙酰己糖酶(β-Hex)的表達,參與調控果實成熟[18]。柿(Diospyros"kaki"Thunb.)的DkERF8、DkERF16和DkERF19通過激活DkXTH9啟動子參與脫澀期間的果實軟化[19];在獼猴桃(Actinidia"chinensis"Planch.)的研究中發現,AdERF9通過抑制AdXET5啟動子的活性,影響獼猴桃果實的成熟[20]。木瓜[Pseudocydonia"sinensis"(Dum.Cours.)"C."K."Schneid.]"CpERF9作為轉錄抑制因子,與CpPME1、CpPME2和CpPG5啟動子中的GCC-"box結合,調控木瓜果實的成熟[21]。桃[Prunus"persica"(L.)"Batsch]"PpeERF2通過抑制2個ABA生物合成基因Ppe NCED2、PpeNCED3以及細胞壁降解基因PpePG1的表達,調控木瓜果實的成熟[22]。DkERF8和DkERF16分別增強了細胞修飾基因DkXTH11和DkXTH11的啟動子活性,促進其轉錄表達。DkERF18增強了乙烯合成酶基因DkACS2啟動子活性,促進了乙烯的生物合成和柿子果實的成熟[23]。蘋果(Malus"domestica"Borkh.)MdERF2抑制了乙烯合成關鍵基因MdACS1的轉錄表達,而MdERF3促進MdACS1的表達,MdERF2與MdERF3拮抗調節果實的成熟[24]。PpERF4通過與PpACO1和PpIAA1基因的啟動子結合促進其表達。ERF還與其他蛋白形成復合物,共同調控果實的成熟。PpERF4與PpIAA1結合形成復合物,促進脫落酸生物合成基因PpNCED2和PpNCED3以及果實軟化基因PpPG1的表達,加速了桃子果實成熟,縮短了果實貨架期[25]。以上研究報道表明了ERF在果實成熟中的重要意義。在香蕉全基因組水平上重新鑒定香蕉A基因組中的AP2/ERF家族成員,研究其在香蕉果實采后成熟過程中的差異表達特性,發現AP2/ERFs家族共有317個家族成員,其中MaERF15在巴西蕉和粉蕉果實成熟過程中處于高表達水平,說明其可能在香蕉果實成熟中具有重要作用,可調控成熟相關基因的表達,從而影響果實采后成熟[26]。前期從香蕉基因組中分離鑒定出MaERF15,并通過亞細胞定位,轉錄激活等實驗,明確了MaERF15是定位于細胞核中具有轉錄激活活性的轉錄因子,但MaERF15參與乙烯生物合成調控果實成熟相關的研究還未見報道[27]。
香蕉是典型的呼吸躍變型果實,伴隨著呼吸躍變,內源乙烯生物合成量迅速上升并在短時間內達到高峰,所以內源乙烯的生物合成在果實采后成熟過程中發揮重要作用[28]。香蕉果實內源乙烯生物合成過程分3個重要步驟:首先是在S-腺苷蛋氨酸合成酶(S-adenosyl-l-"methionine"synthase,"SAMS)的作用下將蛋氨酸合成S-腺苷蛋氨酸;第二步是在氨基環丙烷羧酸合成酶((1-"aminocyclopropane-1-carboxylic"acid"synthase,"ACS)的作用下將S-腺苷蛋氨酸合成1-氨基環丙烷羧酸;最后在氨基環丙烷羧酸氧化酶(1-aminocy clopropane-"1-carboxylic"acid"oxidase,"ACO)的作用下將1-氨基環丙烷羧酸氧化生成乙烯[29]。在此過程中,ACO基因的表達與乙烯生物合成速率呈正相關,其基因活性可用于調控高等植物中乙烯的生物合成[30]。1991年,首次成功地從甜瓜(Cucumis"melo"L.)果實組織cDNA中提取分離得到ACO基因序列并體外驗證其活性[31]。ACO是乙烯生物合成的關鍵酶基因,直接影響著乙烯的生物合成,在植物生長的各個時期發揮著重要作用,對植物生長、花朵衰落和果實成熟的研究中具有重要意義[32]。ACO作為主要靶基因在基因工程中被TFs轉錄調控研究果實成熟。甜瓜CmPIF8抑制CmACO1啟動子的活性,從而促進了乙烯的釋放,加速了果實的成熟,間接增加了采后甜瓜果實中的蔗糖含量[33]。在南果梨果實的PuACO家族研究中發現PuACO2、PuACO3和PuACO11在果實成熟和乙烯生物合成中起重要作用,可被乙烯誘導并被1-MCP處理抑制[34]。ACO是一個重要的限速酶,其高表達直接影響乙烯的生物合成,形成一個正反饋調節機制,進一步促進果實的成熟[35]。分析香蕉基因組發現有11個MaACO基因在果實成熟過程中表現出高表達水平,MaACO可能在果實成熟中具有重要的作用,但香蕉果實中乙烯響應因子MaERF15與關鍵酶基因ACO具體的調控機制還不清楚[36]。
本研究選取MaACO8作為靶基因,研究其啟動子的結構特征和啟動活性,發現MaACO8啟動子具有較強的活性,并受乙烯響應因子MaERF15的轉錄調控。本研究解析了MaERF15與MaACO8啟動子互作調控果實成熟的分子機制,促進ERF家族在香蕉果實品質中的研究,為香蕉果實采后成熟或保鮮新技術的研發提供理論依據。
1.1""材料
巴西蕉果實(Musa"spp,"Cavendish)采自中國熱帶農業科學院熱帶生物技術研究所文昌種植基地;本氏煙草(Nicotiana"benthamiana)種子由本實驗室提供;大腸桿菌DH5α感受態、農桿菌GV3101感受態和Y1H酵母感受態均購自上海唯地生物技術有限公司。
1.2""方法
1.2.1""MaACO8啟動子的分離擴增與生物信息學分析"(1)MaACO8啟動子的分離擴增。根據香蕉A基因組數據庫(http://banana-genome.cirad."fr/),從香蕉基因組DNA中分離出MaACO8啟動子序列,設計MaACO8啟動子序列引物,以巴西蕉DNA為模板擴增目的片段,并連接到pMD19-T載體中,將連接產物轉化大腸桿菌感受態,進行PCR鑒定,挑選陽性菌株送測序,將測序正確的菌株擴大培養提取質粒,得到pMD19-"T-MaACO8質粒。
(2)生物信息學分析。利用PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plant care/html/)在線網站對啟動子元件進行生物信息學分析,使用TBtools軟件制作啟動子結構可視化圖。
1.2.2""目的基因克隆及載體構建""(1)MaERF15的克隆及相關載體的構建。根據基因的cDNA序列設計特異性引物,以巴西蕉cDNA為模板擴增MaERF15全長,并連接到pMD19-T載體中,將連接產物轉化大腸桿菌感受態,經PCR鑒定后,挑選陽性菌株送測序,將測序正確的菌株活化培養并提取質粒,得到pMD19-T-MaERF15質粒。分別在特異性引物兩端添加無縫克隆接頭序列,以pMD19-T-MaERF15質粒為模板,擴增目的片段,分別連接到pGreenⅡ62-SK和pGADT7載體中。擴增、回收、連接、轉化鑒定并送測菌液。擴大培養測序正確的pGADT7-MaERF15和pGreenⅡ-62-SK-MaERF15菌液并抽提重組質粒。
(2)MaACO8啟動子的克隆及相關載體的構建。根據MaACO8基因啟動子序列設計包含MaERF15結合位點的特異性引物,以pMD19-T-"MaACO8質粒為模板擴增啟動子片段。將pBI121的35S啟動子替換為MaACO8啟動子,用Sda"I和Xba"I雙酶切pBI121載體和啟動子,將擴增片段MaACO8啟動子連接到pBI121載體中。分別在特異性引物兩端加無縫克隆接頭序列,以pMD19-T-MaACO8為模板擴增目的片段,分別連接到pAbAi、pGreenⅡ0800-LUC表達載體中。將連接產物轉化大腸桿菌感受態,經PCR鑒定后,挑選陽性菌株送測序,將測序正確的菌株活化培養提取質粒,得到pBI121-MaACO8、pAbAi-"MaACO8和pGreenⅡ0800-LUC-MaACO8重組質粒。
1.2.3""MaACO8啟動子的活性檢測""(1)轉化農桿菌。將構建好的pBI121-MaACO8重組質粒轉化農桿菌GV1301,具體轉化步驟如下:從–80"℃冰箱內取出GV3101農桿菌感受態細胞,迅速插入冰盒內,使其溶解。加入pBI121-"MaACO8質粒輕輕混勻,依次于冰盒上靜置5"min、液氮5"min(或干冰乙醇浴盒–80"℃和–80"℃冰凍)、37"℃水浴5"min、冰浴5"min。添加700"μL不含抗生素的YEB液體培養基,混合均勻,于28"℃震蕩培養2~3"h。6000"r/min離心1"min,收集菌體,留取100"μL左右上清輕輕吹打重懸菌體并涂布于含相應抗生素的YEB平板上,倒置于28"℃培養箱培養2~3"d。挑菌進行PCR鑒定,將陽性菌株放入50"mL的離心管中擴大培養備用。
(2)農桿菌介導法侵染香蕉果實切片。將農桿菌菌液在30"℃的恒溫搖床中震蕩培養至OD600=0.8,8000"r/min離心10"min,收集菌體,并用加入200"μmol/L乙酰丁香酮(AS)的MS液體培養基重懸至OD600=0.6~0.8,室溫暗處靜置孵育2~3"h。將香蕉果實切成形狀和厚度大致相同的薄片,于1.5%亞硫酸氫鈉溶液中浸泡10"min。把香蕉薄片放入孵育好的菌液中,進行真空輔助侵染。將侵染后的香蕉薄片均勻放置于1/2MS固體培養基上28"℃暗培養3"d,每組重復3次。
(3)GUS染色實驗。選取侵染后大小相近的香蕉果實薄片置于50"mL小燒杯中放于GUS染液中進行染色處理過夜,每組重復3次,具體操作步驟按照試劑盒說明書,把染色處理后的果片用75%乙醇進行脫色,直到脫色液透明,將果片體置于體視顯微鏡下觀察拍照。切去35S啟動子的空載體為陰性對照,正常pBI121載體為陽性對照。
(4)GUS酶活性檢測。將侵染后的香蕉薄片樣品放入研缽中,加入液氮研磨,然后取200"mg樣品放入1.5"mL離心管中,加入1800"μL"PBS,渦旋30"s后,在冰上靜置10"min,接著12"000"r/min離心10"min,離心后收集的上清液為GUS酶活的測定樣品。具體檢測方法參考植物β-葡萄糖苷酸酶(GUS)ELISA試劑盒(mlbio酶聯生物,中國)說明書。
1.2.4""酵母單雜交(YIH)""(1)AbA的背景篩選。①轉化Y1H"Gold酵母感受態:將構建好的pAbAi-MaACO8和pAbAi-p53i質粒用BstbI單酶切,65"℃酶切1"h,電泳泡膠檢測正確后,純化回收目的片段,轉化Y1HGold酵母感受態細胞(轉化步驟參照Y1H酵母感受態轉化說明書)。觀察菌落生長情況,并挑選出長勢較好的菌落,PCR鑒定pAbAi-MaACO8整合到Y1HGold基因組中的情況。將檢測正確的陽性菌株保存(–80"℃甘油保存),此酵母菌株為Y1HGold(pAbAi-"MaACO8)陽性菌株。②AbA背景表達水平篩選:挑取固體培養基中Y1Hgold(pAbAi-MaACO8)陽性單克隆,用100"μL"0.9%"NaCl"溶液吸打混勻,測定其吸光度,根據比例稀釋菌液至OD600="0.002。吸取100"μL混合液均勻涂布于含有不同濃度AbA抗生素的SD/-Ura固體培養基上,設置AbA濃度每50"ng為1個梯度,設置范圍為0~"1000"ng/mL。30"℃倒置培養48~72"h。觀察不同AbA濃度下SD/-Ura板中單菌落的生長情況,若到某一個濃度酵母菌無法生長,則在該濃度范圍內進行細致篩選,最終篩選AbA表達水平為酵母無法生長的最低濃度。
(2)酵母轉化。①Y1H"Gold(pAbAi-MaACO8)酵母感受態制備:在SD/-Ura板上挑取3~5個Y1Hgold(pAbAi-MaACO8)陽性菌于3"mL"YPDA培養基中,在30"℃搖床中200"r/min活化培養8~12"h;選取活性強的菌液,吸取5"μL加入到50"mL的YPDA培養基中在250"mL的錐形瓶繼續培養孵育,16~20"h至OD600=0.15~0.3;將菌液收集于50"mL離心管中,7000"r/min離心5"min,棄上清液,加入50"mL的YPDA重懸,于250nbsp;mL的錐形瓶培養3~5"h,使得OD600=0.4~0.5;收集菌體7000"r/min離心5"min,棄上清,加入30"mL"ddH2O重懸,7000"r/min離心"5"min,棄上清液,將沉淀重懸于1.5"mL的1.1×TE/LiAC;細胞懸液轉移至1.5"mL離心管中,12"000"r/min離心50"s,棄上清液,向管中沉淀加入600"μL"1.1×TE/LiAC,酵母Bait-MaACO8感受態制備完成(保存于冰上,2"h內轉化)。②Y1HGold(pBait)酵母感受態與Prey表達載體互作驗證:取上述50"μL"Y1Hgold(pAbAi-MaACO8)酵母感受態細胞放入2個1.5"mL離心管中,向管中分別加入100"ng"Prey表達載體pGADT7-MaERF15和pGADT7,具體轉化步驟參照1.2.4(1)中的轉化方法,吸取100"μL轉化菌液涂布于SD/-Leu板上,培養3~5"d。待菌落長出后,挑取單菌落溶于1"mL"0.9%"NaCl溶液,將OD600調至0.2,點涂于SD/-Leu和SD/-Leu+"AbA固體培養基上,觀察每組酵母菌的生長情況,從而確定互作情況。
1.2.5""凝膠阻滯實驗(EMSA)""將MaERF15基因的編碼序列克隆到pGEX-4T-1載體(Amersham"Biosciences,"USA)上,獲得帶GST(glutathione"S-transferases)標簽的重組蛋白,將重組蛋白轉化Escherichia"coli菌株BM"Rosetta(DE3),得到的蛋白用Glutathione-Superflow"Resin(Clontech)進行純化。MaACO8啟動子與MaERF15的結合順式作用元件的探針序列(5-ATGGCCGACATGC-"3)由上海生工合成,其5'端用生物素標記。EMSA具體操作步驟參照XIAO等[37]的方法。
1.2.6""雙熒光素酶報告系統試驗""(1)轉化農桿菌GV3101。參照上述1.2.2轉化農桿菌GV1301的方法,將構建好的pGreenⅡ0800-LUC-"MaACO8和pGreenⅡ-62-SK-MaERF15質粒分別轉化農桿菌感受態GV3101(pSoup)。pGreenⅡ0800-LUC和pGreenⅡ62-SK空載體轉化為對照。
(2)煙草轉化和瞬時表達。將實驗組(GV3101/"pGreenⅡ-LUC-MaACO8和GV3101/"pGreenⅡ-"62-SK-MaERF15)與對照組(GV3101/"pGreenⅡ0800-LUC-MaACO8和GV3101/pGreenⅡ-62-SK)分別置于YEP液體培養基(25"μg/mL"Rif、50"μg/mL"Kan和20"μg/mL"Tet)中,30"℃,220"r/min活化擴大培養至OD600=0.8,5000"r/min離心10"min,收集菌體。將菌體用侵染液重懸至OD600=0.6,室溫靜置2"h。將GV3101/pGreenⅡ-"LUC-MaACO8分別與GV3101/pGreenⅡ-62-SK和GV3101/pGreenⅡ-62-SK-MaERF15以1∶3的
體積比混勻。用去掉針頭的1"mL注射器將混合好的菌液從煙草葉背面進行注射。為保證實驗背景的一致性,需要將對照載體和實驗目標載體的菌液注射在同一葉片的不同部位上。室溫條件下培養2"d,每天向葉片噴水1~2次,保持濕潤。
(3)雙熒光素酶報告基因活性檢測。取注射后的實驗組和對照組煙草葉片分別放入研缽中研磨,參照FU等[21]的方法測定螢火蟲熒光素酶和海腎熒光素酶的活性值,最后統計分析實驗組和對照組的螢火蟲熒光素酶活性值/海腎熒光素酶活性值(LUC/REN)。
(4)活體植物發光成像觀察。將1.2.6(1)中的菌液1∶3混勻組成4種組合,在同一片葉片中分為4個區域分別注射4種組合的菌液分為對照組和實驗組。48"h后用活體植物發光成像系統進行拍照觀察,觀察前需要于暗處在煙草葉片上噴灑反應底物D-蟲熒光素鉀鹽溶液反應5"min。
1.3""數據處理
使用Excel、GraphPadPrism"9.5、TBtools、IBM"SPSS"Statistics"25軟件對數據進行統計和分析。
2.1""MaACO8啟動子的克隆和生物信息學分析
根據香蕉A基因組數據庫(http://banana-"genome.cirad.fr/)BLAST,從香蕉基因組DNA中分離出2000"bp的MaACO8啟動子序列,采用PlantCARE軟件對MaACO8啟動子進行生物信息學分析。結果表明,MaACO8啟動子包含11處與ERF結合的GCC-box核心啟動子元件、36個CAAT-box、14個負責啟動、促進和增強轉錄的TATA-box等(圖1)。
2.2""MaACO8啟動子活性檢測
將MaACO8啟動子取代pBI121載體的35S啟動子(圖2A),利用農桿菌介導法轉化侵染香蕉果實切片。pBI121作為陽性對照,去除35S啟動子的pBI121作為陰性對照進行GUS染色。染色結果顯示,使用MaACO8啟動子侵染的香蕉薄片顏色比陰性對照藍,但比陽性對照稍淺(圖2B)。其GUS活性(圖2C)與染色結果一致,表明MaACO8啟動子具有較強的啟動活性。
2.3""MaERF15與MaACO8啟動子的互作機制
2.3.1""pAbAi-MaACO8載體轉化酵母""為了驗證MaERF15是否與MaACO8啟動子存在互作關系,分別將MaERF15和MaACO8啟動子構建到pGADT7和pAbAi載體中,得到pGADT7-Ma
ERF15和pAbAi-MaACO8重組載體進行酵母單雜交實驗(圖3A)。將構建好的Bait載體pAbAi-"MaACO8和pAbAi-p53i質粒用BstbⅠ單酶切反應后回收。將酶切產物轉化到酵母Y1HGold感受態中,取100"μL轉化產物涂布于SD/-Ura培養基上,30"℃倒置培養48~96"h,挑取單菌落進行PCR鑒定,檢測pBait-AbAi是否整合到酵母菌株中(pAbAi-p53i為陽性對照)。結果表明pAbAi-"MaACO8載體成功整合到酵母基因組中,誘餌載體轉化成功。
2.3.2""AbA背景篩選""金擔子素A(aureobasidin"A,"AbA)是環酯肽類抗生素中的一種,其濃度為0.1~0.5"μg/mL時能抑制酵母菌株生長。以pAbAi-"p53i為對照檢驗金擔子素的背景表達,其酵母菌株的生長濃度范圍是0~200"ng/mL。結果表明,抑制pAbAi-MaACO8酵母菌株生長的最低AbA濃度為50"ng/mL。
2.3.3""酵母單雜交""將轉入pAbAi-MaACO8誘餌載體的酵母菌制作成Y1HGold(pBait)酵母感受態后與MaERF15構建的Prey表達載體共轉化后觀察酵母細胞的生長情況。如圖3B所示,酵母細胞在不含有抗生素AbA的SD/-Leu培養基上生長良好。培養基內加入抗生素50"ng/mL的AbA后,實驗組(AD-MaERF15+MaACO8-promoter)的酵母細胞可以正常生長;而陰性對照組(AD-"Empty+MaACO8-promoter)共轉化的酵母細胞則不能生長,表明MaERF15與MaACO8啟動子互作。
2.3.4""凝膠阻滯實驗(EMSA)""生物信息學分析結果表明MaACO8的啟動子有MaERF15的結合元件GCC-box,因此采用EMSA技術來驗證MaERF15是否能與MaACO8的啟動子直接結合。如圖3C所示,MaERF15轉錄因子能與MaACO8的啟動子上的GCC-box直接結合,隨著競爭性的冷探針的加入顯著降低了MaERF15與MaACO8
啟動子的結合能力,加入非標記的突變探針并未影響MaERF15與MaACO8的結合能力,非標記的突變探針則不能與MaERF15結合。以上結果表明MaERF15轉錄因子能特異性地與MaACO8的啟動子上的GCC-box直接結合。
2.4""MaERF15對MaACO8的轉錄調控作用
分別將MaERF15和MaACO8構建到pGreenⅡ62-SK和pGreenⅡ0800-LUC載體中,得到pGreenⅡ-62-SK-MaERF15和pGreenⅡ0800-"LUC-MaACO8重組載體(圖4A)。轉化農桿菌侵染煙草葉片,用雙熒光素酶報告基因檢測試劑盒對熒光素酶活性進行檢測,驗證MaERF15與MaACO8的啟動子的互作能力。將報告載體與效應載體共侵染煙草葉片,將MaACO8啟動子加空效應載體作為對照組,其LUC/REN比值作為1。結果顯示,MaERF15與MaACO8啟動子共侵染煙草葉片LUC活性顯著高于對照組(圖4B)。同樣地,在活體植物發光成像系統下熒光強弱也直觀顯示出MaERF15與MaACO8啟動子的熒光素酶活性明顯高于對照組(圖4C),這充分說明MaERF15對MaACO8的轉錄具有激活作用。
香蕉采后成熟決定了水果的保質期,乙烯生物合成是決定香蕉成熟的核心因素[38]。ACO(1-氨基環丙烷-1-羧酸氧化酶)是植物乙烯合成途徑中的關鍵酶,對植物的開花、果實成熟和種子發育等生物學過程有重要影響,參與調控植物的成熟和衰老過程[39]。2003年,RASORI等[40]構建β-葡萄糖醛酸酶(GUS)報告基因與桃ACO基因啟動子之間的嵌合融合體,轉化番茄植株,并在桃果實中進行瞬時活性鑒定,分析ACO啟動子的功能。本研究通過將MaACO8啟動子構建到具有β-葡萄糖醛酸酶(GUS)報告基因的pBI121載體中,使用農桿菌介導法轉化到香蕉果片中,通過染色觀察GUS基因的瞬時表達情況和定量分析GUS酶活性,從而確定啟動子活性的強弱,研究結果表明MaACO8啟動子具有較強的啟動子活性。
ERF是AP2/ERF超家族的一個亞家族,廣泛參與調控果實品質的形成,是植物生長過程中重要的轉錄因子[41]。ERFs作為激活子或抑制子調控果實品質形成相關基因的表達,參與果實成熟的調控。ERFs可以直接或間接調控乙烯生物合成中的關鍵酶基因ACS和ACO,直接影響果實中乙烯的生物合成,進而影響成熟過程[42]。MdERF4直接與MdACS1啟動子結合并抑制其表達,并與MdERF3啟動子結合,抑制MdERF3對MdACS1啟動子的激活作用,間接抑制了乙烯的合成,延長了果實的貯藏期[43]。WANG等[36]從香蕉A基因組中鑒定到11個與果實成熟密切相關的ACO基因,其中MaACO8在巴西蕉和粉蕉果實采后成熟過程中高水平表達,這與MaERF15在采后果實中的表達具有相似的趨勢,二者互作在調控香蕉果實采后乙烯生物合成和果實成熟過程中具有重要作用。本研究中的MaERF15是乙烯響應因子,生物信息學分析結果表明MaACO8啟動子區域有多個ERF轉錄因子結合域,酵母單雜交實驗證明二者存在互作關系,EMSA證明MaERF15與MaACO8基因啟動子的GCC-box直接結合,并通過雙熒光素酶報告系統和活體熒光成像系統證實了MaERF15對MaACO8的轉錄調控作用,進而調控乙烯的生物合成,影響香蕉的成熟過程。這與香蕉B基因家族中MbERF71、MbERF113可分別靶向MbACO2啟動子的GCC-box,激活MbACO2的表達結果一致[44]。MaERF11轉錄因子募集組蛋白脫乙酰酶MaHDA1并與MaACO1啟動子相互作用以抑制其表達,而MaERF9則激活MaACO1啟動子活性[45]。這表明乙烯合成關鍵酶基因ACO受到多個ERF家族成員的復雜調控。ERF參與果實成熟調控的網絡錯綜復雜,本研究解釋了ERF通過轉錄調控乙烯生物合成關鍵基因ACO參與果實成熟的調控機制。
本研究揭示了香蕉中乙烯響應因子MaERF15與乙烯生物合成關鍵基因MaACO8相互作用參與果實成熟的調控機制。MaERF15與MaACO8啟動子中的GCC-box靶向結合,激活MaACO8的表達,從而促進果實中乙烯的生物合成,加快果實成熟的進程。本研究促進了ERF轉錄因子調控下游乙烯生物合成關鍵基因的研究,進一步解析ERF在采后果實成熟中的調控網絡,為種質資源改良和果實保鮮技術的創新提供理論基礎。
參考文獻
[1]"PANIGRAHI"N,"THOMPSON"A"J,"ZUBELZU"S,"KNOX"J"W."Identifying"opportunities"to"improve"management"of"water"stress"in"banana"production[J]."Scientia"Horticulturae,"2021,"276:"109735.
[2]"QAMAR"S,"SHAIKH"A."Therapeutic"potentials"and"compositional"changes"of"valuable"compounds"from"banana:"a"review[J]."Trends"in"Food"Science"amp;"Technology,"2018,"79:"1-9.
[3]"KUMAR"P"S,"SARAVANAN"A,"SHEEBA"N,"UMA"S."Structural,"functional"characterization"and"physicochemical"properties"of"green"banana"flour"from"dessert"and"plantain"bananas"(Musa"spp.)[J]."Food"Science"and"Technology,"2019,"116:"108524.
[5]"朱孝揚,"李雪萍,"單偉,"鄺健飛,"陳建業,"陳維信,"陸旺金."香蕉貯運保鮮技術研究進展[J]."熱帶作物學報,"2020,"41(10):"2013-2021.ZHU"X"Y,"LI"X"P,"SHAN"W,"KUANG"J"F,"CHEN"J"Y,"CHEN"W"X,"LU"W"J."Research"progress"on"banana"storage,"transportation"and"preservation"technology[J]."Chinese"Journal"of"Tropical"Crops,"2020,"41(10):"2013-2021."(in"Chinese)
[6]"FENG"K,"HOU"X"L,"XING"G"M,"LIU"J"X,"DUAN"A"Q,"XU"Z"S,"LI"M"Y,"ZHUANG"J,"XIONG"A"S."Advances"in"AP2/ERF"super-family"transcription"factors"in"plant[J]."Critical"Reviews"in"Biotechnology,"2020,"40(6):"750-776.
[7]"XIE"Z,"NOLAN"T"M,"JIANG"H,"YIN"Y."AP2/ERF"transcription"factor"regulatory"networks"in"hormone"and"abiotic"stress"responses"in"Arabidopsis[J]."Front"Plant"Science,"2019,"10:"228.
[8]"LI"J"J,"GUO"X,"ZHANG"M"H,"WANG"X,"ZHAO"Y,"YIN"Z"G,"ZHANG"Z"Y,"WANG"Y"M,"XIONG"H"Y,"ZHANG"H"L,"TODOROVSKA"E,"LI"Z"C."OsERF71"confers"drought"tolerance"via"modulating"ABA"signaling"and"proline"biosynthesis[J]."Plant"Science,"2018,"270:"131-139.
[9]"ZHANG"Z"J,"HUANG"R"F."Enhanced"tolerance"to"freezing"in"tobacco"and"tomato"overexpressing"transcription"factor"TERF2/LeERF2"is"modulated"by"ethylene"biosynthesis[J]."Plant"Physiology,"2010,"73(3):"241-249.
[10]"LI"B"B,"WANG"X"H,"WANG"X"F,"XI"Z"M."An"AP2/ERF"transcription"factor"VvERF63"positively"regulates"cold"tolerance"in"Arabidopsis"and"grape"leaves[J]."Environmental"and"Experimental"Botany,"2023,"205:"105124.
[11]"HAN"Y"C,"KUANG"J"F,"CHEN"J"Y,"LIU"X"C,"XIAO"Y"Y,"FU"C"C,"WANG"J"N,"WU"K"Q,"LU"W"J."Banana"transcription"factor"MaERF11"recruits"histone"deacetylase"MaHDA1"and"represses"the"expression"of"MaACO1"and"expansins"during"fruit"ripening[J]."Plant"Physiology,"2016,"171(2):"1070-1084.
[12]"LEE"J"M,"JOUNG"J"G,"MCQUINN"R,"CHUNG"M"Y,"FEI"Z,"TIEMAN"D,"KLEE"H,"GIOVANNONI"J."Combined"transcriptome,"genetic"diversity"and"metabolite"profiling"in"tomato"fruit"reveals"that"the"ethylene"response"factor"SlERF6"plays"an"important"role"in"ripening"and"carotenoid"accumulation[J]."Plant"J,"2012,"70(2):"191-204.
[14]"LIU"M,"GOMES"B"L,"MILA"I,"PURGATTO"E,"PERES"L"E,"FRASSE"P,"MAZA"E,"ZOUINE"M,"ROUSTAN"J"P,"BOUZAYEN"M,"PIRRELLO"J."Comprehensive"profiling"of"ethylene"response"factor"expression"identifies"ripening-asso ciated"ERF"genes"and"their"link"to"key"regulators"of"fruit"ripening"in"tomato[J]."Plant"Physiology,"2016,"170(3):"1732-"1744.
[15]"ZHANG"S"Y,"LIU"S,"REN"Y"S,"ZHANG"J,"HAN"N,"WANG"C,"WANG"D"M,"LI"H"H."The"ERF"transcription"factor"ZbERF3"promotes"ethylene-induced"anthocyanin"biosynthesis"in"Zanthoxylum"bungeanum[J]."Plant"Science,"2024,"349:"112264.
[16]"ZHUO"M"G,"WANG"T"Y,"HUANG"X"M,"HU"G"B,"ZHOU"B"Y,"WANG"H"C,"ABBAS"F."ERF"transcription"factors"govern"anthocyanin"biosynthesis"in"litchi"pericarp"by"modulating"the"expression"of"anthocyanin"biosynthesis"genes[J]."Scientia"Horticulturae,"2024,"337:"113464.
[17]"CAI"D"L,"XU"H,"LIU"Z"L,"CHEN"N"H,"ZHU"L,"LIN"Z"X,"WU"C"J,"SHAN"W,"CHEN"J"Y,"LU"W"J,"CHEN"L,"KUANG"J"F."Banana"MaERF124"negatively"modulates"carotenoid"accumulation"during"fruit"ripening"through"repression"of"carotenogenesis"genes[J]."Postharvest"Biology"and"Technology,"2023,"195:"112151.
[18]"IRFAN"M,"KUMAR"P,"KUMAR"V,"DATTA"A."Fruit"ripening"specific"expression"of"β-D-N-acetylhexosaminidase"(β-Hex)"gene"in"tomato"is"transcriptionally"regulated"by"ethylene"response"factor"SlERF."E4[J]."Plant"Science,"2022,"323:"111380.
[19]"WANG"M"M,"ZHU"Q"G,"DENG"C"L,"LUO"Z"R,"SUN"N"J,"GRIERSON"D,"YIN"X"R,"CHEN"K"S."Hypoxia-responsive"ERFs"involved"in"postdeastringency"softening"of"persimmon"fruit[J]."Plant"Biotechnol"Journal,"2017,"15(11):"1409-1419.
[20]"YIN"X"R,"ALLAN"A"C,"CHEN"K"S,"FERGUSON"I"B."Kiwifruit"EIL"and"ERF"genes"involved"in"regulating"fruit"ripening[J]."Plant"Physiology,"2010,"153(3):"1280-1292.
[21]"FU"C"C,"HAN"Y"C,"QI"X"Y,"SHAN"W,"CHEN"J"Y,"LU"W"J,"KUANG"J"F."Papaya"CpERF9"acts"as"a"transcriptional"repressor"of"cell-wall-modifying"genes"CpPME1/2"and"CpPG5"involved"in"fruit"ripening[J]."Plant"Cell"Reports,"2016,"35(11):"2341-2352.
[22]"WANG"X"B,"ZENG"W"F,"DING"Y"F,"WANG"Y,"NIU"L,"YAO"J"L,"PAN"L,"LU"Z"H,"CUI"G"C,"LI"G"H,"WANG"Z"Q."Peach"ethylene"response"factor"PpeERF2"represses"the"expression"of"ABA"biosynthesis"and"cell"wall"degradation"genes"during"fruit"ripening[J]."Plant"Scences,"2019,"283:"116-126.
[23]"HE"Y"H,"XUE"J,"LI"H,"HAN"S"K,"JIAO"J"Q,"RAO"J"P."Ethylene"response"factors"regulate"ethylene"biosynthesis"and"cell"wall"modification"in"persimmon"(Diospyros"kaki"L.)"fruit"during"ripening[J]."Postharvest"Biology"and"Technology,"2020,"168:"111255.
[24]"LI"T,"JIANG"Z"Y,"ZHANG"L"C,"TAN"D"M,"WEI"Y,"YUAN"H,"LI"T"L,"WANG"A."Apple"(Malus"domestica)"MdERF2"negatively"affects"ethylene"biosynthesis"during"fruit"ripening"by"suppressing"MdACS1"transcription[J]."The"Plant"Journal,"2016,"88(5):"735-748.
[25]"WANG"X"B,"PAN"L,"WANG"Y,"MENG"J"R,"DENG"L,"NIU"L,"LIU"H,"DING"Y"F,"YAO"J"L,"NIEUWENHUIZEN"N"J,"AMPOMAH-DWAMENA"C,"LU"Z"H,"CUI"G"C,"WANG"Z,"ZENG"W."PpIAA1"and"PpERF4"form"a"positive"feedback"loop"to"regulate"peach"fruit"ripening"by"integrating"auxin"and"ethylene"signals[J]."Plant"Science,"2021,"313:"111084.
[26]"張海波,"鄭云柯,"付毛妮,"張建斌,"賈彩紅,"李新國,"劉菊華."香蕉AP2/ERFs超家族的重新鑒定及在果實采后成熟過程中的差異表達特性[J]."果樹學報,"2024,"41(5):"861-874.ZHANG"H"B,"ZHENG"Y"K,"FU"M"N,"ZHANG"J"B,"JIA"C"H,"LI"X"G,"LIU"J"H."Re-identification"of"the"AP2/ERFs"superfamily"in"banana"and"its"differential"expression"characteristics"during"postharvest"ripening[J]."Journal"of"Fruit"Science,"2024,"41(5):"861-874."(in"Chinese)
[27]"張海波."香蕉MaAP2/ERFs家族的全基因組分析及關鍵MaERFs在果實采后成熟過程中的作用[D]."海口:"海南大學,"2024.ZHANG"H"B."Genome-wide"analysis"of"banana"MaAP2/ERFs"family"and"the"role"of"key"MaERFs"in"fruit"postharvest"ripening[D]."Haikou:"Hainan"University,"2024."(in"Chinese)
[28]"LIU"M"Y,"WANG"C"R,"JI"H"L,"SUN"M"X,"LIU"T"Y,"WANG"J"H,"CAO"H,"ZHU"Q"G."Ethylene"biosynthesis"and"signal"transduction"during"ripening"and"softening"in"non-climacteric"fruits:"an"overview[J]."Frontiers"in"Plant"Science,"2024,"15:"1368692.
[29]"LI"S,"CHEN"K"S,"GRIERSON"D."A"critical"evaluation"of"the"role"of"ethylene"and"MADS"transcription"factors"in"the"network"controlling"fleshy"fruit"ripening[J]."New"Phytologist,"2019,"221(4):"1724-1741.
[30]"RUDU?"I,"SASIAK"M,"K?PCZY?SKIV"J."Regulation"of"ethylene"biosynthesis"at"the"level"of"1-aminocyclopropane-1-"carboxylate"oxidase"(ACO)"gene[J]."Acta"Physiol"Plant,"2013,"35:"295-307.
[31]"VERVERIDIS"P,"JOHN"P."Complete"recovery"in"vitro"of"ethylene-forming"enzyme"activity[J]."Phytochemistry,"1991,"30(3):"725-727.
[32]"PATTYN"J,"VAUGHAN-HIRSCH"J,"VAN"DE"POEL"B."The"regulation"of"ethylene"biosynthesis:"a"complex"multilevel"control"circuitry[J]."New"Phytologist,"2021,"229(2):"770-782.
[33]"GUAN"J"Y,"LIANG"X,"GAO"G,"YANG"F,"QI"H"Y."The"interaction"between"CmPIF8"and"CmACO1"under"postharvest"red"light"treatment"might"affect"fruit"ripening"and"sucrose"accumulation"in"oriental"melon"fruit[J]."Postharvest"Biology"and"Technology,"2024,"209:"112717.
[34]"YUAN"H,"YUE"P"T,"BU"H"D,"HAN"D"G,"WANG"A."Genome-wide"analysis"of"ACO"and"ACS"genes"in"pear"(Pyrus"ussuriensis)[J]."In"Vitro"Cellular"amp;"Developmental"Biology-Plant,"2019,"56:"193-199.
[35]".HOUBEN"M,"VAN"DE"POEL"B."1-aminocyclopropane-"1-carboxylic"acid"oxidase"(ACO):"the"enzyme"that"makes"the"plant"hormone"ethylene[J]."Front"Plant"Science,"2019,"10:"695.
[36]"WANG"Z,"MIAO"H"X,"LIU"J"H,"XU"B"Y,"YAO"X"M,"XU"C"Y,"ZHAO"S"C,"FANG"X"D,"JIA"C"H,"WANG"J"Y,"ZHANG"J"B,"LI"J"Y,"XU"Y,"WANG"J"S,"MA"W"H,"WU"Z"Y,"YU"L"L,"YANG"Y"L,"LIU"C,"GUO"Y,"SUN"S"L,"BAURENS"F"C,"MARTIN"G"L,"SALMON"F,"GARSMEUR"O,"YAHIAOUI"N,"HERVOUET"C,"ROUARD"M,"LABOUREAU"N,"HABAS"R,"RICCI"S,"PENG"M,"GUO"A"P,"XIE"J"H,"LI"Y,"DING"Z"H,"YAN"Y,"TIE"W"W,"D'HONT"A,"HU"W,"JIN"Z."Musa"balbisiana"genome"reveals"subgenome"evolution"and"functional"divergence[J]."Nature"Plants,"2019,"5(8):"810-821.
[37]"XIAO"Y"Y,"KUANG"J"F,"QI"X"N,"YE"Y"J,"WU"Z"X,"CHEN"J"Y,"LU"W"J."Acomprehensive"investigation"of"starch"degradation"process"and"identifica-tion"of"a"transcriptional"activator"MabHLH6"during"banana"fruit"ripening[J]."Plant"Biotechnology"Journal,"2018,"16:"151-164.
[38]"XU"B"Y,"SU"W,"LIU"J"H,"WANG"J"B,"JIN"Z"Q."Differentially"expressed"cDNAs"at"the"early"stage"of"banana"ripening"identified"by"suppression"subtractive"hybridization"and"cDNA"microarray[J]."Planta,"2007,"226(2):"529-539.
[39]"ZHANG"Y"X,"ZHANG"Y"R,"YU"Z,"WANG"H"Y,"PING"B"Y,"LIU"Y"X,"LIANG"J"K,"MA"F"W,"ZOU"Y"J,"ZHAO"T."Insights"into"ACO"genes"across"Rosaceae:"evolution,"expression,"and"regulatory"networks"in"fruit"development[J]."Genes"Genomics,"2024,"46(10):"1209-1223.
[40]"RASORI"A,"BERTOLASI"B,"FURINI"A,"BONGHI"C,"TONUTTI"P,"RAMINA"A."Functional"analysis"of"peach"ACC"oxidase"promoters"in"transgenic"tomato"and"in"ripening"peach"fruit[J]."Plant"Science,"2003,"165(3):"523-530.
[41]"宋康華,"黎宇婷,"張魯斌."AP2/ERF轉錄因子調控果實品質研究進展[J]."熱帶作物學報,"2019,"40(5):"1032-1040.SONG"K"H,"LI"Y"T,"ZHANG"L"B."Research"progress"on"the"regulation"of"fruit"quality"by"AP2/ERF"transcription"factors[J]."Chinese"Journal"of"Tropical"Crops,"2019,"40(5):"1032-1040."(in"Chinese)
[42]"HAO"P"P,"WANG"G"M,"CHENGnbsp;H"Y,"KE"Y"Q,"QI"K"J,"GU"C,"ZHANG"S"L."Transcriptome"analysis"unravels"an"ethylene"response"factor"involved"in"regulating"fruit"ripening"in"pear[J]."Physiologia"Plantarum,"2018,"163(1):"124-135.
[43]"ZANG"N"N,"LI"X"J,"QI"L"Y,"ZHANG"Z"R,"YANG"Y"M,"YIN"Z"P,"WANG"A"D."H2O2-activated"transcription"factor"MdERF4"negatively"regulates"ethylene"biosynthetic"during"fruit"ripening"by"suppressing"MdACS1"transcription[J]."Postharvest"Biology"and"Technology,"2023,"204:"112461.
[44]"TANG"Y"Q,"YAN"Y,"TIE"W"W,"YE"X"X,"ZENG"L"W,"ZENG"L"M,"YANG"J"H,"XU"B"Y,"LI"M"Y,"WANG"Y,"XIE"Z"N,"JIN"Z"Q,"HU"W."Transcriptional"regulation"of"MbACO2-mediated"ethylene"synthesis"during"postharvest"banana"ripening[J]."Postharvest"Biology"and"Technology,"2023,"200:"112325.
[45]"XIAO"Y"Y,"CHEN"J"Y,"KUANG"J"F,"SHAN"W,"XIE"H,"JIANG"Y"M,"LU"W"J."Banana"ethylene"response"factors"are"involved"in"fruit"ripening"through"their"interactions"with"ethylene"biosynthesis"genes[J]."Journal"of"Experimental"Botany,"2013,"64(8):"2499-2510.