999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

成藏動(dòng)力對(duì)頁(yè)巖油氣聚集的影響

2025-07-18 00:00:00林一鵬韓登林鄧遠(yuǎn)蘇奧秦鵬馬斌玉蔣興超王鏡敏
沉積學(xué)報(bào) 2025年3期

關(guān)鍵詞蘆草溝組;成藏動(dòng)力;紋層結(jié)構(gòu);甜點(diǎn);儲(chǔ)集空間

第一作者簡(jiǎn)介,男,1998年出生,碩士研究生,油氣儲(chǔ)層地質(zhì)學(xué),E-mail:linyipeng163@163.com

通信作者 韓登林,男,教授,E-mail:handl@yangtzeu.edu.cn

中圖分類號(hào)P618.13文獻(xiàn)標(biāo)志碼A

DOI:10.14027/j.issn.1000-0550.2023.068

CSTR: 32268.14/j.cjxb.62-1038.2023.068

0 引言

近年來(lái),頁(yè)巖油已經(jīng)成為非常規(guī)油氣資源中的熱門領(lǐng)域。準(zhǔn)噶爾盆地吉木薩爾凹陷二疊系蘆草溝組頁(yè)巖油在國(guó)內(nèi)非常規(guī)油氣資源量中優(yōu)勢(shì)明顯,已探明儲(chǔ)量 2.546×107t ,擁有良好的勘探開(kāi)發(fā)潛力。吉木薩爾凹陷蘆草溝組為陸相咸化湖細(xì)粒沉積,主要發(fā)育粉砂質(zhì)云巖、泥質(zhì)粉砂巖、泥晶云巖等巖石類型[2-3],其在形成機(jī)制、儲(chǔ)集性能等方面與常規(guī)油氣儲(chǔ)層有著很大的區(qū)別,體現(xiàn)在垂向上巖性變化較快,即:烴源巖頻繁與富含粉砂質(zhì)、泥晶白云石等組分的儲(chǔ)集巖互層5,微米級(jí)別下就會(huì)出現(xiàn)強(qiáng)烈的非均質(zhì)性,使得有關(guān)研究區(qū)頁(yè)巖油甜點(diǎn)形成機(jī)制方面的探究存在較大困難。勘探實(shí)踐表明,陸相頁(yè)巖廣泛發(fā)育紋層結(jié)構(gòu),并且其發(fā)育程度與油氣富集程度之間存在關(guān)聯(lián)性[0-12]。然而前人的研究多集中于對(duì)研究區(qū)沉積環(huán)境、儲(chǔ)集空間類型及特征、源巖品質(zhì)等方面的探討,在紋層結(jié)構(gòu)對(duì)頁(yè)巖油氣聚集的影響方面研究相對(duì)較少[5,13-16]

與常規(guī)油氣藏不同,細(xì)粒沉積本身會(huì)阻礙油氣的運(yùn)移,并且浮力對(duì)油氣成藏的影響會(huì)被其他作用力減弱,幾乎對(duì)油氣成藏沒(méi)有貢獻(xiàn)。目前研究層段雖總體上呈現(xiàn)源內(nèi)滯留的地質(zhì)特性,但仍存在短距離二次運(yùn)移的致密油特征。因此,明確研究層段成藏動(dòng)力的形成機(jī)制,對(duì)頁(yè)巖油“甜點(diǎn)”的精確預(yù)測(cè)及后續(xù)高效開(kāi)發(fā)有著十分重要的影響。近年來(lái),一些學(xué)者探討了非常規(guī)儲(chǔ)層的成藏動(dòng)力,源儲(chǔ)壓差這一概念逐漸在相關(guān)研究中被提出。目前多數(shù)學(xué)者認(rèn)為源儲(chǔ)壓差是非常規(guī)油氣成藏的主要?jiǎng)恿Γ鏧uetal.利用等效深度法與流體包裹體壓力恢復(fù)相結(jié)合得出成藏期的源儲(chǔ)壓差,分析出源儲(chǔ)壓差是鄂爾多斯盆地長(zhǎng)7段湖相致密油的成藏動(dòng)力;喬俊程運(yùn)用等效深度法計(jì)算源、儲(chǔ)地層間剩余壓力之差論證了源儲(chǔ)壓差是控制鄂爾多斯盆地上古生界氣水展布的動(dòng)力因素;Laoetal.2采取流體包裹體古壓力恢復(fù)的方式,發(fā)現(xiàn)沙三段烴源巖與沙四段儲(chǔ)集層之間存在古壓力差,有利于油氣克服阻力等因素向源巖下部的儲(chǔ)集層中運(yùn)聚。總之,前人雖然闡述了源儲(chǔ)壓差形成機(jī)理及其對(duì)非常規(guī)油氣成藏的重要性[20-25],但是源儲(chǔ)壓差對(duì)不同紋層結(jié)構(gòu)發(fā)育程度頁(yè)巖儲(chǔ)層油氣富集的控制機(jī)制,尚未得到系統(tǒng)揭示。

本次研究中,利用鑄體薄片、場(chǎng)發(fā)射掃描電鏡(FE-SEM)、二維大視域多尺度組合電鏡成像(Maps)等測(cè)試多尺度表征儲(chǔ)集巖儲(chǔ)集空間特征,利用總有機(jī)碳(TOC)、巖石熱解(Rock-Eval)等測(cè)試手段進(jìn)行甜點(diǎn)段生烴潛力評(píng)價(jià)。在此基礎(chǔ)上,借鑒前人對(duì)成藏動(dòng)力恢復(fù)的研究,采用等效深度法與流體包裹體古壓力恢復(fù)相結(jié)合的方式對(duì)研究層段成藏動(dòng)力進(jìn)行恢復(fù)。首先對(duì)研究層段流體包裹體特征進(jìn)行觀察,利用所獲得信息模擬恢復(fù)出成藏期儲(chǔ)集巖壓力,再結(jié)合等效深度法公式計(jì)算得到成藏動(dòng)力一源儲(chǔ)壓差,從而揭示儲(chǔ)集巖紋層結(jié)構(gòu)發(fā)育程度與甜點(diǎn)段油氣富集效果的內(nèi)在關(guān)聯(lián),為頁(yè)巖油的勘探開(kāi)發(fā)提供理論參考。

1地質(zhì)背景

吉木薩爾凹陷是我國(guó)重要的陸相頁(yè)巖油產(chǎn)地,位于準(zhǔn)噶爾盆地東部隆起帶西南部,是一個(gè)西斷東超的箕狀凹陷4。該凹陷頁(yè)巖油的主要產(chǎn)層為二疊系蘆草溝組 (P2l) ,分為蘆一段 (P2l1) )蘆二段 (P2l2) ,巖性以泥、頁(yè)巖,粉砂巖、細(xì)砂巖及碳酸鹽巖為主,部分存在火山碎屑巖,同時(shí)兼具混積特征,下甜點(diǎn)相比于上甜點(diǎn)水體較深,地層厚度大,巖性以云質(zhì)粉砂巖為主,上甜點(diǎn)發(fā)育濱湖、淺湖相沉積,巖性以砂屑云巖、白云質(zhì)粉砂巖為主(圖1)[,5,14,6,2628]。良好的沉積環(huán)境有利于有機(jī)質(zhì)的富集,使得蘆草溝組曾一度被認(rèn)為是一套優(yōu)質(zhì)烴源巖層。吉木薩爾凹陷蘆草溝組勘探開(kāi)發(fā)過(guò)程中的成功實(shí)踐,使得研究區(qū)受到了眾多學(xué)者的關(guān)注[29-30]

圖1準(zhǔn)噶爾盆地吉木薩爾凹陷區(qū)域地質(zhì)圖(據(jù)文獻(xiàn)[27-28]修改)Fig.1Regional geological map of the Jimusar Sag in the Junggar Basin (modified from references [27-28]

2樣品與分析方法

本研究對(duì)J10025井蘆草溝組甜點(diǎn)段108塊樣品進(jìn)行測(cè)試。為了方便研究將樣品按照巖心上相鄰紋層間厚度劃分為三種類型,分別為紋層狀( ∠1cm) )、層狀 (1~10cm 、塊狀 gt;10cm. (圖2),其中紋層狀樣品60塊,層狀樣品31塊和塊狀樣品17塊。并對(duì)樣品進(jìn)行包括TOC測(cè)試、鑄體薄片鑒定、場(chǎng)發(fā)射掃描電鏡觀察等。據(jù)上述實(shí)驗(yàn)結(jié)果進(jìn)一步對(duì)不同類型儲(chǔ)集巖樣品進(jìn)行二維大視域多尺度組合電鏡成像(Maps)、流體包裹體和激光共聚焦等實(shí)驗(yàn)并結(jié)合測(cè)井含油飽和度等資料,獲取不同類型儲(chǔ)集巖樣品的孔喉發(fā)育特征及成藏期古壓力特征。

2.1 有機(jī)地球化學(xué)分析

利用LECOCS-230碳硫分析儀按照GB/T19145—2003標(biāo)準(zhǔn)進(jìn)行巖石TOC分析,根據(jù)總有機(jī)碳測(cè)試結(jié)果選取部分適宜樣品粉末樣進(jìn)行巖石熱解實(shí)驗(yàn)。巖石熱解實(shí)驗(yàn)利用Rock-Eval6設(shè)備按照GB/T18602—2012標(biāo)準(zhǔn)測(cè)試,以便獲得游離液態(tài)烴 (S1) 、裂解烴(S2) 、最高熱解峰溫( (Tmax) 等數(shù)據(jù)。

2.2 儲(chǔ)集空間定量表征

儲(chǔ)集空間表征實(shí)驗(yàn)均在長(zhǎng)江大學(xué)測(cè)試分析。樣品經(jīng)過(guò)鑄體制片后,利用LEICADM4P偏光顯微鏡對(duì)樣品進(jìn)行巖性識(shí)別和孔隙發(fā)育程度等方面的觀察;并采用HeliosNanoLab660進(jìn)行了FE-SEM、Maps的測(cè)試,測(cè)試視域?yàn)?800μm×800μm ,分辨率達(dá)到 10nm ,可以對(duì)儲(chǔ)集空間發(fā)育程度、礦物顆粒間及顆粒內(nèi)孔隙特征、孔喉半徑等方面進(jìn)行觀察(圖3)。

2.3 成藏期次及動(dòng)力恢復(fù)

本研究借助流體包裹體顯微形態(tài)及熒光特征對(duì)流體包裹體成因和類型進(jìn)行區(qū)分;并測(cè)量與烴類包裹體同時(shí)期形成鹽水包裹體的均一溫度,根據(jù)其頻率分布情況在埋藏一熱演化史圖件上的投點(diǎn)恢復(fù)研究區(qū)成藏期次;配合激光共聚焦測(cè)量氣液比等參數(shù)進(jìn)行流體包裹體PVTx古壓力模擬獲得主成藏期儲(chǔ)集巖壓力大小。流體包裹體相關(guān)測(cè)試均在中國(guó)地質(zhì)大學(xué)(武漢)構(gòu)造與油氣資源教育部重點(diǎn)實(shí)驗(yàn)室完成。其中,使用Maya 2000Pro 光譜儀進(jìn)行流體包裹體顯微形態(tài)觀察及熒光測(cè)試,紫外光激發(fā)波長(zhǎng)介于330~380μm ,室內(nèi)溫度 20% ;鹽水包裹體顯微測(cè)溫實(shí)驗(yàn)儀器為THMS600液氮型冷/熱臺(tái),溫度誤差為±0.1C 。

烴源巖成藏時(shí)期壓力恢復(fù)是本研究的重要內(nèi)容,雖然目前地層壓力恢復(fù)的方法很多,但能夠真實(shí)反映生烴時(shí)期烴源巖壓力的方法并不常見(jiàn)。本文借助等效深度法恢復(fù)欠壓實(shí)泥巖段古埋深壓力[3,即正常壓實(shí)段泥巖聲波測(cè)井曲線與欠壓實(shí)地層聲波曲線上具有相同孔隙度和有效應(yīng)力的深度為等效深度[32](圖4),該深度的孔隙壓力可表示為:

式中: Pz 為欠壓實(shí)泥巖的孔隙壓力, Pa;ρr 為埋藏深度與等效深度間的巖層平均密度, kg/m3 ;g為重力加速度, m/s2;Z 為欠壓實(shí)泥巖的埋深, m;ρv 為地層水密度, kg/m3;C 為正常壓實(shí)泥巖的壓實(shí)系數(shù), m?Δ 為欠(a)泥質(zhì)粉砂巖,紋層狀,J10025井,3541.64m,P2L;(b)泥質(zhì)粉砂巖,紋層狀,J10025井, 3541.64m,P2l2 ,為(a)中顯微照片,單偏光,粉砂質(zhì)和黏土質(zhì)局部富集呈條帶狀;(c)含泥粉砂質(zhì)云巖,層狀,J10025井,3687.47 m,P2l1 ;(d)含泥粉砂質(zhì)云巖,層狀,J10025井,3687.47 m,P2l1 ,為(c)中顯微照片,單偏光,可見(jiàn)泥晶白云石與粉砂質(zhì)局部富集形成條帶狀互層;(e)泥晶粉砂質(zhì)白云巖,塊狀,J10025井 3692.01m,P2l2 巖心表面紋層結(jié)構(gòu)不發(fā)育;(f)泥晶粉砂質(zhì)白云巖,塊狀,J10025井,3692.01m,P2L,泥晶級(jí)白云石和粉砂質(zhì)顆粒分散分布,單偏光

圖2不同類型儲(chǔ)集巖巖心及鑄體薄片顯微特征

Fig.2Microscopic characteristics of diferent types of reservoirrock coresand castthin sections

圖3二維大視域多尺度組合電鏡成像觀察頁(yè)巖油儲(chǔ)層儲(chǔ)集空間示意圖
圖4等效深度法計(jì)算地層壓力原理圖(據(jù)文獻(xiàn)[32-33]修改)

Fig.4Schematic diagram of calculation of formation pressure using the equivalent depth method (modified from references[32-33])

壓實(shí)泥巖的聲波時(shí)差, μs/m;Δt0 為地表的原始聲波時(shí)差, μs/m ;由于J10025井缺失正常壓實(shí)段泥巖聲波時(shí)差資料,故本文中 C,Δt0 等參數(shù)來(lái)自于前人的研究,即C取 $0 . 0 0 0 4 , \Delta t _ { 0 } { = } 6 3 1 . 6 2 ~ { \mu \mathrm { s / m } } ^ { [ 3 3 ] } 。$

頁(yè)巖油源儲(chǔ)位置較近,致使源、儲(chǔ)古埋深相差較小,烴源巖壓力可以用等效深度法直接表示,故本研究定義烴源巖與儲(chǔ)集巖之間的壓力之差代表源儲(chǔ)壓差。借助等效深度法所反映的是保留在源巖孔隙中的壓力,而研究區(qū)良好的烴源巖成藏期生烴增壓形成的裂縫相對(duì)發(fā)育[15.34,使得烴源巖產(chǎn)生壓力難以進(jìn)行定量,從而影響對(duì)成藏時(shí)期烴源巖壓力的判斷。由于巖石壓實(shí)作用的不可逆性,測(cè)井曲線反映地層處于最大埋深時(shí)的壓實(shí)狀態(tài),進(jìn)而等效深度法計(jì)算出的壓力即為地層處于最大埋深時(shí)期的烴源巖壓力,由此油氣成藏時(shí)期所處埋深的烴源巖壓力可用最大埋深時(shí)的地層壓力來(lái)衡定。

3 測(cè)試結(jié)果

3.1有機(jī)地球化學(xué)特征

測(cè)試結(jié)果顯示,研究區(qū)樣品TOC含量多大于2% ,生烴潛力 (S1+S2) 范圍介于 6.66~64.64mg/g ,熱解峰溫 (Tmax) 范圍介于429 C~450°C ,鏡質(zhì)體反射率(Ro) 介于 0.6%~1.6%[35] 。在 Tmax -HI圖版投點(diǎn),發(fā)現(xiàn)干酪根類型以 I~I(xiàn)I1 型干酪根為主,整體處于低熟一成熟階段,表明研究區(qū)有機(jī)質(zhì)豐度較高,具有良好的生烴潛力(圖5)。

圖5吉木薩爾凹陷蘆草溝組總有機(jī)碳及干酪根類型特征(部分?jǐn)?shù)據(jù)來(lái)源于文獻(xiàn)[36]) Fig.5Characteristics of total organic carbon and kerogen types in the Lucaogou Formation in the Jimusar Sag (data from reference [36])

3.2 儲(chǔ)集空間特征

研究區(qū)儲(chǔ)集空間類型包括粒間孔隙、粒內(nèi)溶孔、微裂縫、黏土礦物晶間孔及少量有機(jī)質(zhì)孔(圖6,原生孔隙受埋藏過(guò)程中壓實(shí)作用影響消耗殆盡,以致現(xiàn)今觀察到的孔隙類型基本為溶蝕作用造成的次生孔隙(圖6a\~h)。通過(guò)鑄體薄片觀察發(fā)現(xiàn),甜點(diǎn)段紋層結(jié)構(gòu)較為發(fā)育,以粉砂質(zhì)和泥質(zhì)互層式紋層為主(圖6i\~j)。富含長(zhǎng)石及砂屑等易溶組分的粉砂巖、云巖等巖石類型樣品中溶蝕孔隙相對(duì)發(fā)育,還能觀察到裂縫的存在(圖6k)。其他樣品孔隙多不發(fā)育,孔隙孤立且局部集中分布,甚至在薄片中觀察不到孔隙(圖6b)。掃描電鏡觀察到巖石顆粒表面大量的不規(guī)則溶蝕孔隙,具有一定的連通性,還存在一些粒間孔隙,但多被有機(jī)質(zhì)和黏土礦物等充填(圖6l\~p)。通過(guò)Maps觀察統(tǒng)計(jì)發(fā)現(xiàn),相較基質(zhì)孔而言,有機(jī)質(zhì)孔不發(fā)育(圖7a),這種差異性可能與烴源巖的成熟度及干酪根類型等存在關(guān)聯(lián)[35,37-38]

利用Maps進(jìn)行大視域微、納米孔隙結(jié)合測(cè)井?dāng)?shù)據(jù)統(tǒng)計(jì)發(fā)現(xiàn),不同類型儲(chǔ)集巖儲(chǔ)集性能和含油性(圖7b\~d)存在差異。以白云巖儲(chǔ)層為例,利用Avizo軟件對(duì)二維視域中孔隙進(jìn)行分割提取,發(fā)現(xiàn)紋層狀儲(chǔ)集巖孔隙度分布范圍介于 2.19%~10.20% ,平均為6.20% ,層狀儲(chǔ)集巖孔隙度分布范圍介于 3.72% 8.42% ,平均為 6.07% ,塊狀儲(chǔ)集巖孔隙度分布范圍介于 4.76%~5.52% ,平均為 5.14% ,可見(jiàn)紋層狀儲(chǔ)集巖具有較高的孔隙度,這與樣品所對(duì)應(yīng)測(cè)井含油飽和度(圖7c)和孔隙度數(shù)據(jù)(圖7d)反應(yīng)出的不同類型儲(chǔ)集巖物性趨勢(shì)特征相吻合。紋層結(jié)構(gòu)發(fā)育程度不同,儲(chǔ)集巖孔隙半徑大小及區(qū)間也存在差異,可以發(fā)現(xiàn)紋層狀儲(chǔ)集巖孔喉半徑范圍極大(表1),白云巖在孔隙半徑主要集中在 20~50nm (圖7b),紋層狀白云巖在這一孔隙半徑區(qū)間的分布頻率要優(yōu)于層狀白云巖和塊狀白云巖(表1、圖7b);Zouetal.通過(guò)實(shí)驗(yàn)分析認(rèn)為頁(yè)巖油流動(dòng)孔喉下限為 20nm ,說(shuō)明紋層結(jié)構(gòu)發(fā)育程度是研究區(qū)油氣富集的影響因素之一。

3.3 成藏期次及古壓力恢復(fù)

3.3.1包裹體巖相學(xué)分析

流體包裹體主要在石英顆粒內(nèi)裂紋中廣泛富

表1吉木薩爾凹陷J10025井蘆草溝組不同類型白云巖物性特征Table1 Physical property characteristicsof different types of dolomite in the Lucaogou Formation of well J1oo25 in Jimusar Sag
圖6吉木薩爾凹陷J10025井蘆草溝組孔隙類型特征Fig.6Pore type characteristics of the Lucaogou Formation in well J1Oo25 of Jimusar Sa{

(a)含砂屑粉砂質(zhì)白云巖,J10025井, 3690.64m,P2l1 ,砂屑及長(zhǎng)石組分溶蝕,藍(lán)色鑄體,單偏光;(b)粉砂質(zhì)泥巖,J10025井, 3672.8m,P2l1 ,局部粉砂質(zhì)遭受溶蝕,形成粒內(nèi)溶孔,藍(lán)色鑄體,單偏光;(c)細(xì)粒級(jí)巖屑質(zhì)長(zhǎng)石砂巖,塊狀,J10025井 3549.63m,P2l1 ,長(zhǎng)石、砂屑組分被溶蝕,以粒間孔隙為主,藍(lán)色鑄體,單偏光;(d)硅巖,J10025井3 680.84m ,PI,長(zhǎng)石顆粒溶蝕強(qiáng)烈,粒間孔隙發(fā)育,掃描電鏡;(e)泥晶白云巖,J10025井,3547.92m,P2L,顆粒表面粒內(nèi)孔隙較為發(fā)育,掃描電鏡;(f)含泥粉砂質(zhì)泥晶白云巖,J10025井, 3554.34m,I 2,局部顆粒溶蝕作用強(qiáng)烈,掃描電鏡; Π(Πg) 泥質(zhì)粉砂巖,J10025井, 3536.78m, P2L,為圖(i)中粉砂質(zhì)溶蝕,藍(lán)色鑄體,單偏光;(h)含云泥質(zhì)粗粉砂巖,J10025井,3 551.69 m,P2l2 ,為圖(j)中長(zhǎng)石溶蝕,藍(lán)色鑄體,單偏光;(i)泥質(zhì)粉砂巖,J10025井,3536.78 m,P2l2 ,粉砂質(zhì)與泥質(zhì)互層,藍(lán)色鑄體,單偏光;(j)含云泥質(zhì)粗粉砂巖,J10025井, 3551.69m ,P2L,泥質(zhì)和泥晶白云石與粉砂質(zhì)定向排列形成條帶狀互層,藍(lán)色鑄體,單偏光;(k)泥質(zhì)白云巖,J10025井, 3692.62m,P2l1 泥晶白云石顆粒周圍存在裂縫,藍(lán)色鑄體,單偏光;(1)粉砂質(zhì)凝灰?guī)r,J10025井, 3528.01m,P2l2 ,顆粒自形程度較好,局部粒間孔隙發(fā)育,大部分孔隙間被黏土礦物充填,掃描電鏡; (m) 細(xì)粒級(jí)巖屑質(zhì)長(zhǎng)石砂巖,J10025井 ,3549.63m P2l2 ,粒間孔隙發(fā)育,部分石英顆粒次生加大,孔隙多被硅質(zhì)充填,掃描電鏡; Π(Πn) 泥質(zhì)粉砂巖,J10025井 ,3534.64m,P2l2 ,顆粒間微孔隙發(fā)育,多被片狀黏土礦物充填,掃描電鏡;(o)含粉砂白云巖,J10025井 ,3688.84m,P2l1 ,少量有機(jī)質(zhì)表面存在孔隙,掃描電鏡;(p)泥晶含粉砂白云巖,J10025井,3544.61 m,P2l1 ,黏土礦物充填在顆粒間且存在大量黏土礦物晶間孔隙,掃描電鏡集,直徑相對(duì)較小,以 2~20μm 為主,多數(shù)小于 6μm 以次生成因?yàn)橹鳎喑尸F(xiàn)條狀、似橢圓、似三角狀等形態(tài),以氣液兩相烴類包裹體為主(圖8)。

烴類包裹體顏色及最大強(qiáng)度波長(zhǎng) (λmax) 和紅/綠商 (Q650/500) 能夠指示主成藏期油氣熱演化特征。隨著原油成熟度增高,組分中飽芳比增加,熒光顏色出現(xiàn)藍(lán)移。紅/綠商(Q值)為熒光強(qiáng)度在 650nm 和500nm 處的比值,其依賴于熒光光譜參數(shù)來(lái)反映成熟度的特性4。研究區(qū)烴類熒光顏色以黃色為主,部分存在黃綠色、藍(lán)綠色, Q650/500=0.25~2.08 , λmax=441~ 635nm ,體現(xiàn)出油氣成藏時(shí)期成熟度偏低(圖8c,f,i)。

3.3.2油氣充注期次及儲(chǔ)集巖成藏期壓力恢復(fù)

前人多采用流體包裹體均一溫度分布與埋藏—熱演化史結(jié)合的方法來(lái)判斷油氣成藏期次[41-42]。與烴類包裹體同期形成的鹽水包裹體均一溫度范圍為: 60°C~140°C ,多集中于 140°C (圖 9a )。在埋藏一熱演化史圖上投點(diǎn)發(fā)現(xiàn),研究區(qū)發(fā)生了兩期油氣充注,一期晚三疊世,二期早侏羅世至白堊世時(shí)期,結(jié)合前文包裹體巖相學(xué)特征,表明以低熟油充注為主(圖9b)。

圖7吉木薩爾凹陷蘆草溝組孔隙類型、不同類型儲(chǔ)集巖儲(chǔ)集空間及含油性差異 Fig.7Pore types,storage spaces,and oiliness differences of diffrent types of reservoir rocks in the Lucaogou Formation in the Jimusar Sag

成藏期儲(chǔ)集巖壓力的恢復(fù)依賴于烴類包裹體的均一溫度(Thom)以及激光共聚焦顯微鏡沿Z軸方向分層對(duì)氣液比的精確測(cè)定[43-44]。利用VTFLINC軟件模擬出的P-T相圖和等容線中數(shù)據(jù)獲取油氣成藏時(shí)期的儲(chǔ)集巖壓力[45]。測(cè)算結(jié)果表明,研究區(qū)儲(chǔ)集巖成藏期壓力介于 18.57~48.16MPa ,壓力系數(shù)介于0.72\~2.17,平均為1.55,體現(xiàn)了成藏期儲(chǔ)集巖內(nèi)部較高的壓力(表2)。在埋藏一熱演化史圖上體現(xiàn)第一期油氣成藏儲(chǔ)集巖壓力系數(shù)介于1.30\~1.52,平均為1.41,第二期儲(chǔ)集巖壓力系數(shù)介于0.72\~2.17,平均為1.57,第二期早侏羅世至晚白堊世比第一期晚三疊世儲(chǔ)集巖壓力高,說(shuō)明早侏羅世至晚白堊世時(shí)期為研究區(qū)主成藏期。

4討論

4.1優(yōu)質(zhì)烴源巖的生排烴過(guò)程是控制頁(yè)巖油氣聚集的關(guān)鍵因素

目前大多數(shù)學(xué)者認(rèn)為泥巖欠壓實(shí)、烴源巖生烴增壓、水熱膨脹增壓、黏土礦物脫水增壓等是油氣成藏的動(dòng)力來(lái)源[32。研究區(qū)的成藏動(dòng)力主要來(lái)源于地層的欠壓實(shí)作用,烴類生成和黏土礦物轉(zhuǎn)化,其中欠壓實(shí)和烴類生成為主要成因[33]

非常規(guī)儲(chǔ)集巖孔喉半徑小,毛細(xì)管力可能是主要阻力。隨著蘆草溝組埋深不斷增加,泥巖欠壓實(shí)程度加劇,烴源巖生烴速率增大,促使烴源巖和儲(chǔ)集層之間的壓力逐漸增大,源、儲(chǔ)間呈現(xiàn)一種非平衡狀態(tài)進(jìn)而形成源儲(chǔ)壓差。由于烴源巖產(chǎn)生的超壓最終總要向壓力較低的低滲透空間和疏導(dǎo)通道中運(yùn)聚,所以當(dāng)壓力增加到與毛細(xì)管阻力相同時(shí),可突破致密儲(chǔ)層,烴源巖產(chǎn)生的油氣將源源不斷運(yùn)移至儲(chǔ)集巖中聚集(圖10a)。

圖8吉木薩爾凹陷J10025井蘆草溝組烴類包裹體顯微及熒光特征 Fig.8 Microscopic and fluorescence characteristicsof hydrocarbon inclusions in the Lucaogou Formation of well J1OO25 in Jimusar Sag
圖9吉木薩爾凹陷蘆草溝組鹽水包裹體均一溫度分布(a)及成藏期次圖(b)(據(jù)文獻(xiàn)[33]修改) Fig.9Homogeneous temperature distributionand accumulation periodsof brine inclusions inthe Lucaogou Formation intheJimusarSag (modified fromreference[33])

地球化學(xué)數(shù)據(jù)結(jié)果表明研究區(qū)優(yōu)質(zhì)烴源巖廣布,生烴時(shí)期烴源巖中密度較高的干酪根會(huì)向密度較低的烴類轉(zhuǎn)化,導(dǎo)致孔隙流體體積膨脹,形成較強(qiáng)的烴源巖壓力。前人對(duì)吉木薩爾凹陷蘆草溝組烴源巖進(jìn)行生烴體積膨脹率計(jì)算發(fā)現(xiàn),當(dāng) R 處于 0.8% )1.0% 階段,TOC為 3% 的烴源巖生烴膨脹引起的體積膨脹率可達(dá)到 15.30%~34.99%[47] 。研究區(qū)TOC含量大于 3% 的烴源巖較多,且現(xiàn)今仍處于生油階段(圖5),表明生烴增壓作用對(duì)研究區(qū)源儲(chǔ)壓差的形成有積極的作用。

圖10(a)致密儲(chǔ)層成藏示意圖(據(jù)文獻(xiàn)[46]修改)及(b)蘆草溝組儲(chǔ)集巖古壓力變化圖 Fig.10(a)Schematicdiagramof tight reservoir formation (modifiedfromreference[46l)and(b)paleopressurechange mapof theLucaogouFormationreservoirrocks

泥巖欠壓實(shí)作用與生烴增壓過(guò)程隨著地層埋深的增加出現(xiàn)時(shí)空疊置,形成較強(qiáng)的烴源巖壓力,這種時(shí)空疊置使得成藏動(dòng)力也發(fā)生變化(圖9b)。從包裹體捕獲壓力隨地質(zhì)年齡的變化(圖9、圖10b)可以看出,晚三疊世時(shí)期由于快速埋深,使得早先存在的原生粒間孔隙被破壞,儲(chǔ)集巖內(nèi)部壓力開(kāi)始增加,后期由于構(gòu)造抬升作用生烴被迫終止。早侏羅世開(kāi)始由于地層埋深再次加大,提供了有利于烴源巖生烴的溫壓條件,廣布的優(yōu)質(zhì)烴源巖再次開(kāi)始生烴,形成源儲(chǔ)壓差推動(dòng)大量有機(jī)酸溶蝕改造儲(chǔ)集空間,使得該時(shí)期儲(chǔ)集巖仍具有較好的物性,有利油氣的聚集(圖11a)。白堊世至今,雖然烴源巖仍處于生烴時(shí)期,但是壓實(shí)作用持續(xù)破壞孔隙,與此同時(shí)累積至該時(shí)期大規(guī)模的溶蝕改造為黏土礦物轉(zhuǎn)化、長(zhǎng)石溶蝕等成巖作用提供了契機(jī),促進(jìn)了顆粒間膠結(jié)物的形成,以致于源儲(chǔ)壓差無(wú)法驅(qū)動(dòng)烴類物質(zhì)進(jìn)入臨近孔隙中,最終只能滯留在源、儲(chǔ)內(nèi)部空間形成頁(yè)巖油藏(圖11b)。

4.2良好的源儲(chǔ)關(guān)系有利于油氣的運(yùn)聚

研究區(qū)巖性為細(xì)粒混積巖,源儲(chǔ)關(guān)系的劃分比較困難。本研究利用巖心觀察和鑄體薄片等手段進(jìn)行巖性識(shí)別,結(jié)合樣品總有機(jī)碳數(shù)據(jù)對(duì)甜點(diǎn)段源、儲(chǔ)進(jìn)行劃分。將J10025井甜點(diǎn)段T0C含量大于 2% 縱向厚度連續(xù),巖心觀察含油性低且薄片下泥質(zhì)含量超過(guò) 50% 的巖石樣品劃分為烴源巖。根據(jù)儲(chǔ)集巖厚度占所劃定源儲(chǔ)組合體系中厚度比例進(jìn)行劃分:源夾儲(chǔ)型小于 40% ,源儲(chǔ)互層型為 40%~60% ,儲(chǔ)夾源型大于 60% (圖12)。

由于源儲(chǔ)壓差的推動(dòng)作用,油氣更容易由壓力高值區(qū)的烴源巖向壓力較低的儲(chǔ)集巖中運(yùn)移。而儲(chǔ)集性能好的儲(chǔ)集空間壓力較低,有利于形成較大源儲(chǔ)壓差促進(jìn)油氣向臨近儲(chǔ)集空間中運(yùn)移。根據(jù)薄片及測(cè)并數(shù)據(jù)統(tǒng)計(jì)發(fā)現(xiàn)不同源儲(chǔ)組合類型儲(chǔ)集空間及含油飽和度存在差異,儲(chǔ)夾源型最好,源儲(chǔ)互層型其次,源夾儲(chǔ)型最差(表3)。源夾儲(chǔ)型很容易在油氣成藏時(shí)期使臨近儲(chǔ)集空間中壓力快速升高,導(dǎo)致這種源儲(chǔ)組合不利于油氣運(yùn)聚。研究區(qū)以源儲(chǔ)互層型組合為主,相比于源夾儲(chǔ)型和儲(chǔ)夾源型,源、儲(chǔ)距離較近增大了源、儲(chǔ)間接觸面積,有利于烴源巖高效排烴從而促進(jìn)研究區(qū)頁(yè)巖油資源的富集。

Fig.11Schematicdiagramofreservoirspacechangeandcharging processofthestudyinterval indiffrent geologicalhistory periods (modified from reference [27])
(a)晚三疊世—白堊世;(b)白堊世—現(xiàn)今圖12J10025井蘆草溝組源儲(chǔ)關(guān)系示意圖

(a)儲(chǔ)夾源型;(b)源夾儲(chǔ)型;(c)源儲(chǔ)互層型

Fig.12Schematic diagram of source-reservoir relationship in the Lucaogou Formation in well J10025

表3吉木薩爾凹陷J10025井蘆草溝組不同源儲(chǔ)組合儲(chǔ)集空間差異

Table3 Reservoirspace differencesofdifferent source-reservoir assemblages from the Lucaogou Formation in well J1o025 of Jimusar Sag

4.3源儲(chǔ)壓差與紋層結(jié)構(gòu)相互配合造成甜點(diǎn)段含油性存在差異

研究區(qū)下甜點(diǎn)源巖品質(zhì)及儲(chǔ)集物性要優(yōu)于上甜點(diǎn)(圖5、7b\~d),但不可否認(rèn)的是,不同類型甜點(diǎn)儲(chǔ)集物性差異并不明顯,表明造成不同類型甜點(diǎn)含油性差異的根本原因在于,擁有更好源巖品質(zhì)的下甜點(diǎn)在烴源巖生烴時(shí)期產(chǎn)生原油膨脹力更加充足,形成了相比于上甜點(diǎn)更強(qiáng)的源儲(chǔ)壓差。在源儲(chǔ)壓差的作用下,使得原本難以作為儲(chǔ)集空間的孔隙也富集油氣,降低了成藏物性下限。當(dāng)源儲(chǔ)壓差達(dá)到巖石破裂壓力時(shí)產(chǎn)生裂縫(圖6k),有利于油氣中有機(jī)酸運(yùn)移,進(jìn)而溶蝕改造儲(chǔ)集空間造成上、下甜點(diǎn)的含油性差異(圖7c)。

不同類型儲(chǔ)集巖成藏動(dòng)力測(cè)試結(jié)果表明,紋層結(jié)構(gòu)發(fā)育的紋層狀儲(chǔ)集巖成藏動(dòng)力優(yōu)于層狀儲(chǔ)集巖(圖13a)。烴源巖生烴產(chǎn)生的原油膨脹力暫時(shí)無(wú)法驅(qū)動(dòng)油氣進(jìn)入研究區(qū)這類低孔滲的儲(chǔ)層中。由于研究區(qū)塊狀儲(chǔ)集巖顆粒內(nèi)流體包裹體極小,以致難以進(jìn)行測(cè)溫及壓力恢復(fù),所以只能通過(guò)對(duì)具備觀察流體包裹體條件類型的樣品進(jìn)行研究。因?yàn)榫邆溆^測(cè)條件的塊狀樣品存在粒間溶蝕孔隙,在具備同一生、排烴能力的烴源巖供烴條件下,塊狀樣品由于發(fā)育粒間溶蝕孔隙,儲(chǔ)集性能好,造成油氣成藏時(shí)期源儲(chǔ)壓差相比于儲(chǔ)集性能較弱的樣品大,使得形成的油氣先行選擇運(yùn)移到孔滲較好的儲(chǔ)集空間。同理,利用Maps結(jié)合測(cè)井?dāng)?shù)據(jù)分析發(fā)現(xiàn)紋層狀儲(chǔ)集巖相比于其他兩種類型儲(chǔ)集巖在儲(chǔ)集性能方面更具優(yōu)勢(shì),因此在油氣成藏時(shí)期紋層狀儲(chǔ)集巖會(huì)有更多的油氣聚集。

紋層結(jié)構(gòu)間成巖作用對(duì)油氣富集存在影響,結(jié)合圖13b可以看出,三種源儲(chǔ)組合成藏動(dòng)力和含油飽和度存在著正相關(guān)關(guān)系。研究區(qū)宏觀上以源儲(chǔ)互層式組合為主(4.2章節(jié)),在薄片尺度下可以發(fā)現(xiàn)除塊狀儲(chǔ)集巖外,常見(jiàn)次一級(jí)微觀層面上粉砂質(zhì)和泥質(zhì)互層的現(xiàn)象,并且粉砂質(zhì)中有明顯的溶蝕現(xiàn)象(圖6g\~j)。這說(shuō)明紋層間形成了從微觀到宏觀層面上源儲(chǔ)的大面積緊鄰接觸,有利于成藏時(shí)期在源儲(chǔ)壓差的作用下油氣向互層單元中的儲(chǔ)集空間運(yùn)移;而在研究層段內(nèi)湖相頁(yè)巖發(fā)育紋層結(jié)構(gòu)可能是研究區(qū)甜點(diǎn)段遍布油氣顯示的重要原因。

5結(jié)論

(1)不同類型儲(chǔ)集巖儲(chǔ)集空間存在差異,紋層狀儲(chǔ)集巖相比于層狀和塊狀儲(chǔ)集巖內(nèi)部紋層結(jié)構(gòu)密度更高,以粉砂質(zhì)和富有機(jī)質(zhì)泥質(zhì)互層型紋層結(jié)構(gòu)為主。生烴階段粉砂質(zhì)臨近的富有機(jī)質(zhì)紋層產(chǎn)生有機(jī)酸溶蝕粉砂質(zhì)中易溶組分,進(jìn)而改造粉砂質(zhì)內(nèi)部?jī)?chǔ)集空間,有利于油氣的聚集,紋層狀儲(chǔ)集巖內(nèi)部層間溶蝕改造是造成不同類型儲(chǔ)集巖儲(chǔ)集性能差異的主控因素。

(2)研究區(qū)廣泛發(fā)育的 優(yōu)質(zhì)烴源巖生烴形成了 3.83~30.57MPa 源儲(chǔ)壓差,促進(jìn)油氣向研究區(qū)微納米孔隙中運(yùn)移,使甜點(diǎn)段儲(chǔ)集空間優(yōu)越的紋層狀儲(chǔ)集巖含油性更好,是研究區(qū)“甜點(diǎn)\"形成的主控因素。

(3)研究區(qū)紋層狀及層狀儲(chǔ)集巖內(nèi)部發(fā)育不同程度的粉砂質(zhì)和泥質(zhì)互層式紋層結(jié)構(gòu),其構(gòu)建了次一級(jí)微觀源儲(chǔ)互層式組合,有利于油氣運(yùn)聚。不同類型儲(chǔ)集巖內(nèi)部互層結(jié)構(gòu)發(fā)育程度差異致使宏觀尺度上紋層狀儲(chǔ)集巖油氣富集程度優(yōu)于層狀和塊狀儲(chǔ)集巖。

圖13(a)不同類型儲(chǔ)集巖成藏動(dòng)力;(b)不同源儲(chǔ)組合成藏動(dòng)力及含油飽和度特征 Fig.13(a)Accumulation dynamics of different types of reservoir rocks;(b)accumulation dynamicsandoil saturation characteristicsofdifferentsource-reservoircombinations

參考文獻(xiàn)(References)

[1]胡素云,白斌,陶士振,等.中國(guó)陸相中高成熟度頁(yè)巖油非均 質(zhì)地質(zhì)條件與差異富集特征[J].石油勘探與開(kāi)發(fā),2022, 49(2):224-237.[Hu Suyun,Bai Bin,Tao Shizhen,et al. Heterogeneous geological conditions and differential enrichment of medium and high maturity continental shale oil in China[J]. Petroleum Exploration and Development, 2022, 49(2): 224-237.]

[2]張少敏,操應(yīng)長(zhǎng),朱如凱,等.湖相細(xì)粒混合沉積巖巖石類型 劃分:以準(zhǔn)噶爾盆地吉木薩爾凹陷二疊系蘆草溝組為例[J]. 地學(xué)前緣,2018,25(4):198-209.[Zhang Shaomin,Cao Yingchang,Zhu Rukai,et al.Lithofacies classification of finegrained mixed sedimentary rocks in the Permian Lucaogou Formation,Jimsar Sag,Junggar Basin[J].Earth Science Frontiers, 2018,25(4): 198-209.]

[3]霍進(jìn),支東明,鄭孟林,等.準(zhǔn)噶爾盆地吉木薩爾凹陷蘆草溝 組頁(yè)巖油藏特征與形成主控因素[J].石油實(shí)驗(yàn)地質(zhì),2020, 42(4):506-512.[Huo Jin,Zhi Dongming,Zheng Menglin,et al.Characteristics and main controls of shale oil reservoirs in Lucaogou Formation, Jimsar Sag,Junggar Basin[J].Petroleum Geologyamp; Experiment,2020,42(4):506-512.]

[4]Liang C,Cao YC,Liu K Y,et al.Diagenetic variation at the lamina scale in lacustrine organic-rich shales:Implications for hydrocarbon migrationand accumulation[J]. Geochimica et Cosmochimica Acta,2018,229:112-128.

[5]許琳,常秋生,楊成克,等.吉木薩爾凹陷二疊系蘆草溝組頁(yè) 巖油儲(chǔ)層特征及含油性[J].石油與天然氣地質(zhì),2019,40 (3):535-549.[Xu Lin,Chang Qiusheng,Yang Chengke,et al. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer Sag[J].Oil amp; Gas Geology,2019,40(3): 535-549.]

[6]李二庭,王劍,李際,等.源儲(chǔ)一體烴源巖精確評(píng)價(jià):以準(zhǔn)噶 爾盆地吉木薩爾凹陷蘆草溝組為例[J].石油實(shí)驗(yàn)地質(zhì), 2021,43(2):35-342.[LiErting, Wang Jian,LiJi,et al.Accurateevaluation of source rocks in source-reservoir integration:A case study of source rocks in Lucaogou Formation,Jimsar Sag, Junggar Basin[J].Petroleum Geology amp; Experiment,2021,43 (2):335-342.]

[7]Liu D D,Li Z,Jiang Z X,et al. Impact of laminae on pore structures of lacustrine shales in the southern Songliao Basin, NE China[J].Journal of Asian Earth Sciences,2019,182: 103935.

[8]Liu C,Liu K Y,Wang XQ,et al. Chemo-sedimentary facies analysis of fine-grained sediment formations: An example from the Lucaogou Fmin theJimusaer Sag,Junggar Basin,NW China [J].Marine and Petroleum Geology,2019,110: 388-402.

[9]Qiao JC,Zeng JH, Jiang S,et al. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: Implications for macroscopic and microscopic heterogeneities[J]. Marine and Petroleum Geology, 2020, 111: 279-300.

[10]鄭民,李建忠,王文廣,等.致密儲(chǔ)層石油充注成藏過(guò)程分 析:以準(zhǔn)噶爾盆地吉木薩爾凹陷二疊系蘆草溝組為例[J]. 地球科學(xué),2018,43(10):3719-3732.[ZhengMin,Li Jianzhong,Wang Wenguang, et al. Analysis of oil charging and accumulation processes in tight reservoir beds:A case study of Lucaogou Formation in Jimsar Sag of Junggar Basin,NW China[J]. Earth Science,2018,43(10): 3719-3732.]

[11]杜金虎,胡素云,龐正煉,等.中國(guó)陸相頁(yè)巖油類型、潛力及 前景[J].中國(guó)石油勘探,2019,24(5):560-568.[Du Jinhu, HuSuyun,Pang Zhenglian,et al.The types,potentials and prospects of continental shale oil in China[J].China Petroleum Exploration,2019,24(5): 560-568.]

[12]吳松濤,朱如凱,羅忠,等.中國(guó)中西部盆地典型陸相頁(yè)巖 紋層結(jié)構(gòu)與儲(chǔ)層品質(zhì)評(píng)價(jià)[J].中國(guó)石油勘探,2022,27(5): 62-72.[Wu Songtao,Zhu Rukai,Luo Zhong,etal.Laminar structure of typical continental shalesand reservoir quality evaluation in central-western basins in China[J].China Petroleum Exploration,2022,27(5): 62-72.]

[13] Bai H,Pang X Q,KuangL C,et al.Hydrocarbon expulsion potential of source rocks and its influence on the distribution of lacustrine tight oil reservoir,Middle Permian Lucaogou Formation,Jimsar Sag,Junggar Basin,northwestChina[J].Journal of Petroleum Science and Engineering,2017,149:740-755.

[14]王劍,袁波,劉金,等.準(zhǔn)噶爾盆地吉木薩爾凹陷二疊系蘆 草溝組混積巖成因及其孔隙發(fā)育特征[J].石油實(shí)驗(yàn)地質(zhì), 2022,44(3):413-424.[WangJian,YuanBo,LiuJin,et al. Genesis and pore development characteristics of Permian Lucaogou migmatites,Jimsar Sag, Junggar Basin[J]. Petroleum Geologyamp; Experiment,2022,44(3): 413-424.]

[15]張宸嘉,曹劍,王俞策,等.準(zhǔn)噶爾盆地吉木薩爾凹陷蘆草 溝組頁(yè)巖油富集規(guī)律[J].石油學(xué)報(bào),2022,43(9):1253- 1268.[Zhang Chenjia, Cao Jia,Wang Yuce, et al. Enrichment law of shale oil of Lucaogou Formation in Jimusar Sag, Junggar Basin[J].Acta Petrolei Sinica,2022,43(9):1253-1268.]

[16]劉金,王劍,張曉剛,等.準(zhǔn)噶爾盆地吉木薩爾凹陷蘆草溝 組甜點(diǎn)頁(yè)巖油微觀賦存特征及成因機(jī)制[J].地質(zhì)論評(píng), 2022,68(3): 907-920.[Liu Jin,Wang Jian,Zhang Xiaogang, etal.Microscopic occurrence characteristicsand genetic mechanism of shale oil in sweet spot reservoir of the Lucaogou Formation in Jimsar Sag[J].Geological Review,2022,68(3): 907-920.]

[17]Pang XQ,Shao XH,LiM W, et al.Correlation and difference between conventional and unconventional reservoirs and theirunified genetic classification[J].Gondwana Research, 2021,97: 73-100.

[18]Xu Z J,Liu LF, Wang TG,et al.Characteristics andcontrolling factors of lacustrine tight oil reservoirs of the Triassic Yanchang Formation Chang 7 in the Ordos Basin,China[J]. Marine and Petroleum Geology,2017,82: 265-296.

[19]喬俊程.致密砂巖氣藏氣水分布特征及其成因機(jī)制[D].北 京:中國(guó)石油大學(xué)(北京),2020.[Qiao Juncheng.Distribution characteristics and Formation mechanisms of gas-water distribution in the tight sandstonegasreservoirs[D].Beijing: China University of Petroleum (Beijing),2020.]

[20]Lao HG,WangY S,Shan YX,et al.Hydrocarbon downward accumulation from an Upper oil source to the oil reservoir belowin an extensional basin:A case study of Chezhen Depressionin theBohaiBay Basin[J].MarineandPetroleum Geology,2019,103:516-525.

[21]鄒才能,朱如凱,吳松濤,等.常規(guī)與非常規(guī)油氣聚集類型、 特征、機(jī)理及展望:以中國(guó)致密油和致密氣為例[J].石油學(xué) 報(bào),2012,33(2):173-187.[Zou Caineng,Zhu Rukai,Wu Songtao, et al.Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Takingtight oil and tight gas inChinaasan instance[J]Acta Petrolei Sinica,2012,33(2):173-187.]

[22]曾濺輝,楊智峰,馮梟,等.致密儲(chǔ)層油氣成藏機(jī)理研究現(xiàn) 狀及其關(guān)鍵科學(xué)問(wèn)題[J].地球科學(xué)進(jìn)展,2014,29(6):651- 661.[Zeng Jianhui, Yang Zhifeng,F(xiàn)eng Xiao, et al.Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J].Advances in Earth Science,2014,29 (6): 651-661. ]

[23]羅群,高陽(yáng),張澤元,等.中國(guó)與美國(guó)致密油形成條件對(duì)比 研究[J].石油實(shí)驗(yàn)地質(zhì),2022,44(2):199-209.[Luo Qun, Gao Yang, Zhang Zeyuan, et al.A comparative study of geological conditions of tight oils in China and USA[J]. Petroleum Geology amp; Experiment,2022,44(2):199-209.]

[24]許馬光,范彩偉,張丹妮,等.鶯歌海盆地樂(lè)東01超高溫高 壓氣藏形成條件及成藏模式[J].天然氣工業(yè),2021,41 (11):43-53.[Xu Maguang,F(xiàn)an Caiwei,Zhang Danni,et al. Formation condition and hydrocarbon accumulation model in Ledong O1 gas reservoir of super high temperature and high pressure in the Yinggehai Basin[J]. Natural Gas Industry,2021, 41(11): 43-53. ]

[25]屈童,高崗,梁曉偉,等.鄂爾多斯盆地長(zhǎng)7段致密油成藏 機(jī)理分析[J].地質(zhì)學(xué)報(bào),2022,96(2):616-629.[Qu Tong, GaoGang,LiangXiaowei,etal.Analysisof tightoilaccumulation mechanism of Chang 7 member in the Ordos Basin[J]. Acta Geologica Sinica,2022, 96(2): 616-629.]

[26]印森林,陳恭洋,許長(zhǎng)福,等.陸相混積細(xì)粒儲(chǔ)集巖巖相構(gòu) 型及其對(duì)甜點(diǎn)的控制作用:以準(zhǔn)噶爾盆地吉木薩爾凹陷二 疊系蘆草溝組頁(yè)巖油為例[J].石油與天然氣地質(zhì),2022,43 (5):1180-1193.[Yin Senlin, Chen Gongyang, Xu Changfu, et al.Lithofaciesarchitecture of lacustrine fine-grained mixed reservoirs and its control over sweet spot: A case study of Permian Lucaogou Formation shale oil reservoir in the Jimsar Sag, Juggar Basin[J]. Oil amp; Gas Geology,2022, 43(5): 1180-1193.]

[27]Lin M R, Xi K L,Cao YC,et al. Petrographic features and diagenetic alterationinthe shale strata of thePermian Lucaogou Formation,Jimusar Sag,Junggar Basin[J].Journal of Petroleum Science and Engineering,2021,203:108684.

[28]Jiang ZX,Kong XX,YangYP, et al.Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development,2021,48(1): 30-42.

[29]金之鈞,朱如凱,梁新平,等.當(dāng)前陸相頁(yè)巖油勘探開(kāi)發(fā)值 得關(guān)注的幾個(gè)問(wèn)題[J].石油勘探與開(kāi)發(fā),2021,48(6): 1276-1287.[Jin Zhiyun, Zhu Rukai,Liang Xinping, et al. Severalissues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021,48(6): 1276-1287.]

[30]WangJM,HanDL,DengY,et al.Differential characteristics and the main controlling factors of shale oil sweet spot reservoirs in Lucaogou Formation,Jimsar Sag,Junggar Basin[J]. Geofluids,2022,2022: 6936161.

[31]付廣,呂延防,楊勉.欠壓實(shí)泥巖異常孔隙流體壓力的定量 研究[J].新疆石油地質(zhì),2002,23(4):295-298.[Fu Guang, LuYanfang,YangMian.Quantitative study onabnormal pore fluidpressure inundercompacted mudstone[J].XinjiangPetroleum Geology,2002,23(4): 295-298.]

[32]Zhao J Z,Li J, Xu ZY. Advances in the origin of overpressures in sedimentary basins[J].Petroleum Research,2018,3 (1): 1-24.

[33]賴仁.吉木薩爾凹陷蘆草溝組超壓演化及其對(duì)致密油富集 的影響[D].青島:中國(guó)石油大學(xué)(華東),2017.[Lai Ren. Evolution of overpressure and its influence on enrichment of tight oil of Lucaogou Formation in Jimsar Depression[D]. Qingdao: China University of Petroleum (East China),2017.]

[34]張?jiān)漆摚?lián)波,羅群,等.準(zhǔn)噶爾盆地吉木薩爾凹陷蘆草 溝組致密儲(chǔ)層裂縫特征和成因機(jī)制[J].天然氣地球科學(xué), 2018,29(2):211-225.[Zhang Yunzhao,Zeng Lianbo,Luo Qun,et al. Research on the types and genetic mechanisms of tight reservoir in the Lucaogou Formation in Jimusar Sag,Junggar Basin[J]. Natural Gas Geoscience,2018,29(2): 211-225.]

[35] 馬永生,蔡勛育,趙培榮,等.中國(guó)陸相頁(yè)巖油地質(zhì)特征與 勘探實(shí)踐[J].地質(zhì)學(xué)報(bào),2022,96(1):155-171.[Ma Yongsheng,Cai Xunyu, Zhao Peirong,et al. Geological characteristics and exploration practices of continental shale oil in China [J].Acta Geologica Sinica,2022, 96(1): 155-171.]

[36]王劍,李二庭,陳俊,等.準(zhǔn)噶爾盆地吉木薩爾凹陷二疊系 蘆草溝組優(yōu)質(zhì)烴源巖特征及其生烴機(jī)制研究[J].地質(zhì)論 評(píng),2020,66(3):755-764.[Wang Jian,Li Erting,Chen Jun,et al.Characteristics and hydrocarbon generation mechanism of high-quality source rocks in Permian Lucaogou Formation, Jimsar Sag,Junggar Basin[J].Geological Review,2020,66(3): 755-764.]

[37]Wu S T, Yang Z, Zhai XF, et al. An experimental study of organic matter,minerals and porosity evolution in shales witin high-temperature and high-pressure constraints[J].Marineand Petroleum Geology,2019,102:377-390. [38] KatzBJ,Arango I.Organic porosity:A geochemist's view of the current state of understanding[J].Organic Geochemistry,

2018,123:1-16. [39] ZouCN,JinX,ZhuRK,et al.Do shale pore throatshave a threshold diameter foroil storage?[J].Scientific Reports,2015,

5:13619. [40] 陳紅漢.單個(gè)油包裹體顯微熒光特性與熱成熟度評(píng)價(jià)[J]. 石油學(xué)報(bào),2014,35(3):584-590.[ChenHonghan.Microspectrofluorimetric characterization and thermal maturity assessment of individual oil inclusion[J].Acta Petrolei Sinica,

2014,35(3): 584-590.] [41]張?chǎng)危惣t漢,孔令濤,等.泌陽(yáng)凹陷深凹區(qū)古流體壓力演 化與油氣充注耦合關(guān)系[J].地球科學(xué),2020,45(5):1769-

1781.[Zhang Xin,Chen Honghan,Kong Lingtao,et al.The coupling relationship between paleofluid pressure evolution and hydrocarbon- charging eventsin the deep of Biyang Depression,central China[J].Earth Science,2020,45(5):1769-

1781.] [42]劉念,邱楠生,秦明寬,等.冀中坳陷束鹿?jié)撋綆в蜌獬刹?主控因素與成藏模式[J].地質(zhì)學(xué)報(bào),2023,97(3):897-910. [Liu Nian,Qiu Nansheng,Qin Mingkuan,et al.Maincontrolling factors and models of hydrocarbon accumulation in the Shulu buried-hill belt, Jizhong Depression,Bohai Bay Basin [J].Acta Geologica Sinica,2023,97(3):897-910.]

[43]Pironon J, Canals M, Dubessy J, et al. Volumetric reconstruction of individual oil inclusions by confocal scanning laser microscopy[J]. European Journal of Mineralogy, 1998,10(6): 1143-1150.

[44]AplinAC,MacleodG,Larter SR,et al.Combined use of Confocal Laser Scanning Microscopy and PVT simulation for estimating the composition and physical properties of petro leum in fluid inclusions[J]. Marine and Petroleum Geology, 1999,16(2): 97-110.

[45]Volk H,George S C.Using petroleum inclusions to trace petroleum systems-A review[J].Organic Geochemistry,2019,129: 99-123.

[46]Zheng DY,Pang XQ, Zhou LM, et al.Critical conditions of tightoil charging and determination of the Lower limits of petrophysical properties for effective tight reservoirs:A case study from the Fengcheng Formation in the Fengcheng area, Junggar Basin[J].Journal of Petroleum Science and Engineering,2020,190:107135.

[47]吉鴻杰,邱振,陶輝飛,等.烴源巖特征與生烴動(dòng)力學(xué)研究: 以準(zhǔn)噶爾盆地吉木薩爾凹陷蘆草溝組為例[J].巖性油氣 藏,2016,28(4):34-42.[Ji Hongjie,Qiu Zhen,Tao Huifei,et al.Source rock characteristics and hydrocarbon generation kinetics:A case study of the Permian Lucaogou Formation in Jimusar Sag,JunggarBasin[J].Lithologic Reservoirs,2016,28 (4):34-42. ]

Abstract:[Objective]The pressure differences between source and reservoir rocks is notonlythe driving force for unconventional oilandgasaccumulation,butalso indispensablekeycontent inthe studyof thegenesisof shaleoil sweet spots.Inaddition,laminar structures are widely developed incontinental shale,and the degree of development results in differences in the accumulation dynamics of reservoir rocks,which affctthe accumulationof shaleoil and gas.However,there are relativelyfew studies on theaccumulation dynamics ofshaleoil.The sweetspot section of the Permia Lucaogou Formation in the Jimusar Sag was taken as the research object,and the intrinsic relationship betwen the development degree of laminar structure and shale oil and gas accumulation was revealed from the perspective of accumulation dynamics.[Methods] Through the evaluation of source rocks,classfication of petrographic types and characterization of pores,etc.,the characteristics of the source rocks,diferent types of reservoir rocks, and source-reservoir assemblages inthe study area were obtained.Usingthe equivalent depth methodandfluid inclusion simulation,the pressure difference between source and reservoir rocks during theaccumulation period was recovered,and theaccumulation dynamics of different types of reservoirrocks were obtained.[Results]The results show thatthe study area is dominated by source-reservoir interbeddedcombinations,and the hydrocarbon generationof high-quality source rocks creates a strong source-reservoir pressure difference between the source and reservoir,promoting thecontinuous migrationofoil and gas to adjacentreservoir spaces.Interbedded siltyandargillaceous laminae are widely developed in the reservoir rocks,which constitute alarge area offrequent contact between the source and reservoir.Thedegreeof developmentresults in differences in the accumulation dynamicsof different types ofreservoir rocks,thelaminarreservoir has developed laminar structure,andthe migration distance ofoilandgas is shortened; thus,it has strongeraccumulation power andoil-bearing properties.Conclusions]The interaction between the pressure difference betweensource and reservoir rocks and the laminar structure causes the diference in the accumulation effectof oil and gas inthe reservoirrocks,andthe developmentoflaminarreservoirrocks inthelowersweet spot is afavorable area for studying oil and gas migration and accumulation in the shale sweet spot.

Key words: Lucaogou Formation;accumulation dynamics; laminar structure;sweet spot;reservoir space

主站蜘蛛池模板: a毛片免费看| 亚洲一级毛片免费观看| 永久免费精品视频| 国产成人三级| 亚洲经典在线中文字幕| 在线不卡免费视频| 国产一区二区网站| 亚洲国产综合第一精品小说| 久久久久青草线综合超碰| 一级福利视频| 国产精品永久久久久| igao国产精品| 欧美一区国产| 国产精品福利社| 片在线无码观看| 亚洲天堂久久久| 不卡网亚洲无码| 久久国产精品嫖妓| 国产色伊人| 欧美午夜在线视频| 综合人妻久久一区二区精品| 青青久在线视频免费观看| 91亚洲影院| 国产美女无遮挡免费视频| 免费jizz在线播放| 91小视频在线| 超碰aⅴ人人做人人爽欧美 | 九色视频最新网址| 国产综合色在线视频播放线视| 国产精品男人的天堂| 视频一本大道香蕉久在线播放| 亚洲an第二区国产精品| 最新无码专区超级碰碰碰| 亚洲精品视频免费看| 日韩精品一区二区三区中文无码 | 国产杨幂丝袜av在线播放| 国产精品护士| 日本91视频| 国产地址二永久伊甸园| 人妻一区二区三区无码精品一区| 国产主播一区二区三区| 白浆视频在线观看| 亚洲国内精品自在自线官| 一级在线毛片| 国产波多野结衣中文在线播放| 久久99蜜桃精品久久久久小说| 久久综合色天堂av| 四虎永久免费地址在线网站 | 91国内视频在线观看| 亚洲永久色| 99视频在线观看免费| 亚洲精品无码在线播放网站| 成人精品视频一区二区在线| 114级毛片免费观看| 亚洲第一成人在线| 国产手机在线观看| 99精品热视频这里只有精品7| 久久夜色精品| 色综合婷婷| 国产成人精品一区二区三区| 国产精品理论片| 91亚洲免费| 中字无码av在线电影| 国内精品小视频福利网址| 一级毛片免费播放视频| 女人毛片a级大学毛片免费| 毛片免费在线视频| 国产欧美精品一区aⅴ影院| 欧美不卡视频在线观看| 无码有码中文字幕| 男女精品视频| 蜜桃视频一区二区| av一区二区人妻无码| 久操线在视频在线观看| 国产十八禁在线观看免费| 国产精品无码制服丝袜| 午夜天堂视频| 国产精品观看视频免费完整版| 日韩高清无码免费| 尤物精品国产福利网站| 欧美啪啪一区| 麻豆国产精品视频|