999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

構造輔助函數法在中學數學中的應用

2015-01-15 05:35:48吳維群
中學生理科應試 2014年11期
關鍵詞:利用分析方法

吳維群

輔助函數,是人們在數學研究和教學的活動中,為了便于解決所探討的問題,將已掌握的函數經過有限次的四則運算及復合,構造一個新的函數關系.這個新構造出來的函數必須存在于已知的知識體系中,且與所討論的問題緊密相關又易于研究,以達到轉化“矛盾”,進而解決矛盾的目的.在中學數學中構造輔助函數法主要用來證明不等式.

利用函數單調性證明不等式常用的是構造輔助函數的方法.構造輔助函數的方法靈活多變,不同的知識段有著不同的技巧和方法,用函數單調性證明不等式常用以下幾種方法.1.用不等式兩邊“求差”構造輔助函數

例1證明當x>1時,2x>3-1x.

分析利用“求差”法構造輔助函數f(x)=

2x-(3-1x),x>1.則將要證明的結論轉化為要證f(x)>0,而f(1)=0.因而只需證明當x>1時,f(x)>f(1).

證明令f(x)=2x-(3-1x),則f ′(x)=1x-1x2=1x2(xx-1)>0.所以當x>1時,f(x)>f(1),又由于f(1)=0,所以f(x)>f(1)=0,即2x-(3-1x)>0.

故2x>3-1x(x>1).

2.用不等式兩邊適當“求商”構造輔助函數

例2當02πx.

分析如果用“求差”構造輔助函數f(x)=2πx-sinx, f ′(x)=2π-cosx,在區間(0,π2)內f(x)的單調性無法判斷.利用“求商”構造輔助函數f(x)=sinxx,再根據f(x)在區間(0,π2)的單調性來證明.

證明令f(x)=sinxx,則f ′(x)=cosx(x-tanx)x2(0f(π2).即sinxx>2π,故sinx>2πx,(0

3.用參數變易法構造輔助函數解題

取一個端點為自變量構造函數,含雙字母的不等式,可以考慮以其中一個字母為自變量,另外一個為常數來構造相應函數.

例3已知g(x)=xlnx,0

分析本題是在一個區間上證明不等式,而不等式涉及的變量就是區間的兩個端點,因此設輔助函數時把其中的一個端點設為自變量.

證明設F(x)=g(a)+g(x)-2g(a+x2),則

F′(x)=g′(x)-2g′(a+x2)=lnx-lna+x2,

當x=a時F′(x)=0,F(x)取得極小值F(a),所以F(b)>F(a),即0

設G(x)=F(x)-(x-a)ln2,則G′(x)=lnx-ln(a+x),當x>0時,G′(x)<0,G(x)是減函數.G(b)

4.根據不等式兩邊結構,構造“形似”輔助函數.

例4求證|a+b|1+|a+b|≤|a|1+|a|+|b|1+|b|.

分析不等式兩邊有相同的形式A1+A,利用“形似”將某個字母換成x,構造輔助函數f(x)=x1+x(x≥0),再利用函數的單調性證明不等式.

證明令f(x)=x1+x(x≥0),顯然f(x)在[0,+∞)上連續且可導,因為f ′(x)=1(1+x)2>0,所以f(x)在[0,+∞)上嚴格單調遞增.由于0≤|a+b|≤|a|+|b|,所以f(|a+b|)≤f(|a|+|b|),故|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|

輔助函數,是人們在數學研究和教學的活動中,為了便于解決所探討的問題,將已掌握的函數經過有限次的四則運算及復合,構造一個新的函數關系.這個新構造出來的函數必須存在于已知的知識體系中,且與所討論的問題緊密相關又易于研究,以達到轉化“矛盾”,進而解決矛盾的目的.在中學數學中構造輔助函數法主要用來證明不等式.

利用函數單調性證明不等式常用的是構造輔助函數的方法.構造輔助函數的方法靈活多變,不同的知識段有著不同的技巧和方法,用函數單調性證明不等式常用以下幾種方法.1.用不等式兩邊“求差”構造輔助函數

例1證明當x>1時,2x>3-1x.

分析利用“求差”法構造輔助函數f(x)=

2x-(3-1x),x>1.則將要證明的結論轉化為要證f(x)>0,而f(1)=0.因而只需證明當x>1時,f(x)>f(1).

證明令f(x)=2x-(3-1x),則f ′(x)=1x-1x2=1x2(xx-1)>0.所以當x>1時,f(x)>f(1),又由于f(1)=0,所以f(x)>f(1)=0,即2x-(3-1x)>0.

故2x>3-1x(x>1).

2.用不等式兩邊適當“求商”構造輔助函數

例2當02πx.

分析如果用“求差”構造輔助函數f(x)=2πx-sinx, f ′(x)=2π-cosx,在區間(0,π2)內f(x)的單調性無法判斷.利用“求商”構造輔助函數f(x)=sinxx,再根據f(x)在區間(0,π2)的單調性來證明.

證明令f(x)=sinxx,則f ′(x)=cosx(x-tanx)x2(0f(π2).即sinxx>2π,故sinx>2πx,(0

3.用參數變易法構造輔助函數解題

取一個端點為自變量構造函數,含雙字母的不等式,可以考慮以其中一個字母為自變量,另外一個為常數來構造相應函數.

例3已知g(x)=xlnx,0

分析本題是在一個區間上證明不等式,而不等式涉及的變量就是區間的兩個端點,因此設輔助函數時把其中的一個端點設為自變量.

證明設F(x)=g(a)+g(x)-2g(a+x2),則

F′(x)=g′(x)-2g′(a+x2)=lnx-lna+x2,

當x=a時F′(x)=0,F(x)取得極小值F(a),所以F(b)>F(a),即0

設G(x)=F(x)-(x-a)ln2,則G′(x)=lnx-ln(a+x),當x>0時,G′(x)<0,G(x)是減函數.G(b)

4.根據不等式兩邊結構,構造“形似”輔助函數.

例4求證|a+b|1+|a+b|≤|a|1+|a|+|b|1+|b|.

分析不等式兩邊有相同的形式A1+A,利用“形似”將某個字母換成x,構造輔助函數f(x)=x1+x(x≥0),再利用函數的單調性證明不等式.

證明令f(x)=x1+x(x≥0),顯然f(x)在[0,+∞)上連續且可導,因為f ′(x)=1(1+x)2>0,所以f(x)在[0,+∞)上嚴格單調遞增.由于0≤|a+b|≤|a|+|b|,所以f(|a+b|)≤f(|a|+|b|),故|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|

輔助函數,是人們在數學研究和教學的活動中,為了便于解決所探討的問題,將已掌握的函數經過有限次的四則運算及復合,構造一個新的函數關系.這個新構造出來的函數必須存在于已知的知識體系中,且與所討論的問題緊密相關又易于研究,以達到轉化“矛盾”,進而解決矛盾的目的.在中學數學中構造輔助函數法主要用來證明不等式.

利用函數單調性證明不等式常用的是構造輔助函數的方法.構造輔助函數的方法靈活多變,不同的知識段有著不同的技巧和方法,用函數單調性證明不等式常用以下幾種方法.1.用不等式兩邊“求差”構造輔助函數

例1證明當x>1時,2x>3-1x.

分析利用“求差”法構造輔助函數f(x)=

2x-(3-1x),x>1.則將要證明的結論轉化為要證f(x)>0,而f(1)=0.因而只需證明當x>1時,f(x)>f(1).

證明令f(x)=2x-(3-1x),則f ′(x)=1x-1x2=1x2(xx-1)>0.所以當x>1時,f(x)>f(1),又由于f(1)=0,所以f(x)>f(1)=0,即2x-(3-1x)>0.

故2x>3-1x(x>1).

2.用不等式兩邊適當“求商”構造輔助函數

例2當02πx.

分析如果用“求差”構造輔助函數f(x)=2πx-sinx, f ′(x)=2π-cosx,在區間(0,π2)內f(x)的單調性無法判斷.利用“求商”構造輔助函數f(x)=sinxx,再根據f(x)在區間(0,π2)的單調性來證明.

證明令f(x)=sinxx,則f ′(x)=cosx(x-tanx)x2(0f(π2).即sinxx>2π,故sinx>2πx,(0

3.用參數變易法構造輔助函數解題

取一個端點為自變量構造函數,含雙字母的不等式,可以考慮以其中一個字母為自變量,另外一個為常數來構造相應函數.

例3已知g(x)=xlnx,0

分析本題是在一個區間上證明不等式,而不等式涉及的變量就是區間的兩個端點,因此設輔助函數時把其中的一個端點設為自變量.

證明設F(x)=g(a)+g(x)-2g(a+x2),則

F′(x)=g′(x)-2g′(a+x2)=lnx-lna+x2,

當x=a時F′(x)=0,F(x)取得極小值F(a),所以F(b)>F(a),即0

設G(x)=F(x)-(x-a)ln2,則G′(x)=lnx-ln(a+x),當x>0時,G′(x)<0,G(x)是減函數.G(b)

4.根據不等式兩邊結構,構造“形似”輔助函數.

例4求證|a+b|1+|a+b|≤|a|1+|a|+|b|1+|b|.

分析不等式兩邊有相同的形式A1+A,利用“形似”將某個字母換成x,構造輔助函數f(x)=x1+x(x≥0),再利用函數的單調性證明不等式.

證明令f(x)=x1+x(x≥0),顯然f(x)在[0,+∞)上連續且可導,因為f ′(x)=1(1+x)2>0,所以f(x)在[0,+∞)上嚴格單調遞增.由于0≤|a+b|≤|a|+|b|,所以f(|a+b|)≤f(|a|+|b|),故|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|

猜你喜歡
利用分析方法
利用min{a,b}的積分表示解決一類絕對值不等式
中等數學(2022年2期)2022-06-05 07:10:50
隱蔽失效適航要求符合性驗證分析
利用一半進行移多補少
電力系統不平衡分析
電子制作(2018年18期)2018-11-14 01:48:24
利用數的分解來思考
Roommate is necessary when far away from home
電力系統及其自動化發展趨勢分析
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
捕魚
主站蜘蛛池模板: 国产97色在线| 不卡无码h在线观看| 狠狠色噜噜狠狠狠狠色综合久| 国产激爽大片在线播放| 色噜噜综合网| 精品国产黑色丝袜高跟鞋| 成人国内精品久久久久影院| 免费一级毛片在线观看| 久久婷婷五月综合97色| 国产成人免费观看在线视频| 超级碰免费视频91| 亚洲国产91人成在线| AV无码一区二区三区四区| 亚洲一级色| 日本尹人综合香蕉在线观看| 国产成在线观看免费视频| 2021国产精品自拍| 最新精品久久精品| 97精品久久久大香线焦| 亚洲国产欧美国产综合久久 | 精品欧美日韩国产日漫一区不卡| 欧美在线观看不卡| 久99久热只有精品国产15| 毛片一区二区在线看| 国产精品国产三级国产专业不 | 久草视频福利在线观看| 99国产在线视频| 成人福利在线观看| 日本在线欧美在线| 六月婷婷综合| 国产精品精品视频| 国产无码精品在线| 亚洲无卡视频| 经典三级久久| 亚洲国产天堂在线观看| 国产大全韩国亚洲一区二区三区| 国产成年女人特黄特色毛片免 | 国产精品久久精品| a毛片在线| 91精品啪在线观看国产91| 欧美不卡二区| 久久香蕉国产线看观看式| 欧美a在线| 国产无码高清视频不卡| 97视频精品全国在线观看| 嫩草国产在线| 国产区在线观看视频| 欧美中文一区| 亚洲无限乱码一二三四区| 尤物成AV人片在线观看| 欧美一区二区三区不卡免费| 国产精品视频第一专区| 99精品伊人久久久大香线蕉| 亚洲国内精品自在自线官| 91精品情国产情侣高潮对白蜜| 国产成人在线无码免费视频| 国产精品第一区| 一级在线毛片| 国产精品欧美在线观看| 中文字幕在线日本| 色婷婷久久| 免费在线成人网| 国产精品2| 国产免费精彩视频| 久久超级碰| 亚洲美女一区| 亚洲欧美日韩久久精品| 熟女视频91| 国产精品第| 亚洲激情区| 久久亚洲欧美综合| 国产成人夜色91| 欧美区一区| 九色在线观看视频| 一区二区三区毛片无码| 亚洲福利一区二区三区| 久久综合九九亚洲一区| 亚洲精品在线影院| 久草视频精品| 亚洲全网成人资源在线观看| 亚洲成人免费在线| 亚洲天堂精品在线观看|