陳丁丁
(武寧縣環境保護局,江西武寧332300)
環保生物燃料電池并非剛剛出現的一項技術。1910年英國植物學家馬克·比特首次發現了細菌的培養液能夠產生電流,于是他用鉑作電極放進大腸桿菌和普通酵母菌培養液里,成功制造出了世界第一個微生物燃料電池。1984年美國制造了一種能在外太空使用的微生物燃料電池,使用的燃料為宇航員的尿液和活細菌,不過放電率極低。傳統的燃料電池是利用氫氣發電,但從來沒有嘗試使用富含有機物的污水來發電。環保生物燃料電池是一種特殊的燃料電池,以自然界的微生物或酶為催化劑,直接將燃料中的化學能轉化為電能。
環保生物燃料電池(M icrobial Fuel Cell MFC)是以微生物作為催化劑將碳水化合物中的化學能轉化為電能的裝置,由陽極區和陰極區組成,中間用質子交換膜(Proton Exchange Membrane,PEM)分開,如圖1所示。環保生物燃料電池的工作過程分為幾個步驟:在陽極區,微生物利用電極材料作為電子受體將有機底物氧化,這個過程要伴隨電子和質子(NADH)的釋放;釋放的電子在微生物作用下通過電子傳遞介質轉移到電極上;電子通過導線轉移到陰極區,同時,由NADH釋放出來的質子透過質子交換膜也到達陰極區;在陰極區,電子、質子和氧氣反應生成水,隨著陽極有機物的不斷氧化和陰極反應的持續進行,在外電路獲得持續的電流[1],其反應式如下:
陽極反應:


陰極反應:


圖1 生物燃料電池結構示意圖
3.1.1 單一槽設計
電池裝置和氫燃料電池有點相似,是一個圓柱形的樹脂玻璃密閉槽。微生物燃料電池是單一反應槽,里面裝有8條陽極石墨棒,圍繞著一個陰極棒,密閉槽中間以質子交換膜間隔。密閉槽外部以銅線組成的閉合電路,用作電子流通的路徑。當污水被注入反應槽后,細菌酶將污水中的有機物分解,在此過程中釋放出電子和質子。其中電子流向陽極,而質子則通過槽內的質子交換膜流向陰極,并在那里與空氣中的氧以及電子結合生成干凈的水。從而完成對污水的處理。與此同時,反應槽內正負極之間的電子交換產生了電壓,使該設備能夠給外部電路供電。單一反應槽是微生物燃料電池設計的創新。大部分燃料電池的設計以兩反應槽為主,分別為陽極槽和陰極槽,在陽極槽中以厭氧方式維持微生物生長;陰極槽中則需維持在有氧環境下,使電子與氧結合并且與質子形成水分子。而單一反應槽以質子交換膜連接兩槽,其功能不僅可分開兩槽水溶液,還可以避免氧氣擴散至另一槽內。兩槽式的電解槽,需以外力方式提供溶氧至陰極,而單一槽微生物燃料電池可以以連續注水方式將空氣帶入陰極,從而減少通氧設備的花費。在發電量方面,在實驗室里,該設備能產生72W的電流,可以驅動一個小風扇。雖然目前產生的電流不多,但該設備改進的空間很大。從提交發明報告到現在,已經把該燃料電池的發電能力提高到了350W,這一數值最終能達到500~1000W。技術成熟后,可以批量生產的微生物燃料電池的發電能力將獲得很大提高,可以產生500kw的穩定電流,大約是300戶家庭的用電量。
3.1.2 不間斷上流微生物燃料電池
華盛頓大學的研究人員日前稱,他們把利用廢水發電的微生物燃料電池技術又向前推進了一步。去年他們已研究出了這一利用廢水發電的新技術,現在,他們又把新技術的發電量比去年提高了10倍。如果利用這一技術能使發電量再提高10倍的話,食品和農業加工廠就有望能安裝這種設備用于發電,并能為附近居民提供清潔和可再生電能[2]。華盛頓大學環境工程學項目成員、化學工程助教拉思安晉南特博士在“環境科學技術”網站上介紹了這種不間斷上流微生物燃料電池(UMFC)的設計以及工作原理。同過去那些讓微生物在含有營養液的封閉系統中工作的實驗不同的是,安晉南特為微生物提供的是源源不斷的廢水。由于食品和農業加工中會不停排放廢水。因此,安晉南特的技術更容易在這些工廠得到應用。利用廢水發電的微生物燃料電池技術,是在陽極室內安裝價格低廉的U型質子交換膜,將陽極和陰極分開。廢水中含有的有機物,可為細菌群提供豐富食物,使其得以生存和繁衍。這些細菌在電池陽極電極上形成生物膜,同時在食用廢水中有機物時向陽極釋放電子,電子通過與陽極和陰極相連的銅導線移動到陰極,廢水中的質子則穿過質子交換膜回到陰極,同電子和氧原子結合生成水。而電子在導線中的運動過程就形成了人們所需要的電流。繼2005年首次完成了廢水發電的微生物燃料電池設計后,安晉南特新推出的U型設計增加了質子交換膜的面積、縮短了兩極距離,因此降低了因阻力引起的能耗,使電池發電能力提高了10倍,每立方米溶液的發電量從 3W/m3增加到了29W/m3。如果微生物燃料電池系統能夠維持20W/m3的電力輸出,就可以點亮小功率的燈泡。
3.1.3 利用太陽能和光和細菌的環保生物燃料電池
Noguera與土木與環境工程教授Marc Anderson、助理教授 T rina McMahon,細菌學教授Timothy Donohue,研究員 Isabel Tejedor Anderson,以及研究生Yun Kyung Cho和Rodolfo Perez合作發展出一種能在污水處理廠應用的大規模微生物燃料電池系統。目前,研究人員們把微生物封裝在密閉的無氧測試管中,測試管的形狀被做成類似電路的回路。當處理廢物時,先把有機廢水通入管中,作為副產品電子向陽極移動,然后通過回路流到陰極。另外一種副產品質子通過一塊離子交換膜流到陰極。在陰極中,電子和質子與氧氣發生反應形成水。一塊微生物燃料電池理論上最大可以產生1.2V電壓。但是可以像電池一樣把足夠多的燃料電池并聯和串聯起來產生足夠高的電壓來作為一種有實際應用的電源。目前該研究小組正在利用他們在材料科學、細菌學和環境工程方面的優勢來最優化微生物燃料電池的結構。
英國牛津大學科研人員研制出一種新的環保生物電池,這種環保生物電池裝有一種生化酶,可以吸收空氣中的氫和氧來發電。這種生化酶是從一種需要氫氣來維持新陳代謝的細菌中分離出來的。這種酶的獨特之處在于可以與那些如一氧化碳和硫化氫等常規的電池催化劑并存。這種酶是“生長型”的,因此能夠以價格低廉、可再生等特點取代傳統價格昂貴的鉑基催化劑。這種電池消耗的是大氣中的氧氣和氫氣。所使用的酶是從自然界中利用氫氣進行新陳代謝的細菌中分離出來的。這種酶的特性是具有高選擇性,能夠忍受對傳統的燃料電池催化劑具有毒害作用的氣體,例如一氧化碳和硫化氫。研究人員表示,由于這種酶能夠生長,所以對比于其他的氫燃料電池所使用昂貴的鉑催化劑而言,這是一種廉價的、可更新的環保燃料電池。
環保生物燃料電池還可以造出另一種重要產品,根據電信號立即測出病人血糖水平的儀器。對于向包括起博器和胰島素生成器等在內的可植入電控醫學設備供電來說,環保生物燃料電池非常有用。這些設備需要無限的電源,這是因為更換這些設備的電池可能需要外科手術。BFC從活的生物體內提取燃料(例如從血流中提取葡萄糖)來產生電流。只要生物個體是活的,這種燃料電池就可以持續起作用[5]。
盡管環保生物燃料電池經數十年研究仍距實用遙遠,燃料電池研究從20世紀90年代初開始又成為熱門領域,現在仍在升溫階段。幾種燃料電池已經處在商業化的前夜。另外,近20年來生物技術的巨大發展,為環保生物燃料電池研究提供了巨大的物質、知識和技術儲備。所以,環保生物燃料電池有望在不遠的將來取得重要進展。隨著生物和化學學科交叉研究的深入,特別是依托生物傳感器和生物電化學的研究進展,以及對修飾電極、納米科學等研究的層層深入,環保生物燃料電池研究必然會得到更快的發展。環保生物燃料電池作為一種綠色環保的新能源,在生物醫學等各個領域的應用的理想必然會實現。
[1]韓保祥,畢可萬.采用葡萄糖氧化酶的生物燃料電池的研究[J].生物工程學報,1992,8(2):203~206.
[2]賈鴻飛,謝 陽,王宇新.生物燃料電池[J].電池,2000,30(2):86~89.
[3]連 靜,祝學遠.直接微生物燃料電池的研究現狀及應用前景[J].科學技術與工程,2005(22):162~163.
[4]尤世界,趙慶良.廢水同步生物處理與生物燃料電池發電研究[J].環境科學,2006,9(9):17~18.
[5]寶 玥,吳霞琴.生物燃料電池的研究進展[J].電化學,2004,2(1):1~8.