999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Research on Additional Loss of Guidance Optical Fiber

2010-07-25 06:20:52CUIDedong崔得東HAOChongyang郝重陽
Defence Technology 2010年3期

CUI De-dong(崔得東),HAO Chong-yang(郝重陽)

(Northwestern Polytechnical University,Xi'an 710072 Shaanxi,China)

Introduction

The optical fiber image guidance system is an inner loop in missile control system,and its main functions are searching,locking-on and tracking the target artificially or automatically,meanwhile,it outputs the angle rate of sight of missile to target for the missile control.In this process,the image of targets and background acquired by the seeker and the tracking error calculated by the image tracker are transmitted bidirectionally through an optic fiber[1].Differing from the common communication optical fiber,the guidance optical fiber is wound on a bobbin being mounted near the missile's aft,and is paid out in high velocity accompany the missile.It is used in mal-conditions,thus,its key parameters,such as consecutive length,strength,losses etc,are all claimed strictly.In this paper,we discuss the additional losses mainly.

1 Mechanisms and Model of Optical Fiber Additional Losses

When the light wave propagates in an optical fiber,its intensity reduces gradually with the increase of the fiber's length.This kind of attenuation of light wave is caused by the optical fiber's losses.

The reasons causing the losses include the absorption,scattering and radiation.The absorption losses consist of the inherent absorption and impurity absorption.The scattering losses result from the inherent scattering and imperfect structure scattering[2].

Some of above factors depend upon the material,structure and production process of the fiber,such as the inherent absorption,impurity absorption including transition metal and hydroxyl absorptions,inherent scattering including Brillouin,Rayleigh and Raman scatterings,and some imperfect structure scattering,such as imperfect structure scattering of the interface between core and clad.The losses caused by these factors are confirmed after production of the optical fiber,we call them as the intrinsic losses.The losses caused in the winding process of the guidance optical fiber,are called as the additional losses.They mainly include the macro bend loss,micro bend loss and the losses caused by low temperature.They are discussed in this paper.

1.1 Macro Bend Loss

Being limited by the diameter of missile,the diameter of bobbin can not be too large.Thus,when the guidance fiber is wound on the bobbin,the macro bending loss occurs.

By using WKB method,the bended fiber can be equivalent to a strait fiber with varied refraction index.We can derive the formula of macro bend loss by using Schrodinger equation[3]

1.2 Micro Bend Loss

The random micro bend of the fiber's axis may occur due to external factors,and the so called micro bend loss is the loss caused by energy exchange among the propagation modes in the bended fiber.The guidance optical fiber is wound on a bobbin in multi-layers with a certain tensile force to guarantee that the fiber can be released without knots and breaks.The hands of spirals in adjacent layers are inverted,thus,there are many cross effects among the layers,as shown in Fig 1.At the cross point,the random bend of fiber's axis occurs due to interlayer pressure,which result in the energy coupling between the basic mode and radiant mode,thereby attenuating the light energy.The main factors causing the light energy in the winding process include pre-tensile force,elastic deformation of optical fiber structure caused by pressure between adjacent layers,change of outside environment,etc.

1.3 Low Temperature Losses

Fig.1 Cross effect between adjacent layers of optical fiber

The fiber's optic characteristics will change under low temperature,and the additional losses will occur.The main factors include the axial compression strain caused by great difference of thermal expansion coefficient between the fiber core and the polymer clad,and the variation of the lateral pressure between the fiber's core and clad.

Usually,the model shown in Fig.2 can be used to analyze the fiber's deformations[4].

Fig.2 Deformation model of optical fiber

The following total force balance equation[4]can be used to calculate the fiber's deformationW.

whereE0andI0=πd2/4 are the Yang's modulus of optical fiber and the moment of geometry inertia,Ffis the axial force,is the lateral force caused by different mechanisms,i.e.,lateral shrink of the clad and increase of lateral stress between layers at the cross region.

whereais the fiber's radius,as shown in Fig.2,Eb(T)andαb(T)are Yang's modulus and thermal expanding coefficient of fiber's coating,ΔT=T-Trefis the difference between actual temperature and refer-ence temperature.Suppose that the deformationW1caused by lateral shrink of the clad is a sine wave with spatial frequency

wherelis a constant representing the length.In the deformed optical fiber,the spatial frequency is unknown.We can denote the deformation as

By using equation(2)and(3),the initial deformation(W1)nof the optical fiber can be written as

The deformationW2of the optical fiber in the cross region under low temperature can be analyzed similarly[5].In the wound fiber,the lateral buffer forcecaused by the tensile force of winding and the radial stress between layers mainly depends on the Yang's modulus of the clad,and the modulus can increase under low temperature.The fiber's deformation tends to be bigger because the clad material becomes harder.

By using compressive rod stability theory in thematerial dynamic,the lateral force of the optical fiber can be denoted as

whereWfandWbare the deformations of core and clad in the cross region respectively.They are the interference sources of the optical fiber due to radial stress between layers produced by the tensile force when winding the optical fiber.The parametertis the thickness of clad,fis the elasticity constant of the clad,its definition is

The deformation at cross region is

whereLhas the equivalent order of magnitude to the diameter of the optical fiber.Using the similar method,we can obtain the result of the second mechanism.

Under low temperature,(W2)ntends to be bigger due to the increase of Yang's modulusEb(T)mainly,andαnis known.Whereas,for the initial interfere outside the cross region,the deformation(W1)nis sensitive to the spatial frequency change.Aslis unknown,αncan not be used.W1andW2have the similar relation to the temperature.In this model,there is an increment for the deformation and additional losses of the inner optical fiber.It is what we hoped,because the stress model adopted here predicts that the radial force and radius have an inverse ratio relationship.

wherehμνis the couple coefficient fromμmode toνmode,α'μis the intrinsic loss coefficient of modeμ.Obviously,it is a function of axial dimension of optical fiber.

Suppose that the external interfereδ(x,z)is introduced through refractive index.where

is the distribution index of the optical fiber without interference,n1,aand Δ are axial refractive index,radius of core and difference of refractive indexes between core and cladding.Thus,the couple coefficient can be expressed as

kμν(z)is the transfer probability,and

whereEμis the transverse component of electric field.The constants in equation(16)can be obtained from the orthogonal condition.k0,ω,μ0,P0are wave length in vacuum,frequency,magnetic conductivity in vacuum and incidence power,respectively.Assume that the deviation of ideal optical fiber and micro interfered optical fiber is less than the wave length propagating in the fiber,that is,?1.

The fiber's deformation can be transformed through refractive indexX'=X-W2,using the parabola refractive in equation(13),the micro interfereδ(x,z)can be denoted as[5]

Now,we can calculate the power coupling coefficient[6]

Forμth mode group,the power coupling equation(12)can be written as

The equation(19)is usually used to calculate the additional losses caused by the deformation of optical fiber under low temperature.

2 Simulation and Experiment Results

Take the optical fiber of 1 000 m in length,andλ=1.31 μm,a=4.5 μm,nc1=1.493,R=50 mm,K=90.The experiment losses for standard bar winding are given in Fig.3.

Taking the fiber's diameterd=250 μm,clad radiusa'=62.5 μm,core radiusa=4.5 μm,refractive indexnc1=1.493,core's axial refractive indexnc0=1.471,thermal expansion coefficientαf=5.5 ×10-7/℃,Yang's modulusEf=7.17 ×1011dynes/cm2,geometric inertiaI0=1.2 × 10-9cm4,coat's thermal expansion coefficientαb=1.0 ×10-5/℃ ,coat's Yang's modulus under 60℃,40℃,25℃,-20℃,-40℃and -60℃ are 5.19×109dynes/cm2,6.23×109dynes/cm2,6.65 ×109dynes/cm2,1.06 ×1010dynes/cm2,1.53×1010dynes/cm2and 1.85×1010dynes/cm2,and the winding tension force is 300 g,spatial frequencyαn= π/2d,we have the simulation result and experiment data of fiber additional loss under low temperature,as shown in Fig.4.The experiment data are the average of three test values under each temperature.

Fig.3 Fiber bending loss

It can be seen that the additional losses of bended optical fiber are inversely proportional to the bending radius.The simulation results coincide better with the experiment data.The additional loss fits well in the high temperature range,but have bigger error in low temperature range,due to the estimating error of Yang's modulus of coating materials in low temperature range is greater than that in high temperature rang.But,the results are all in the dynamic rang of the bidirectional transmission system.

Fig.4 Simulation and experiment results of fiber additional loss under low temperature

3 Conclusions

In proper conditions,the analytical model established in this paper can estimate and analyze the additional losses of optical fiber in the bending and under low temperature with a certain tensile force.It has practical value in the fiber guidance engineering applications.

[1]CUI De-dong.Fiber-optic image precision guidance system[J].Infrared and Laser Engineering,2003,32(3):226 -230.(in Chinese)

[2]YANG Tong-you ,YANG Bang-xiang.Fiberoptic communication technology[M].Beijing:The People's Posts and Telecommunications Press,1995:44 -45.(in Chinese)

[3]QIN Bing-kun,SUN Yu-guo.Dielectric optical waveguide and its applications[M].Beijing:Beijing Institute of Technology Press,1991:107 -108.(in Chinese)

[4]Timoshenko S P,Gere J M.Theory of elastic stability[M].New York:McGraw-Hill,1961.

[5]Ruffin P B.A study of signal attenuation in spooled optical fiber cable[D].Huntsville:University of Alabama in Huntsville,1986.

[6]Ruffin P B,Sung C C.Optics and optical systems-optics.electro-optics and sensors[J].SPIE Proceedings,1987,776:173-182.

主站蜘蛛池模板: 国产手机在线观看| 成AV人片一区二区三区久久| 福利一区三区| 欧美视频二区| 国产福利2021最新在线观看| 亚洲视频黄| 亚洲人成影视在线观看| 特级做a爰片毛片免费69| 国产在线小视频| 又黄又湿又爽的视频| 国产99久久亚洲综合精品西瓜tv| 天堂成人在线| 亚洲91在线精品| 精品国产一区二区三区在线观看 | 国内丰满少妇猛烈精品播| 亚洲欧美色中文字幕| 成人在线综合| 日韩无码白| 久草国产在线观看| 91亚洲视频下载| 亚洲水蜜桃久久综合网站| 亚洲欧美自拍视频| 久久亚洲综合伊人| 久久久久亚洲av成人网人人软件| 成人国内精品久久久久影院| 欧美高清视频一区二区三区| 91麻豆久久久| 麻豆精选在线| 久久婷婷综合色一区二区| 国产高清无码麻豆精品| 999在线免费视频| 久综合日韩| 无码中字出轨中文人妻中文中| 精品人妻系列无码专区久久| 欧美国产菊爆免费观看| 日韩在线中文| 久久亚洲国产一区二区| 一本无码在线观看| 国产亚洲精品91| 毛片在线播放a| 狠狠色狠狠色综合久久第一次| 亚洲91精品视频| 午夜影院a级片| 国产一区在线观看无码| 亚洲伦理一区二区| 色婷婷电影网| 九色国产在线| 91热爆在线| 国产精品乱偷免费视频| 精品无码专区亚洲| 日本AⅤ精品一区二区三区日| 99精品在线看| 国产成人免费高清AⅤ| 波多野结衣视频网站| 国产亚洲精品97在线观看| 欧美日韩专区| 亚洲香蕉久久| 2021精品国产自在现线看| 91久久天天躁狠狠躁夜夜| 无遮挡一级毛片呦女视频| 亚洲AV电影不卡在线观看| 91精品福利自产拍在线观看| 亚洲熟妇AV日韩熟妇在线| 国产麻豆另类AV| av无码久久精品| 精品五夜婷香蕉国产线看观看| 亚洲αv毛片| 最新精品国偷自产在线| 欧美.成人.综合在线| 制服丝袜无码每日更新| 日本黄网在线观看| 精品撒尿视频一区二区三区| 特级毛片免费视频| 成人在线综合| 免费看美女自慰的网站| 91小视频在线观看| a在线观看免费| 美女高潮全身流白浆福利区| 国产亚洲精| 九九精品在线观看| 黄色网站不卡无码| 91精选国产大片|