999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

單根(7,5)蛇形單壁碳納米管的拉曼光譜

2010-12-11 09:13:06謝黎明于學春馮超群劉忠范
物理化學學報 2010年4期
關鍵詞:實驗室振動

謝黎明 于學春 馮超群 張 錦 劉忠范

(北京大學化學與分子工程學院,分子動態與穩態結構國家重點實驗室,北京分子科學國家實驗室,北京 100871)

單根(7,5)蛇形單壁碳納米管的拉曼光譜

謝黎明 于學春 馮超群 張 錦*劉忠范

(北京大學化學與分子工程學院,分子動態與穩態結構國家重點實驗室,北京分子科學國家實驗室,北京 100871)

研究了單根(7,5)蛇形單壁碳納米管的拉曼光譜特征,觀察到了環呼吸振動峰(RBM)、環呼吸振動的倍頻峰(2RBM)、介于中間頻率的振動峰(IMF)、無規振動峰(D)、剪切振動峰(G)、中間頻率振動峰(M)、剪切振動和環呼吸振動的和頻峰(G+RBM)、面內橫向光學聲子和縱向聲學聲子的和頻峰(iTOLA)、無規振動的二次共振峰(G′或者2D)以及其它一些歸屬不清楚的拉曼峰.不同激發波長和不同激發偏振拉曼光譜研究表明,這些拉曼光譜峰顯示出了非常強的激發能量和激發偏振的選擇性.

拉曼光譜;(7,5)單壁碳納米管;共振拉曼光譜;偏振拉曼光譜

Raman spectroscopy is a powerful approach to characterize structure,electronicproperties,andphononpropertiesofSWNTs[1-4]. When SWNTs are resonant with the incident laser,where the incident laser energy is close to the excitonic transition energies (Eii)of SWNTs,the Raman intensity of SWNTs can be enhanced by 103times[3].Usually observed resonant Raman bands of SWNTs are RBM band(100-400 cm-1),D band(ca 1350 cm-1),G band (ca 1580 cm-1),and G′band (ca 2700 cm-1)[1].The frequency of RBM is inverse to the diameter of SWNTs,which is widely used to assign(n,m)indices of SWNTs[4-6].The RBM and G bands are first-order Raman peaks,while the D and G′bands are intervalley second-order Raman peaks[2].

There are also other weak second-order Raman bands observed in SWNTs,such as 2RBM band[7-8],IMF band(700-900 cm-1)[9-11],M band(1700-1800 cm-1)[12-13],G+RBM band(1700-2000 cm-1)[14],iTOLA band(1700-2000 cm-1)[13],and 2G band(ca 3200 cm-1)[15].These weak second-order Raman bands can give rich fundamental information of SWNTs.For example,the overtone of RBM has been used to determine electron-phonon coupling in SWNTs[7-8].

However,for an individual SWNT,it is hard to observe all of these weak Raman bands even at strong resonance.SWNT bundles and SWNT solutions may give stronger Raman intensity than an individual SWNT,but Raman bands from different(n,m) SWNTs in bundles or in solution are overlapped,which makes it difficult to investigate structure-dependent electronic and phonon properties of SWNTs.

Serpentine SWNTs,which have high-density parallel SWNT sections[16-17],can give much stronger Raman intensity than an individual section.Additionally,serpentine SWNT sections are not bundled with each other.Therefore,serpentine SWNTs can be used to observe various second-order Raman bands from individual SWNTs without nanotube-nanotube interactions.Here, we have grown a highly folded(20 sections/μm)individual serpentine SWNT.Raman characterization was carried out on this highly folded individual serpentine SWNT and 25 Raman peaks have been observed,including RBM band,D band,G band,G′band,various second-order Raman bands,and some bands with unclearassignments(labeled asNC1 to NC3).

1 Experimental

Serpentine SWNTs were grown on quartz by following the method in references[16-17].Atomic force microscope(AFM)characterization was conducted on DI NANOSCOPE III(Veeco Instruments,USA).Scanning electron microscope(SEM)charac terization was conducted on Hitachi S-4800(Japan).Raman characterization was conducted on a Horiba HR800 Raman system. A 100×objective was used to focus laser beam and to collect Raman signal.

2 Results and discussion

Figs.1(a)and 1(b)show a scanningelectron microscope(SEM) image and an atomic force microscope(AFM)image of the same individual serpentine SWNT.The distance between two nearest folded sections of this serpentine SWNT is about 50 nm. Fromsectionanalysisin the AFMimage(the insetin Fig.1(b)),the diameter is measured to be(0.8±0.1)nm for this SWNT,which indicates an individual SWNT.

Fig.1 SEM and AFM images and Raman spectrum of a serpentine SWNT(a)SEM image of a serpentine SWNT,(b)AFM image of the serpentine SWNT in (a)and the image size is 1 μm×1 μm,the inset in(b)is the section analysis along the blue dash line in(b);(c)Raman spectrum of the serpentine SWNT at 633 nm excitation with laser polarization parallel to SWNT.The Raman peaks labeled as*were from the substrate(quartz).LF:low-frequency band;NC1,NC2, and NC3:Raman bands with unclear assignment

Fig.1(c)shows a Raman spectrum of this SWNT excitated at 633 nm.The polarization direction of the excitation laser is parallel to the axial direction of the SWNT sections.Apart from Raman peaks from the quartz substrate(labeled as*),a bunch of Raman peaks were observed from this individual SWNT.The strong peak at 290 cm-1is assigned to RBM band.The reported RBM frequencies for(7,5)and(8,3)are 283 and 297 cm-1[6],respectively.The second excitonic transition energies(E22)for(7,5) and(8,3)are 647 and 663 nm[6],respectively.Additionally,Eiiof SWNTs shifts slightly with dielectric surroundings(<30 meV, i.e.,about 10 nm around 650 nm)[18].Therefore,this SWNT is assigned to(7,5)because the RBM intensityis extremelystrong and the E22of(7,5)nanotube is more close to excitation energy(633 nm).The diameter measured with AFM((0.8±0.1)nm)is consistent with the calculated diameter for a(7,5)nanotube(0.82 nm). All the Raman bands in Fig.1(c)are zoomed in Fig.2,where overlapped peaks are fitted by multi-lorentzian functions.

In Fig.2(a),the 290 cm-1peak is the RBM.The 580 cm-1peak is assigned to 2RBM.The assignment for three low frequency (LF)bands at 169,174,and 306 cm-1is unclear.They may be double resonance of transverse acoustic(TA)phonon and/or longitudinalacoustic(LA)phononwhichhasbeenobservedingraphite whisker[19].In Fig.2(b),824,841,885,and 919 cm-1peaks are assigned to IMF band.The IMF band is the combination modes of out-of-plane transverse optic(oTO)phonon and LA phonon[9-11].The assignment for the peaks at 682 and 1042 cm-1is unknown.Dresselhaus et al.[11]assigned that peak around 1042 cm-1to Raman peak of C-O-C.In Fig.2(c),the 1315 and 1337 cm-1peaks are assigned to D band.The 1549,1563,1583,and 1601 cm-1peaks are assigned to G band.The 1728 and 1763 cm-1peaks are assigned to M band,which is the overtone of the oTO phonon(oTO phonon frequency is at 867 cm-1in graphite)[13]. The two M bands(M-at 1728 cm-1and M+at 1763 cm-1)are corresponding to different resonance processes[13].The 1891 cm-1peak is assigned to G+RBM band according to its frequency.The 1940 cm-1peak is assigned to iTOLA band.In Fig.2(d),the 2662 and 2627 cm-1peaks are assigned to intervalley double resonance of K-point phonon(G′band).The 3201 cm-1peak is assigned to overtone of 1601 cm-1G band.The assignment for the 2470 cm-1peak is not clear.It may be inter-electronic band double resonance of K-point phonon.

Fig.2 Zoomed Raman spectra of the serpentine SWNT in Fig.1range:(a)100-600 cm-1,(b)600-1200 cm-1,(c)1200-2000 cm-1,(d)2000-3400 cm-1;The blue lines are multi-lorentzian fitting results and the green lines are fitted individual peaks.

Further,Raman measurement was carried out at 514 nm excitation with laser polarization parallel to SWNT(Fig.3(a))and at 633 nm excitation with laser polarization perpendicular to SWNT(Fig.3(b)).Compared with Raman spectrum at 633 nm excitation with parallel configuration(Fig.3(c)),only weak G band, whose intensity decreased by ca 200 times,was observed at 514 nm excitation.This suggests that all Raman peaks observed in Fig.1(c)and Fig.2 are resonance Raman peaks.Excitation at 633 nm with laser polarization perpendicular to SWNT only gives very week RBM and G band(Fig.3(b)),which is consistent with perfectly parallel-aligned SWNT sections(Fig.1(b)).

Fig.3 Raman spectra of the serpentine SWNT at different wavelengths and different excitation polarization(a)at 514 nm excitation with laser polarization parallel to SWNT,(b)at 633 nm excitation with laser polarization perpendicular to SWNT,(c)at 633 nm excitation with laser polarization parallel to SWNT

3 Conclusions

In conclusion,we have observed RBM,LF,2RBM,IMF,D, G,M,G+RBM,G′,2G bands and some other bands from a highly folded individual serpentine(7,5)SWNT at 633 nm parallel excitation.Since 2RBM[7-8],IMF[10]bands,and possibly LF,M, and G+RBM bands,are charity-dependent,these weak secondorder Raman bands may be useful for(n,m)assignment.

1 Dresselhaus,M.S.;Dresselhaus,G.;Jorio,A.;Souza,A.G.; Pimenta,M.A.;Saito,R.Acc.Chem.Res.,2002,35:1070

2 Dresselhaus,M.S.;Dresselhaus,G.;Saito,R.;Jorio,A.Physics Reports-Review Section of Physics Letters,2005,409:47

3 Rao,A.M.;Richter,E.;Bandow,S.;Chase,B.;Eklund,P.C.; Williams,K.A.;Fang,S.;Subbaswamy,K.R.;Menon,M.;Thess, A.;Smalley,R.E.;Dresselhaus,G.;Dresselhaus,M.S.Science, 1997,275:187

4 Maultzsch,J.;Telg,H.;Reich,S.;Thomsen,C.Phys.Rev.B, 2005,72:205438

5 Meyer,J.C.;Paillet,M.;Michel,T.;Moreac,A.;Neumann,A.; Duesberg,G.S.;Roth,S.;Sauvajol,J.L.Phys.Rev.Lett.,2005, 95:217401

6 Bachilo,S.M.;Strano,M.S.;Kittrell,C.;Hauge,R.H.;Smalley, R.E.;Weisman,R.B.Science,2002,298:2361

7 Yin,Y.;Vamivakas,A.N.;Walsh,A.G.;Cronin,S.B.;Unlu,M. S.;Goldberg,B.B.;Swan,A.K.Phys.Rev.Lett.,2007,98: 037404

8 Shreve,A.P.;Haroz,E.H.;Bachilo,S.M.;Weisman,R.B.; Tretiak,S.;Kilina,S.;Doorn,S.K.Phys.Rev.Lett.,2007,98: 037405

9 Fantini,C.;Jorio,A.;Souza,M.;Ladeira,L.O.;Souza,A.G.; Saito,R.;Samsonidze,G.G.;Dresselhaus,G.;Dresselhaus,M.S.; Pimenta,M.A.Phys.Rev.Lett.,2004,93:087401

10 Luo,Z.T.;Papadimitrakopoulos,F.;Doorn,S.K.Phys.Rev.B, 2007,75:205438

11 Fantini,C.;Jorio,A.;Souza,M.;Saito,R.;Samsonidze,G.G.; Dresselhaus,M.S.;Pimenta,M.A.Phys.Rev.B,2005,72: 085446

12 Zhao,J.L.;Jiang,C.Y.;Fan,Y.W.;Burghard,M.;Basche,T.; Mews,A.Nano Lett.,2002,2:823

13 Brar,V.W.;Samsonidze,G.G.;Dresselhaus,M.S.;Dresselhaus, G.;Saito,R.;Swan,A.K.;Unlu,M.S.;Goldberg,B.B.;Souza,A. G.;Jorio,A.Phys.Rev.B,2002,66:155418

14 Brown,S.D.M.;Corio,P.;Marucci,A.;Pimenta,M.A.; Dresselhaus,M.S.;Dresselhaus,G.Phys.Rev.B,2000,61:7734

15 Wang,F.;Liu,W.T.;Wu,Y.;Sfeir,M.Y.;Huang,L.M.;Hone,J.; O′Brien,S.;Brus,L.E.;Heinz,T.F.;Shen,Y.R.Phys.Rev.Lett., 2007,98:047402

16 Geblinger,N.;Ismach,A.;Joselevich,E.Nat.Nanotechnol.,2008, 3:195

17 Yao,Y.;Dai,X.;Feng,C.;Zhang,J.;Liang,X.;Ding,L.;Choi, W.;Choi,J.;Kim,J.M.;Liu,Z.Adv.Mater.,2009,21:4158

18 Ohno,Y.;Iwasaki,S.;Murakami,Y.;Kishimoto,S.;Maruyama, S.;Mizutani,T.Phys.Rev.B,2006,73:235427

19 Tan,P.H.;Hu,C.Y.;Dong,J.;Shen,W.C.;Zhang,B.F.Phys. Rev.B,2001,6421:214301

October 13,2009;Revised:December 8,2009;Published on Web:February 9,2010.

Raman Characterization of a Highly Folded Individual Serpentine (7,5)Single-Walled Carbon Nanotube

XIE Li-Ming YU Xue-Chun FENG Chao-Qun ZHANG Jin*LIU Zhong-Fan
(Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China)

We carried out Raman characterization of a highly folded individual serpentine(7,5)single-walled carbon nanotube(SWNT).Twenty five Raman peaks were observed,which included a radial breathing mode(RBM band),an overtone of RBM(2RBM band),an immediate-frequency band(IMF band),a disorder-induced band(D band),a tangential band(G band),an M band(1700-1900 cm-1),a combination mode of G and RBM(G+RBM band),a combination mode of in-plane transverse optic(iTO)phonon and longitudinal acoustic(LA)phonon(iTOLA band),an overtone of the D band(G′or 2D band),an overtone of the G band(2G band)and some other bands with unknown assignments.Further Raman measurements at different laser excitation wavelengths and different excitation polarization show that these Raman peaks are highly dependent on the excitation energy and the excitation polarization.

Raman spectroscopy;(7,5)Single-walled carbon nanotube;Resonance Raman spectroscopy; Polarization Raman spectroscopy

We thank Prof.Mildred Dresselhaus (Massachusetts Institute of Technology,USA),Prof.Jing Kong (Massachusetts Institute of Technology,USA),and Prof.Riichiro Saito(Tohoku University,Japan)for their useful discussion.

*Corresponding author.Email:jinzhang@pku.edu.cn;Tel:+86-10-62752555.

The project was supported by the National Natural Science Foundation of China(20673004,20725307,50821061)and National Key Basic Research Program of China(973)(2006CB932701,2006CB932403,2007CB936203).

國家自然科學基金(20673004,20725307,50821061)和國家重點基礎研究發展計劃項目(973)(2006CB932701,2006CB932403,2007CB936203)資助

O649

猜你喜歡
實驗室振動
振動的思考
科學大眾(2023年17期)2023-10-26 07:39:14
噴水推進高速艇尾部振動響應分析
電競實驗室
電子競技(2020年4期)2020-07-13 09:18:06
This “Singing Highway”plays music
電競實驗室
電子競技(2020年2期)2020-04-14 04:40:38
電競實驗室
電子競技(2019年22期)2019-03-07 05:17:26
電競實驗室
電子競技(2019年21期)2019-02-24 06:55:52
電競實驗室
電子競技(2019年20期)2019-02-24 06:55:35
電競實驗室
電子競技(2019年19期)2019-01-16 05:36:09
振動攪拌 震動創新
中國公路(2017年18期)2018-01-23 03:00:38
主站蜘蛛池模板: 久久国产拍爱| 91精品啪在线观看国产| 国产成人AV男人的天堂| 久久中文字幕不卡一二区| 国产久操视频| 欧美午夜在线视频| 中美日韩在线网免费毛片视频| 亚州AV秘 一区二区三区| 91亚洲视频下载| 国产一区二区三区日韩精品| 国产资源免费观看| 国产超薄肉色丝袜网站| 亚洲国产精品国自产拍A| 国产亚洲视频免费播放| 欧美亚洲欧美| 91黄色在线观看| 91在线激情在线观看| 久久国产亚洲偷自| 污网站免费在线观看| 久草性视频| 国产在线视频导航| 国产精品无码AV片在线观看播放| 国产免费怡红院视频| 亚洲欧洲日韩综合色天使| 免费国产不卡午夜福在线观看| 成年免费在线观看| 中文字幕中文字字幕码一二区| 日韩AV手机在线观看蜜芽| 狠狠v日韩v欧美v| 国产成人AV男人的天堂| 日韩小视频在线播放| 精品福利视频导航| 九色在线视频导航91| 欧美精品亚洲日韩a| 欧美h在线观看| 欧美日本中文| 亚洲伦理一区二区| 天堂av高清一区二区三区| 亚洲最大福利网站| 日本在线免费网站| 久久免费看片| 欧美日韩亚洲国产| 婷婷丁香在线观看| 欧美人人干| 中文字幕在线播放不卡| 中国国产A一级毛片| 人人看人人鲁狠狠高清| 国产永久免费视频m3u8| 精品無碼一區在線觀看 | 國產尤物AV尤物在線觀看| 一级看片免费视频| 中文字幕自拍偷拍| 免费视频在线2021入口| 91 九色视频丝袜| 亚洲制服丝袜第一页| 精品无码视频在线观看| 亚洲视频免费在线| 刘亦菲一区二区在线观看| 精品久久高清| 欧美日韩高清在线| 久久成人免费| 亚洲视频二| 青草视频久久| 久久精品电影| 国产高清在线观看91精品| 欧美色视频网站| 日本高清视频在线www色| 亚洲男人天堂久久| 国产成人亚洲精品色欲AV| 四虎精品国产AV二区| 黄色网页在线观看| 国产成人福利在线| 沈阳少妇高潮在线| 亚洲天堂精品在线| 人人看人人鲁狠狠高清| 免费无码AV片在线观看中文| 日韩色图区| 九九久久精品国产av片囯产区| 国内熟女少妇一线天| 制服丝袜无码每日更新| 国产91全国探花系列在线播放| 五月激情婷婷综合|