摘要:對車室聲腔模態和車身結構動剛度進行分析可以避開車身壁板與車內空腔聲學共振的可能性。本文主要對車內聲腔建模方法進行研究,同時通過白車身動剛度和模態分析發現白車身后隔板區域與聲腔在某振動頻率會發生共振,為改進車身剛度指明方向。
關鍵詞:聲腔;模態;動剛度;共振
中圖分類號:U462.3 文獻標志碼:A 文章編號:1005-2550(2011)06-0023-03
Simulation Analysis of Cavity and Structure in White Body
LIU Wen-hua, XIA Tang-zhong, LIU Pan, WANG Ping-ping, LU Zhi-cheng, YUAN Zhi
(Dongfeng Peugeot Citroen Automobile Company LTD, Technology Center, Wuhan 430056,China)
Abstract:The analysis for cavity and structure dynamic stiffness can avoid BIW-plate and cavity’s sympathetic vibration. Modeling method of cavity was studied in the paper,and then sympathetic viabration of rear shelf and cavity at some frequency was found through BIW dynamic stiffness and mode analysis,which gave us some suggestion to improve the stiffness of BIW.
Key words:cavity;mode;dynamic stiffness;sympathetic vibration
車內噪聲特性已成為汽車乘坐舒適性的評價指標之一,日益受到人們的重視。車內噪聲根據形成及傳播的機理不同,可以分為結構噪聲和空氣噪聲。外界激勵(發動機、輪胎、路面及氣流)引起車身壁板振動產生的噪聲是結構噪聲,而車室外通過車身孔隙進入車內的噪聲則是空氣噪聲。試驗研究表明,對于轎車乘坐車室來說,發動機振動、路面激勵等引起的車身壁板振動而輻射出來的結構低頻噪聲在車內噪聲中占主要地位。
在車身NVH設計階段,對車室聲腔進行模態分析不僅可以掌握車內空腔的聲學模態頻率和模態振型,在設計過程中避免車身結構振動導致的車內共鳴噪聲,合理布置和優化車內聲學特性,還可以掌握空腔聲場的聲壓分布情況,為預測并分析動態聲學響應做準備。
1 聲腔模態分析
1.1 車內聲場有限元理論
假設車身車室內的空氣是理想的流體介質,且在絕熱過程中傳播的是小振幅聲波,則車身車室內的聲壓滿足封閉空腔的Helmholtz波動方程:
式中:c0是聲波在介質中的傳播速度;?犖2為Laplace算子;p為聲場中任一點的聲壓函數。p=p(x,y,z,t),設,p=pej?棕t則式(1)可寫為:
式中:k=?棕/c0為波數;P為聲壓幅值;P=P(x,y,z);?棕為聲壓振動的圓頻率。
如果假設空腔邊界表面不能吸收聲波并且有微幅振動,則邊界條件可寫為:
式中:n為邊界表面的法向單位矢量;?籽0為空氣密度;為振動表面的法向加速度分量。
通過有限元法將上述聲場空間離散化,并將其振動方程與車身壁板的振動方程聯立,可得到用于車身壁板及內部聲場模態分析的方程。
式中:Mss、Css和Kss分別為車身壁板結構的質量、阻尼和剛度的矩陣;Maa、Caa和Kaa分別為車內聲場的等效質量、阻尼和剛度的矩陣;u為結構動態位移函數。
1.2 車內聲腔有限元模型的建立
首先在HyperMesh軟件中導入車身結構有限元模型,提取車室內部與空氣接觸的表面,構成一個密閉的聲學空腔,在不影響計算精度的前提下對其局部特征進行一些簡化。聲學單元的理想尺寸是每個波長至少六個單元,根據空氣中的聲速和噪聲的分析頻率可以計算出聲波的波長以及聲學單元的理想長度。本文采用四面體單元建立聲學模型,單元的長度為約50 mm,建立了四種空腔模型,如圖1所示,(a)考慮儀表板、座椅、行李箱包括備胎;(b)不考慮行李箱,去除座椅;(c)不考慮行李箱,放入座椅;(d)不考慮行李箱和座椅,認為空腔是連續的。
1.3 車內聲腔模態分析
車室空腔系統的聲學特征表現為與固有頻率和振型(即聲壓的分布情況)相聯系的聲學振動模態。根據以往的經驗,空腔越長頻率越低,一般第一階頻率不為零的聲學模態出現在40 ~80 Hz左右,表現為聲壓沿車室縱向分布的縱向聲學模態。
利用MSC.Nastran軟件對車室內聲場有限元模型進行模態分析,得到聲學模態前10階聲學頻率和模態振型,如表1和圖2所示。其中第一階模態的頻率為0,表示車室內各點聲壓變化的幅值相同,相當于結構模態中的剛體模態。
由圖2(a)可知,在55.38 Hz時出現首階縱向聲壓模態,且行李箱區域出現相對聲壓最大值,零聲壓節面出現在中間位置;(b)在77.02 Hz時,出現首階縱向聲壓模態,且后風窗區域出現相對聲壓最大值;(c)在79.89 Hz時,出現首階縱向聲壓模態,且后風窗區域出現相對聲壓最大值;(d)在83.02 Hz時,出現首階縱向聲壓模態,且后風窗區域出現相對聲壓最大值。根據PSA的計算結果,第一階空腔模態頻率為55 Hz,故暫以第一種建模方法即(a)為準。
2 車身風窗下橫梁動剛度分析
動剛度是指計算結構在周期振蕩載荷作用下對每一個計算頻率的動響應,也稱為頻率響應。激勵載荷是在頻域中明確定義的,所有的外力在每一個指定的頻率上已知。本文采用模態頻率響應法,利用結構的模態振型來對耦合的運動方程進行縮減和解耦,同時由單個模態響應的疊加得到某一給定頻率下的解。
后風窗下橫梁動剛度分析的激振點在風窗下橫梁的中間區域上,如圖3所示,施加單位激振力,用MSC.Nastran軟件進行計算并且輸出該激振點的響應(動剛度),如圖4。從計算結果看,分別在55 Hz與71 Hz時動剛度有峰值,與聲腔一階非零模態產生共振。為了進一步驗證這一結論,下面將進一步展開白車身結構模態分析。
3 白車身結構模態分析
對白車身結構進行模態分析,可以獲得它的共振頻率,通過修改車身結構避開激勵頻率,能夠防止產生共振。另外,通過模態振型可以判斷出車身變形較大的部位,從而可以有的放矢地改進車身剛度,減少振動噪聲的產生和傳遞。從結構模態計算來看,白車身第9階和第12階模態主要表現為后擱板和風窗后橫梁的局部振動模態,如圖5所示。在頻率54.6 Hz和71.3 Hz時,白車身后隔板區域有局部垂直振動模態,與圖4中動剛度曲線在此頻率下的峰值吻合。
4 結論
在車身NVH分析中,通過對車內聲腔模態和白車身結構動剛度進行計算分析,在新車型研發階段可盡可能避免車身壁板與車內空腔聲學共振。針對本文中所研究車型存在的聲腔與車身壁板共振的問題,已經提出解決方案,由于樣件仍在試制階段,方案的可行性有待進一步驗證,本文暫不詳述。
參考文獻:
[1] 孫凌玉,呂振華.有關汽車內部聲場模態分析的幾點討論[J].汽車工程,2003,25(1):74-77.
[2] 馬天飛,林逸,張建偉.轎車車室內噪聲的仿真分析[J].CAD/CAM與制造業信息化.
[3] 劉成武,黃鼎鍵,鐘勇.基于NVH的車內聲腔模態分析[J].福建工程學院學報,2009.