徐能
(常熟理工學院數學與統計學院,江蘇常熟 215500)
關于一類含有線性算子的亞純多葉函數
徐能
(常熟理工學院數學與統計學院,江蘇常熟 215500)
引進和研究了一類含有線性算子的新的多葉亞純函數,得到了這一函數類中的一些有趣性質,如包含關系、卷積性質等.這些結果改進和拓展了早期的一些工作,同時也得到了其他一些新的結果.
亞純函數;多葉函數;凸單葉函數;Hadamard乘積(或卷積);從屬;線性算子
設Σp表示由形如

組成的在去心單位圓盤U0={z:0<|z|<1}內解析的函數類.一個函數f(z)∈Σp被稱為是在類Σ*p(α)中,如果對某些α(α<1)滿足條件

注意到對于0≤α<1,Σ*p(α)是α階p葉亞純星型函數類.同時,我們寫Σ*1(α)=Σ*(α).
對于由(1.1)給出的f(z)∈Σp和g(z)∈Σp,這里

則f(z)和g(z)的Hadamard乘積(或卷積)定義為


這里c?{0,-1,-2,…},(x)0=1,(x)n=x(x+1)…(x+n-1)(n∈?).相應于函數φp(a,c;z),廣義超幾何函數
現在我們定義函數φp(a,c;z)為

這里l≤m+1,l,m∈?0:=??{0},βj?{0,-1,-2,…}(j=1,2,…,m).現在我們定義

近來,Liu和Srivastava[1]通過下列Hadamard乘積

定義了一類新的線性算子

這里f(z)∈Σp,l≤m+1,l,m∈N0,βj?{0,-1,-2,…}(j=1,2,…,m).如果f(z)∈Σp由(1.1)給出,則從(1.3)和(1.4)我們有

lFm(α1,…,αl;β1,…,βm;z)被定義為下列級數:
為了使記號簡便,我們引進

特別地,對于p=1,l=2,m=1和α1=a,α2=1,β1=c?{0,-1,-2,…},我們得到線性算子

這是由Liu和Srivastava[2]以及Yang[3]分別獨立引進和研究的.
令P是由在U內凸單葉并且滿足條件h(0)=1,Reh(z)>0(z∈U)的解析函數所組成的函數類.
設f(z)和g(z)在U內解析.如果存在一個在U內的解析函數w(z),使得

則稱函數f(z)是在U內從屬于g(z),記為f(z)?g(z).進一步,如果g(z)在U內單葉,則

在整篇文章中,我們設

顯然,對于k=1,我們有

關于k-對稱點的亞純(或解析)函數類已經被許多學者所研究(見文獻[4-9]).
在本文中,使用線性算子Hl,mp(α1;β1)和兩個解析函數間的從屬,我們引進和研究了下列Σp中的子類:
定義函數f(z)∈Σp如果滿足條件

導致函數類Σp,k(a,c;h),這是最早由Srivastava,Yang和Xu(見文獻[5])引進和研究的.有關亞純函數的研究
還可參見文獻[1-3,10-19]等.


為了導出我們的結果,需要下列引理.

在本文中,我們的目標是給出函數類Σl,mp,k(α1;β1;h)中的包含關系,卷積性質及其他一些新的結果.我們的結果改進和擴展了一些早期的結論.
定理1設h(z)∈P,α<1且滿足






[1]Liu Jinlin,Srivastava H M.Classes of meromorphically multivalent functions associated with the generalized hypergeometric function [J].Math Comput Modelling,2004,39:21-34.
[2]Liu Jinlin,Srivastava H M.A linear operator and associated families of meromorphically multivalent functions[J].J Math Anal Appl,2000,259:566-581.
[3]Yang Dinggong.Certain convolution operators for meromorphic Functions[J].Southeast Asian Bull Math,2001,25:175-186.
[4]Sakaguchi K.On a certain univalent mapping[J].J Math Soc Japan,1959,11:72-75.
[5]Srivastava H M,Yang Dinggong,Xu Neng.Some subclasses of meromorphically multivalent functions associated with a linear operator[J].Appl Math Comput,2008,195:11-23.
[6]Sudharsan T V.On functions starlike with respect to symmetric and conjugate points[J].Taiwan J Math,1998(2):57-68.
[7]Wang Z G,Gao C Y,Yuan S M.On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points[J].J Math Anal Appl,2006,332:97-106.
[8]Yang Dinggong,Liu Jinlin.On Sakaguchi functions[J].Internat J Math Math Sci,2003,30:1923-1931.
[9]Yuan S M,Liu Z M.Some properties of α-convex and α-quasiconvex functions with respect ton-symmetric points[J].Appl Math Comput,2007,188:1142-1150.
[10]Aouf M K.Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function[J]. Comput Math Appl,2008,55:494-509.
[11]Aouf M K.Argument estimates of certain meromorphically multivalent functions associated with generalized hypergeometric function[J].Appl Math Comput,2008,206:772-780.
[12]Cho N E,Kim I H.Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function[J].Appl Math Comput,2007,187:115-121.
[13]Cho N E,Kwon O S,Srivastava H M.Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations[J].J Math Anal Appl,2004,300:505-520.
[14]El-Ashwah R M.Some properties of certain subclasses of meromorphically multivalent functions[J].Appl Math Comput,2008,204:824-832.
[15]Liu Jinlin.Some properties of certain meromorphically multivalent Functions[J].Appl Math Comput,2009,210:136-140.
[16]Liu Jinlin,Srivastava H M.Subclasses of meromorphically multivalent functions associated with a certain linear operator[J].Math Comput Modelling,2004,39:35-44.
[17]Raina R K,Srivastava H M.A new class of meromorphically multivalent functions with applications to generalized hypergeometric functions[J].Math Comput Modelling,2006,43:350-356.
[18]Srivastava H M,Patel J.Applications of differential subordination to certain subclasses of meromorphically multivalent functions [J].J Inequal Pure Appl Math,2005,6(3):1-13.
[19]Wang Z G,Jiang Y P,Srivastava H M.Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function[J].Comput Math Appl,2009,57:571-586.
[20]Ruscheweyh S.Convolutions in Geometric Function Theory[M].Montreal:Les Presses de Universite de Montreal,1982.
[21]Ruscheweyh S.New criteria for univalent functions[J].Proc Amer Math Soc,1975,49:109-115.
[22]Xu Neng,Yang Dinggong.An application of differential subordinations and some criteria for starlikenedd[J].Indian J Pure Appl Math,2005,36:541-556.
[23]Suffridge T J.Some remarks on convex maps of the unit disk[J].Duke Math J,1970,37:775-777.
A Class of Meromorphically Multivalent Functions Involving a Linear Operator
XU Neng
(School of Mathematics and Statistics,Changshu Institute of Technology,Changshu 215500,China)

meromorphic functions;multivalent functions;convex univalent functions;linear operator;convolu?tion;k-symmetric points;subordination
O174.5
A
1008-2794(2011)08-0001-09
2011-05-19
國家自然科學基金(10871094)資助項目.
徐能(1961—),男,江蘇常熟人,常熟理工學院數學與統計學院教授,研究方向:函數論.