999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

New Wideband Beam-forming Method Used in Underwater Communication System

2011-07-25 06:21:20SUWei蘇為HUANGXiaoyan黃曉燕CHENGEn程恩YUANFei袁飛SUNHaixin孫海信
Defence Technology 2011年3期
關鍵詞:主體

SU Wei(蘇為),HUANG Xiao-yan(黃曉燕),CHENG En(程恩),YUAN Fei(袁飛),SUN Hai-xin(孫海信)

(Key Laboratory of Underwater Acoustic Communication and Marine Information Technology,Ministry of Education,Xiamen University,Xia’men 361005,Fujian,China)

Introduction

Some phase coherent modulation and demodulation techniques,such as PSK,can improve data rate greatly in underwater acoustic(UWA)communication,because the bandwidth of UWA channel is seriously limited.But compared with those incoherent techniques,such as FSK,they need higher SNR of the received signals for decoding the signals[1].The use of beam-forming technique and the SNR gain obtained by spatial filters are demonstrated as an effective method to improve the communication performance if SNR is relatively low.And,switching-beam algorithms or adaptive beam-forming algorithms must be used in the receiver to track the direction of arrivals(DOA)of the incident signals.Compared with the adaptive beamforming algorithms,the switching-beam algorithms are more robust[2].And,in order to receive undistorted PSK signals,a time domain wideband beam-forming structure with constant beam-width is proposed in Ref.[3].It combined tapped-delay-lines with real coefficients FIR filters.And the real coefficients FIR filters are designed to realize amplitude and phase weighting at different frequency points.But,simulation results show that the real coefficients FIR filters proposed in Ref.[3]are unable to meet the requirements for complicated frequency response and the communication system with a large ratio of communication band to carrier frequency.In order to solve this problem,a time domain wideband beam-forming structure based on complex coefficient FIR digital filters is proposed in this paper.It is more suitable for PSK underwater acoustic communication than the structure proposed in Ref.[3].

1 Design of Weights for Wideband and Constant Beam-width

An adaptive beam synthesizing algorithm is proposed in Ref.[4],and an improved method is proposed in literature Ref.[5].

Afterpth iteration,the designed weights of the al-gorithm proposed in Ref.[4]is

wherefp(θm)is the energy of pre-defined virtual interference source.

From Eq.(2),it can be seen that the constraint of the mainlobe shape is not taken into account in the original algorithm.Thus,its stability is poor.An improved algorithm replacesV(θd)in Eq.(1)with(Vm+Wp-1)[5].The formula of beam-forming weights afterpth iteration is

and,Vmcan be expressed as

whereθican be taken equally in the mainlobe,Aiis the constraint coefficient of the mainlobe.

The error between the array shape calculated after(p-1)th iteration and referenced array shapeD(θi)inθidirection is

According to Eq.(5),the update constraint coefficientAiof the mainlobe is

個體對自身正當利益的追求是無可厚非的,畢竟“任何人如果不同時為了自己的某種需要和為了這種需要的器官而做事,他就什么也不能做”[3]286。 但在市場逐利本質的驅使下,受利益最大化原則的影響,個體極易因一己之私而產生短視、功利的思想和行為,淪為自身私欲的奴隸。 倘若各個利益主體都對一己之私錙銖必較,不惜犧牲他人或集體的利益,那么利益主體間就生成一種互抑狀態。 在這種互抑狀態下,各個利益主體看似享有爭取自身利益的自由,實則經常性的由于多方牽制而難以真正實現自身的利益訴求。 這種多元利益主體之間自發形成的互抑狀態若不加以引導和調試,必將激化本就錯綜復雜的利益沖突。

whereμis the iteration step.

2 Proposed Wideband Beam-forming Structure

2.1 Beam-forming Structure Based on Complex Coefficient FIR Digital Filter

The designed constant beam width weight of thekth sensor at the frequencyflcan be expressed as

whereaklandφklare the amplitude and phase of the weight respectively.

In literature Ref.[3],the wideband signals received bykth sensor are weighted by real coefficient FIR digital filters with frequency responsesHk(ωl)=wkl .But,simulation results show that the real coefficient FIR digital filters can not meet the design requirements,because the frequency and phase responses of the required filters are complicated in PSK underwater acoustic communication.

Therefore,a time domain wideband beam-forming structure with constant beam width based on complex coefficient FIR digital filters is proposed in this paper,as shown in Fig.1.It compensates the time delay of integer sampling intervals with tapped-delay-lines first,calculates the complex envelopes of the received wideband signals by using spectrum shifting then,and weights the received signals with a set of complex coefficient FIR digital filters finally.

Fig.1 Time domain wideband beam-forming structure based on complex coefficient FIR digital filters

Obviously,the complex coefficient FIR digital filters can realize more complicate frequency responses than real coefficient FIR digital filters with the same order.The signals are processed as follows.

First,assuming that the received signal is the sum of a group of different frequency CW signals,thus,the compensated signal ofkth sensor can be written as

whereτkis the delay time introduced bykth tapped-de-lay-line.

Then,after spectrum shifting,the complex representation of the received signal envelop which contains high-frequency component can be expressed as

The complex envelopes of the received signals ofkth sensor can be achieved by low pass filter.

Finally,the signalsk(t)is weighted by complex coefficient FIR digital filters with responses shown in Eq.(7),and the beam output signal is achieved by weighted sum of different sensor signals.

2.2 Design Algorithm of Complex Coefficient FIR Digital Filters

It can be proved that,if the input signal of filter is the complex envelop of received real signal,the frequency response of the complex coefficient FIR digital filter can be expressed as

wherehnis the coefficient of the designed filter,Nis the order of filter,andfsis the sampling rate of the system.

The adaptive[6]or optimization method[7]can be used to design the coefficients of the required FIR filters.For the frequencyfloutside the pass band,if using the adaptive method,the pre-defined frequency responses,including amplitude and phase,must be provided.It increases extra computational volume and has disadvantages of aberration and bad robustness.While using the optimization method,the amplitude frequency response at different frequencies will be constrained only.Therefore,it is more robust than the adaptive method.

The optimization method can be described as follows.

First,a group of frequencies in the range of[0,fs/2]is selected to make the frequency interval smaller in the communication band and larger outside the band.

Second,the optimization relational expression can be established by normL∞for the frequencyflin the pass band.

And the optimization relational expression established by normL2is

For the frequencyfloutside the pass band,it is necessary to add a constraint condition

whereais a constant used to constrain the side-lodes of FIR filters.

Finally,solving the above optimization problem can be solved.

In this paper,the software Sedumi and Yalmip are adopted to solve the above optimization problem.

3 Simulation Results

In the simulation,a volumetric array composed of 12 sensors,as shown in Fig.2(c),is adopted.The communication band is 4 -10 kHz.The intersection angle between the direction of main beam and the base array normal is 15°.The weights are calculated by using the algorithm proposed in the Section 1 first.Then,the frequency band will be shifted from 4-10 kHz to 0-6 kHz to obtain the complex envelopes of the received signals.Finally,the real and complex coefficient FIR digital filters are used to fit the beam weights,respectively.The simulation results are shown in Fig.2.

Fig.2 Simulation results

Fig.2(a)and Fig.2(b)show the results of adopting 61-order real coefficient FIR digital filter and 31-order complex coefficient FIR digital filter to fit the weights of 0th sensor,respectively.the solid line in figure represents the expected frequency responses,i.e.the weights for wideband beam with constant width.The line labeled by‘* ’shows the fitting result of complex coefficient FIR digital filter.It essentially coincides with the expected value.And,the line labeled by‘△’shows the result of real coefficient FIR digital filter greatly.It differs from the expected value.It can be seen that the shape of the beam weighted by real coefficient filters have great distortion when the ratio of communication band to carrier frequency is larger than 0.85.

The beam shape weighted by the complex coefficient filters are shown in Fig.2(d).It can be seen clearly that the shapes of mainlobes meet the requirements well and the errors are less than 0.3 dB.

4 Conclusions

A novel wideband beam-forming structure with constant beam width based on complex coefficient FIR digital filters is proposed in this paper.The design algorithm of the complex coefficient FIR filters is presented also.The simulation results for a volumetric array composed of 12 sensors in the frequency range of 4-10 kHz show that the proposed structure is more suitable for the underwater acoustic communication situation where there is a larger ratio of communication band to carrier frequency.

[1]LIU Yun-tao,YANG Shen-yuan.Research of adaptive spatio-temporal DFE with embedded DPLL in high-speed underwater digital communication[J].Journal of Harbin Engineering University,2005,26(5):658 -662.(in Chinese)

[2]Thompson D,Neasham J,Sharif B S,et al.Performance of coherent PSK receivers using adaptive combining,beamforming and equalizations in 50 km underwater acoustic channels[J].IEEE Trans on Oceans,1996,25(2):845-850.

[3]YANG Yi-xin.Studies on beamforming and beamspace high resolution bearing estimation techniques in sonar systems[D].Xi’an:Northwestern Polytechnical University,2002:26-35.(in Chinese)

[4]Olen C A.A numerical pattern synthesis algorithm for arrays[J].IEEE Trans on Antennas and Propagation,1990,38:1666-1676.

[5]Anh P.A numerical pattern synthesis algorithm for arbitary arrays[J].Antennas Propagation and EM Theory,2003,28(2):210-213.

[6]HE Bing.Designing oflinear phase FIR filters using modified NLMS algorithm[J].Journal of Shanghai Jiaotong University,2000,(2):266 -268.(in Chinese)

[7]YAN She-feng,MA Yuan-liang.Optimal designing of space-time filters using Second order cone programming[J].Science in China Series E:Information Sciences,2006,36(2):153-171.(in Chinese)

猜你喜歡
主體
一起多個違法主體和多種違法行為案件引發的思考
論碳審計主體
論自然人破產法的適用主體
南大法學(2021年3期)2021-08-13 09:22:32
從“我”到“仲肯”——阿來小說中敘述主體的轉變
阿來研究(2021年1期)2021-07-31 07:39:04
如何讓群眾成為鄉村振興的主體?
今日農業(2021年7期)2021-07-28 07:07:16
何謂“主體間性”
領導文萃(2020年15期)2020-08-19 12:50:53
技術創新體系的5個主體
中國自行車(2018年9期)2018-10-13 06:17:10
中醫文獻是中醫寶庫的主體
關于遺產保護主體的思考
懷舊風勁吹,80、90后成懷舊消費主體
金色年華(2016年13期)2016-02-28 01:43:27
主站蜘蛛池模板: 99热在线只有精品| 国产精品原创不卡在线| 免费不卡在线观看av| 国产在线无码一区二区三区| 欧美一级在线| 亚洲无码37.| 久久久久人妻一区精品色奶水 | 色婷婷色丁香| 欧美国产成人在线| 91精品伊人久久大香线蕉| 黄色网在线免费观看| 中文字幕欧美日韩| 超薄丝袜足j国产在线视频| 国产成人无码播放| 日韩无码白| 国产精品网曝门免费视频| 国产高清又黄又嫩的免费视频网站| 91精品免费高清在线| 久热中文字幕在线| 色爽网免费视频| 婷婷伊人五月| 成人国产精品视频频| 午夜激情婷婷| 国内精品伊人久久久久7777人| 亚洲aaa视频| 欧美日韩专区| 婷婷丁香在线观看| 99精品热视频这里只有精品7| 国产一区免费在线观看| 欧美日韩国产成人高清视频| 欧美综合区自拍亚洲综合绿色| 黄色网站在线观看无码| 国产成人超碰无码| 国产精品亚欧美一区二区三区| 国产香蕉国产精品偷在线观看| 国产福利不卡视频| 久久99国产乱子伦精品免| www亚洲天堂| 国产欧美高清| 2022国产无码在线| 欧美黄网在线| 日韩欧美成人高清在线观看| 丰满人妻被猛烈进入无码| 99精品免费在线| 色欲色欲久久综合网| 91九色视频网| 欧美国产视频| 精品无码一区二区三区电影| 国产乱人伦偷精品视频AAA| 浮力影院国产第一页| 亚洲看片网| 人妻免费无码不卡视频| 农村乱人伦一区二区| 欧美一级色视频| 亚洲人成在线精品| 国产小视频在线高清播放| 国产在线一区视频| 欧美成人综合在线| 亚洲一级毛片在线观播放| 狠狠色丁香婷婷| 91香蕉国产亚洲一二三区| 久久久久国产一区二区| 99久久精品国产精品亚洲| 欧美天堂在线| 国产91无码福利在线| 午夜国产大片免费观看| 亚洲色中色| 国产麻豆精品在线观看| 99九九成人免费视频精品| 丁香婷婷激情综合激情| 色哟哟国产精品| 日本午夜影院| 9cao视频精品| 综合网久久| 色婷婷成人| 国内精品91| 黄色网址手机国内免费在线观看| 国国产a国产片免费麻豆| 夜夜高潮夜夜爽国产伦精品| 国产中文一区a级毛片视频 | 99手机在线视频| 亚欧美国产综合|