李立芳 大連91550部隊94分隊 116023
淺談數字圖像處理技術及應用
李立芳 大連91550部隊94分隊 116023
從數字圖像處理的發展歷史與研究內容出發,介紹了數字圖像處理技術的優點與發展趨勢,總結了數字圖像處理技術的廣大應用領域,對數字圖像處理的發展具有借鑒意義。
數字圖像處理
數字圖像處理是將圖像信號轉換成數字信號并利用計算機對其進行處理的過程。 20世紀20年代,圖像處理首次得到應用。20世紀60年代中期,隨電子計算機的發展得到普遍應用。60年代末,圖像處理技術不斷完善,逐漸成為一個新興的學科。隨著圖像處理技術的深入發展,從70年代中期開始,隨著計算機技術和人工智能、思維科學研究的迅速發展,數字圖像處理向更高、更深層次發展。人們已開始研究如何用計算機系統解釋圖像,實現類似人類視覺系統理解外部世界,這被稱為圖像理解或計算機視覺。利用數字圖像處理主要是為了修改圖形,改善圖像質量,或是從圖像中提取有效信息,數字圖像處理對圖像進行體積壓縮,便于傳輸和保存。 數字圖像處理因易于實現非線性處理,處理程序和處理參數可變,故是一項通用性強,精度高,處理方法靈活,信息保存、傳送可靠的圖像處理技術。
數字圖像處理主要研究的內容有以下幾個方面:
1.1 圖像變換由于圖像陣列很大,如直接在空間域中進行處理,涉及計算量很大。因此,往往采用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散余弦變換等間接處理技術,將空間域的處理轉換為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理)。目前新興研究的小波變換在時域和頻域中都具有良好的局部化特性,它在圖像處理中也有著廣泛而有效的應用。
1.2 圖像編碼壓縮 圖像編碼壓縮技術可減少描述圖像的數據量(即比特數),以便節省圖像傳輸、處理時間和減少所占用的存儲器容量。壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。
1.3 圖像增強和復原 圖像增強和復原的目的是為了提高圖像的質量,如去除噪聲,提高圖像的清晰度等。圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中噪聲影響。圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立“降質模型”,再采用某種濾波方法,恢復或重建原來的圖像。
1.4 圖像分割 圖像分割是數字圖像處理中的關鍵技術之一。圖像分割是將圖像中有意義的特征部分提取出來,其有意義的特征有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。雖然目前已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用于各種圖像的有效方法。因此,對圖像分割的研究還在不斷深入之中,是目前圖像處理中研究的熱點之一。
1.5 圖像描述 圖像描述是圖像識別和理解的必要前提。作為最簡單的二值圖像可采用其幾何特性描述物體的特性,一般圖像的描述方法采用二維形狀描述,它有邊界描述和區域描述兩類方法。對于特殊的紋理圖像可采用二維紋理特征描述。隨著圖像處理研究的深入發展,已經開始進行三維物體描述的研究,提出了體積描述、表面描述、廣義圓柱體描述等方法。
1.6 圖像分類(識別) 圖像分類(識別)屬于模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)后,進行圖像分割和特征提取,從而進行判決分類。圖像分類常采用經典的模式識別方法,有統計模式分類和句法(結構)模式分類,近年來新發展起來的模糊模式識別和人工神經網絡模式分類在圖像識別中也越來越受到重視。
2.1 目前,數字圖像處理的信息大多是二維信息,處理信息量很大。如一幅256×256低分辨率黑白圖像,要求約64kbit的數據量;對高分辨率彩色512×512圖像,則要求768kbit數據量;如果要處理30幀/秒的電視圖像序列,則每秒要求500kbit~22.5Mbit數據量。因此對計算機的計算速度、存儲容量等要求較高。
2.2 數字圖像處理占用的頻帶較寬。與語言信息相比,占用的頻帶要大幾個數量級。如電視圖像的帶寬約5.6MHz,而語音帶寬僅為4kHz左右。所以在成像、傳輸、存儲、處理、顯示等各個環節的實現上,技術難度較大,成本亦高,這就對頻帶壓縮技術提出了更高的要求。
2.3 數字圖像中各個像素是不獨立的,其相關性大。在圖像畫面上,經常有很多像素有相同或接近的灰度。就電視畫面而言,同一行中相鄰兩個像素或相鄰兩行間的像素,其相關系數可達0.9以上,而相鄰兩幀之間的相關性比幀內相關性一般說還要大些。因此,圖像處理中信息壓縮的潛力很大。
2.4 由于圖像是三維景物的二維投影,一幅圖像本身不具備復現三維景物的全部幾何信息的能力,很顯然三維景物背后部分信息在二維圖像畫面上是反映不出來的。因此,要分析和理解三維景物必須作合適的假定或附加新的測量,例如雙目圖像或多視點圖像。在理解三維景物時需要知識導引,這也是人工智能中正在致力解決的知識工程問題。
2.5 數字圖像處理后的圖像一般是給人觀察和評價的,因此受人的因素影響較大。由于人的視覺系統很復雜,受環境條件、視覺性能、人的情緒愛好以及知識狀況影響很大,作為圖像質量的評價還有待進一步深入的研究。另一方面,計算機視覺是模仿人的視覺,人的感知機理必然影響著計算機視覺的研究。例如,什么是感知的初始基元,基元是如何組成的,局部與全局感知的關系,優先敏感的結構、屬性和時間特征等,這些都是心理學和神經心理學正在著力研究的課題。
3.1 再現性好 數字圖像處理與模擬圖像處理的根本不同在于,它不會因圖像的存儲、傳輸或復制等一系列變換操作而導致圖像質量的退化。只要圖像在數字化時準確地表現了原稿,則數字圖像處理過程始終能保持圖像的再現。
3.2 處理精度高 按目前的技術,幾乎可將一幅模擬圖像數字化為任意大小的二維數組,這主要取決于圖像數字化設備的能力。現代掃描儀可以把每個像素的灰度等級量化為16位甚至更高,這意味著圖像的數字化精度可以達到滿足任一應用需求。對計算機而言,不論數組大小,也不論每個像素的位數多少,其處理程序幾乎是一樣的。換言之,從原理上講不論圖像的精度有多高,處理總是能實現的,只要在處理時改變程序中的數組參數就可以了。試想一下圖像的模擬處理,為了要把處理精度提高一個數量級,就要大幅度地改進處理裝置,這在經濟上是極不合算的。
3.3 適用面寬 圖像可以來自多種信息源,它們可以是可見光圖像,也可以是不可見的波譜圖像(例如X射線圖像、射線圖像、超聲波圖像或紅外圖像等)。從圖像反映的客觀實體尺度看,可以小到電子顯微鏡圖像,大到航空照片、遙感圖像甚至天文望遠鏡圖像。這些來自不同信息源的圖像只要被變換為數字編碼形式后,均是用二維數組表示的灰度圖像(彩色圖像也是由灰度圖像組合成的,例如RGB圖像由紅、綠、藍三個灰度圖像組合而成)組合而成,因而均可用計算機來處理。即只要針對不同的圖像信息源,采取相應的圖像信息采集措施,圖像的數字處理方法適用于任何一種圖像。
3.4 靈活性高 圖像處理大體上可分為圖像的像質改善、圖像分析和圖像重建三大部分,每一部分均包含豐富的內容。由于圖像的光學處理從原理上講只能進行線性運算,這極大地限制了光學圖像處理能實現的目標。而數字圖像處理不僅能完成線性運算,而且能實現非線性處理,即凡是可以用數學公式或邏輯關系來表達的一切運算均可用數字圖像處理實現。
圖像是人類獲取和交換信息的主要來源,因此,圖像處理的應用領域必然涉及人類生活和工作的方方面面。隨著人類活動范圍的不斷擴大,圖像處理的應用領域也將隨之不斷擴大。
4.1 航天和航空技術方面的應用
數字圖像處理技術在航天和航空技術方面的應用,除了上面介紹的JPL對月球、火星照片的處理之外,另一方面的應用是在飛機遙感和衛星遙感技術中。許多國家每天派出很多偵察飛機對地球上有興趣的地區進行大量的空中攝影。對由此得來的照片進行處理分析,以前需要雇用幾千人,而現在改用配備有高級計算機的圖像處理系統來判讀分析,既節省人力,又加快了速度,還可以從照片中提取人工所不能發現的大量有用情報。從60年代末以來,美國及一些國際組織發射了資源遙感衛星(如LANDSAT系列)和天空實驗室(如SKYLAB),由于成像條件受飛行器位置、姿態、環境條件等影響,圖像質量總不是很高。因此,以如此昂貴的代價進行簡單直觀的判讀來獲取圖像是不合算的,而必須采用數字圖像處理技術。如LANDSAT系列陸地衛星,采用多波段掃描器(MSS),在900km高空對地球每一個地區以18天為一周期進行掃描成像,其圖像分辨率大致相當于地面上十幾米或100米左右(如1983年發射的LANDSAT-4,分辨率為30m)。這些圖像在空中先處理(數字化,編碼)成數字信號存入磁帶中,在衛星經過地面站上空時,再高速傳送下來,然后由處理中心分析判讀。這些圖像無論是在成像、存儲、傳輸過程中,還是在判讀分析中,都必須采用很多數字圖像處理方法。現在世界各國都在利用陸地衛星所獲取的圖像進行資源調查(如森林調查、海洋泥沙和漁業調查、水資源調查等),災害檢測(如病蟲害檢測、水火檢測、環境污染檢測等),資源勘察(如石油勘查、礦產量探測、大型工程地理位置勘探分析等),農業規劃(如土壤營養、水分和農作物生長、產量的估算等),城市規劃(如地質結構、水源及環境分析等)。我國也陸續開展了以上諸方面的一些實際應用,并獲得了良好的效果。在氣象預報和對太空其它星球研究方面,數字圖像處理技術也發揮了相當大的作用。
4.2 生物醫學工程方面的應用
數字圖像處理在生物醫學工程方面的應用十分廣泛,而且很有成效。除了上面介紹的CT技術之外,還有一類是對醫用顯微圖像的處理分析,如紅細胞、白細胞分類,染色體分析,癌細胞識別等。此外,在X光肺部圖像增晰、超聲波圖像處理、心電圖分析、立體定向放射治療等醫學診斷方面都廣泛地應用圖像處理技術。
4.3 通信工程方面的應用
當前通信的主要發展方向是聲音、文字、圖像和數據結合的多媒體通信。具體地講是將電話、電視和計算機以三網合一的方式在數字通信網上傳輸。其中以圖像通信最為復雜和困難,因圖像的數據量十分巨大,如傳送彩色電視信號的速率達100Mbit/s以上。要將這樣高速率的數據實時傳送出去,必須采用編碼技術來壓縮信息的比特量。在一定意義上講,編碼壓縮是這些技術成敗的關鍵。除了已應用較廣泛的熵編碼、DPCM編碼、變換編碼外,目前國內外正在大力開發研究新的編碼方法,如分行編碼、自適應網絡編碼、小波變換圖像壓縮編碼等。
4.4 工業和工程方面的應用
在工業和工程領域中圖像處理技術有著廣泛的應用,如自動裝配線中檢測零件的質量、并對零件進行分類,印刷電路板疵病檢查,彈性力學照片的應力分析,流體力學圖片的阻力和升力分析,郵政信件的自動分揀,在一些有毒、放射性環境內識別工件及物體的形狀和排列狀態,先進的設計和制造技術中采用工業視覺等等。其中值得一提的是研制具備視覺、聽覺和觸覺功能的智能機器人,將會給工農業生產帶來新的激勵,目前已在工業生產中的噴漆、焊接、裝配中得到有效的利用。
4.5 軍事公安方面的應用
在軍事方面圖像處理和識別主要用于導彈的精確末制導,各種偵察照片的判讀,具有圖像傳輸、存儲和顯示的軍事自動化指揮系統,飛機、坦克和軍艦模擬訓練系統等;公安業務圖片的判讀分析,指紋識別,人臉鑒別,不完整圖片的復原,以及交通監控、事故分析等。目前已投入運行的高速公路不停車自動收費系統中的車輛和車牌的自動識別都是圖像處理技術成功應用的例子。
4.6 文化藝術方面的應用
目前這類應用有電視畫面的數字編輯,動畫的制作,電子圖像游戲,紡織工藝品設計,服裝設計與制作,發型設計,文物資料照片的復制和修復,運動員動作分析和評分等等,現在已逐漸形成一門新的藝術——計算機美術。
數字圖像處理技術在航空航天、工業生產、醫療診斷、資源環境、氣象及交通監測、文化教育等領域有著廣泛的應用,創造了巨額社會價值;同時還遠遠不能滿足社會需求,自身也在不斷完善和發展,有很多新的方面要探索。它必將向更深入、更完善的方向發展:處理算法更優化,處理速度更快,實現圖形的智能生成、處理、識別和理解。
[1]李紅俊,韓冀皖.數字圖像處理技術及其應用.計算機測量與控制,2002.10(9):620~622
[2]W.K.Pratt.DIGITAL IMAGE PROCESSING.John wiley & Sons,inc,1978
[3]楊枝靈,王開.Visual C++數字圖像獲取、處理及實踐應用.人民郵電出版社,2003
[4]聶穎,劉榴娣.數字信號處理器在可視電話中的應用.光電工程,1997.24(3):67~70
[5]侯遵澤,楊文采.小波分析應用研究.物探化探計算技術,1995.17(3):1~9
[6]李道遠,常敏,袁春風.基于小波變換的數字水印綜述.計算機應用與工程,2003.23(10):65~67
10.3969/j.issn.1001-8972.2012.03.036