999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

船舶螺旋槳流固耦合穩(wěn)態(tài)求解算法

2012-03-23 06:56:28張帥朱錫侯海量
關(guān)鍵詞:變形模型

張帥,朱錫,侯海量

(海軍工程大學(xué) 船舶與動(dòng)力工程學(xué)院,湖北 武漢 430033)

水面艦艇螺旋槳大多采用錳-鎳-鋁-銅或鎳-鋁-青銅合金制成.盡管合金材料具有屈服強(qiáng)度高和可靠性好等優(yōu)勢(shì),但加工成螺旋槳幾何形狀的難度較高,且金屬螺旋槳較差的聲學(xué)性能使得其極易因振動(dòng)而產(chǎn)生噪聲.而纖維增強(qiáng)復(fù)合材料具有比強(qiáng)度高、耐腐蝕性好、良好的阻尼特性以及材料可設(shè)計(jì)性強(qiáng)等優(yōu)點(diǎn).因此復(fù)合材料應(yīng)用于艦船螺旋槳和潛艇推進(jìn)系統(tǒng)中[1]將改善螺旋槳的綜合性能.但不同于金屬螺旋槳,復(fù)合材料螺旋槳在水動(dòng)力作用下會(huì)產(chǎn)生大的變形,其水動(dòng)力性能必然發(fā)生變化.因此要得到復(fù)合材料螺旋槳的水動(dòng)力性能,螺旋槳的流-固耦合算法是基礎(chǔ).傳統(tǒng)的螺旋槳理論設(shè)計(jì)與計(jì)算建立在勢(shì)流理論基礎(chǔ)之上,未能全面考慮粘性的影響且不考慮旋度,因而無法準(zhǔn)確預(yù)測(cè)槳葉邊界層、螺旋槳尾流場(chǎng)的結(jié)構(gòu)及槳葉梢渦的形成等真實(shí)情況下的流動(dòng)特性[2].基于RANS方程的粘性流場(chǎng)計(jì)算螺旋槳的流場(chǎng)特性的方法日趨完善,黃勝等[3-5]等分析了螺旋槳在不同工作狀態(tài)下的水動(dòng)力性能.關(guān)于螺旋槳流-固耦合算法的研究,LIN H J等[6]采用升力面法和九節(jié)點(diǎn)退化殼單元耦合算法,實(shí)現(xiàn)了求解復(fù)合材料螺旋槳的水動(dòng)力性能的算法.Young Y L[7]研究了面元法和軟件ABAQUS耦合的螺旋槳流-固耦合計(jì)算方法,但這些方法均是基于勢(shì)流理論的螺旋槳水動(dòng)力計(jì)算.

本文首先通過不同湍流模型和試驗(yàn),驗(yàn)證求解螺旋槳的敞水性能,再將粘性流場(chǎng)計(jì)算軟件和有限元耦合起來,推導(dǎo)變形后螺旋槳的幾何參數(shù),實(shí)現(xiàn)螺旋槳流-固耦合的穩(wěn)態(tài)求解算法.本文計(jì)算采用實(shí)驗(yàn)測(cè)得的復(fù)合材料板拉伸模量和泊松比,將復(fù)合材料考慮為各向同性,沒有考慮復(fù)合材料的鋪層結(jié)構(gòu).

1 數(shù)學(xué)模型

1.1 流體控制方程

考慮螺旋槳在粘性湍流中旋轉(zhuǎn),其連續(xù)性方程和動(dòng)量方程可表示為:

連續(xù)方程:

動(dòng)量方程:

RANS方程雖然不用求解流場(chǎng)中的瞬時(shí)量,但是方程卻引入了新的未知量-雷諾應(yīng)力,這時(shí)的方程解不封閉.要封閉求解方程,就必須引入新的方程,這些方程通過各種湍流模型來定義.

1.2 湍流模型的選取

為使RANS方程封閉,將雷諾應(yīng)力用低階或時(shí)均量表達(dá),即湍流模型.封閉RANS方程主要有REYNOLDS應(yīng)力方程模型(RSM)與渦粘模型2種.渦粘模型以湍流各向同性為基礎(chǔ),認(rèn)為雷諾應(yīng)力和時(shí)均速度呈線性關(guān)系,該類模型求解簡(jiǎn)單,計(jì)算容易收斂.渦粘模型應(yīng)用較廣泛的有κ-ε,RANG κ-ε模型和SST κ-ω模型.而RSM模型以湍流各向異性為基礎(chǔ),考慮雷諾應(yīng)力的對(duì)流和擴(kuò)散作用,直接尋找雷諾應(yīng)力的輸運(yùn)方程.本文通過比較分析幾種常用湍流控模型,通過求解時(shí)間和求解精度方面的對(duì)比以及考慮到流固耦合本身對(duì)計(jì)算機(jī)性能的要求等方面進(jìn)行綜合考慮.螺旋槳水動(dòng)力性能計(jì)算模型選擇SST κ-ω湍流模型.該模型是利用混合函數(shù)將κ-ε和κ-ω2方程相結(jié)合而構(gòu)建的湍流模型,在近壁區(qū)采用κ-ω方程,其他區(qū)域則采用κ-ε方程以獲得湍流粘性作用,考慮了κ-ω方程近壁區(qū)模擬時(shí)的有效性及遠(yuǎn)場(chǎng)區(qū)無法準(zhǔn)確模擬的不足[8].最終選擇SST κω模型求解螺旋槳的流固耦合特性.

1.3 計(jì)算方法

計(jì)算螺旋槳流場(chǎng)的控制方程是一系列非線性偏微分?jǐn)?shù)學(xué)物理方程,需借助數(shù)值方法對(duì)其進(jìn)行求解.本文利用Ansys/cfx軟件完成該數(shù)值計(jì)算.收斂判據(jù)設(shè)定為0.000 1.計(jì)算區(qū)域分為內(nèi)、外2個(gè)流域,在內(nèi)流場(chǎng)建立一個(gè)固定于螺旋槳的旋轉(zhuǎn)坐標(biāo)系,采用MRF坐標(biāo)系模型對(duì)螺旋槳周圍的旋轉(zhuǎn)流場(chǎng)進(jìn)行計(jì)算,外圍流場(chǎng)則在絕對(duì)靜止坐標(biāo)系下進(jìn)行求解.將進(jìn)口邊界設(shè)置為速度入口條件,給定均勻來流的速度分量;出口邊界給定靜壓分布,外邊界設(shè)為開放界面;考慮粘性影響,螺旋槳表面定義為不可滑移壁面.

2 流體計(jì)算模型

文中采用DTMB4119螺旋槳,它是一種無側(cè)斜無后傾分布的三葉螺旋槳,被ITTC選為驗(yàn)證數(shù)值方法預(yù)報(bào)精度的標(biāo)準(zhǔn)模型.槳葉直徑為0.304 8 m,盤面比為0.6,槳葉剖面為NACA-66(mod)型,轂徑比為0.2,螺距比(0.7R)為1.084.文中采用Excel編制計(jì)算過程文件,計(jì)算出螺旋槳葉面和葉背各個(gè)半徑處的型值點(diǎn),將計(jì)算出的型值點(diǎn)轉(zhuǎn)換為文本文件,然后導(dǎo)入SolidWorks軟件中,建立三維實(shí)體螺旋槳模型.螺旋槳幾何模型和坐標(biāo)如圖1所示.坐標(biāo)軸的定義為:x軸與螺旋槳的旋轉(zhuǎn)軸一致,指向下游;y軸與槳葉參考線一致;z軸符合右手法則.計(jì)算采用全尺寸模型,轉(zhuǎn)速為n=10 r/s和20 r/s,通過改變來流速度來實(shí)現(xiàn)不同的進(jìn)速系數(shù).

網(wǎng)格質(zhì)量直接決定計(jì)算的收斂性、效率和精度,因此,應(yīng)根據(jù)流場(chǎng)中各物理量的分布特點(diǎn)對(duì)計(jì)算域進(jìn)行合理的網(wǎng)格劃分[1].

圖1 4119槳幾何模型Fig.1 Geometry of propeller 4119

將求解域分成旋轉(zhuǎn)區(qū)和靜止區(qū)2個(gè)區(qū),采用非結(jié)構(gòu)網(wǎng)格劃分方法,2個(gè)區(qū)采用CFX的GGI方式連接.即首先在螺旋槳表面生成三角形網(wǎng)格,再通過值要控制在30~300,通過多次試算確定表面網(wǎng)格大小和槳葉邊界層的過渡方式和層數(shù).螺旋槳表面網(wǎng)格和壁面棱柱過渡層網(wǎng)格如圖2所示.總網(wǎng)格數(shù)為120×104.

3 結(jié)構(gòu)模型

通過流體計(jì)算軟件求出螺旋槳的水動(dòng)力載荷以后通過Ansys-cfx軟件指定流固耦合界面將流體壓力通過表面效應(yīng)單元的方式傳遞給有限元單元.因流體計(jì)算和結(jié)構(gòu)計(jì)算采用的是非同種單元類型,為保證求解精度和數(shù)據(jù)傳遞的準(zhǔn)確性,在劃分有限元網(wǎng)格時(shí)保證導(dǎo)邊和隨邊以及葉梢附近的網(wǎng)格要密一些.經(jīng)多次試算后的有限元網(wǎng)格如圖3所示.考慮到螺旋槳自身質(zhì)量和運(yùn)轉(zhuǎn)工況,在ANSYS中設(shè)置旋轉(zhuǎn)軸和施加旋轉(zhuǎn)速度即可施加離心力和重力作用,槳葉根部邊界為固支端.計(jì)算模型采用的材料參數(shù)如表1所示,其中S玻璃纖維為實(shí)驗(yàn)所測(cè)板拉結(jié)果,計(jì)算出的鋁青銅材料槳葉的變形比S玻纖槳葉變形低一個(gè)數(shù)量級(jí),因此主要考慮高強(qiáng)S玻纖的槳葉結(jié)構(gòu).計(jì)算用復(fù)合材料槳幾何和金屬槳幾何相同.

圖3 槳葉有限元計(jì)算模型Fig.3 Finite element model of the blade

表1 槳葉材料參數(shù)Table 1 Properties of the materials

4 螺旋槳敞水性能計(jì)算和驗(yàn)證

對(duì)于流體動(dòng)力載荷,由于槳葉工作于復(fù)雜的流場(chǎng)中,葉面和葉背受到分布載荷,這種載荷既不均勻,也不滿足一些簡(jiǎn)單規(guī)律,因此如何盡可能真實(shí)地模擬槳葉的載荷分布是流固耦合分析的關(guān)鍵所在.

4.1 螺旋槳敞水性能計(jì)算和對(duì)比

為了實(shí)現(xiàn)結(jié)構(gòu)載荷計(jì)算的準(zhǔn)確性,首先采用幾種常用的湍流模型(κ-ε,SST κ-ω和RSM)對(duì)比求解螺旋槳的水動(dòng)力敞水性能并和JESSUP S D[9]實(shí)驗(yàn)結(jié)果進(jìn)行了對(duì)比.

對(duì)比結(jié)果如圖4、5所示,螺旋槳敞水動(dòng)力參數(shù)的計(jì)算值和實(shí)驗(yàn)結(jié)果吻合較好,計(jì)算所得的KT和10KQ與實(shí)驗(yàn)結(jié)果的最大誤差除了κ-ε模型為12.5%以外,SSTκ-ω為9.6%和RSM為8%,而對(duì)于螺旋槳效率的計(jì)算值僅有κ-ε模型超過了11.5%,而其他情況誤差均在5%.需要指出的是,最大誤差值均出現(xiàn)于最大進(jìn)速情況.原因在于相同轉(zhuǎn)速和相同直徑下,進(jìn)速越大,相應(yīng)的推力和扭矩越小,任何一個(gè)干擾就會(huì)導(dǎo)致預(yù)測(cè)值和實(shí)驗(yàn)值的誤差增加很大.整體來看SSTκ-ω模型和RSM模型均能得到精度較高的計(jì)算結(jié)果.圖6為在同臺(tái)計(jì)算機(jī)上不同湍流模型在不同進(jìn)速下的計(jì)算時(shí)間對(duì)比圖.由圖6可知,相同進(jìn)速下RSM模型的求解時(shí)間最長(zhǎng),在低進(jìn)速時(shí)尤為明顯,κ-ε求解時(shí)間最短,而SSTκ-ω模型求解時(shí)間接近κ-ε模型.

從以上對(duì)比可知,SSTκ-ω模型可以在保證求解精度的情況下,求解時(shí)間減少很多.另考慮到流固耦合計(jì)算本身對(duì)計(jì)算機(jī)求解性能和求解時(shí)間的嚴(yán)格要求,綜合考慮,螺旋槳流體計(jì)算湍流模型采用SSTκω模型.

圖4 計(jì)算KT和10KQ與實(shí)驗(yàn)結(jié)果的對(duì)比Fig.4 Comparisons of calculated and experimental KT and 10 KQ

圖5 計(jì)算效率ETA和實(shí)驗(yàn)結(jié)果對(duì)比Fig.5 Comparisons of calculated and experimental ETA

4.2 螺旋槳表面壓力分布對(duì)比

圖7為螺旋槳在設(shè)計(jì)工況J=0.833時(shí),r/R= 0.3、0.7和0.9半徑上JESSUP S D實(shí)驗(yàn)換算得到的弦向壓力分布和采用SSTκ-ω計(jì)算值的比較.

圖6 求解時(shí)間對(duì)比(n=10r/s)Fig.6 Comparisons of calculated durations(n=10 r/s)

圖7 葉切面壓力分布系數(shù)Fig.7 Comparisons of pressure coefficient

5 變形后槳葉幾何參數(shù)的推導(dǎo)

槳葉參考線即葉剖面鼻尾線中點(diǎn)的坐標(biāo):[10]

設(shè)導(dǎo)邊的坐標(biāo)為(xl,r,θl)或(xl,yl,zl),隨邊的坐標(biāo)為(xt,r,θt)或(xt,yt,zt),葉寬(即弦長(zhǎng))分布為C(r),則槳葉的輪廓線可表示:

式中:C(r)為葉剖面弦長(zhǎng);φ(r)為葉剖面螺距角;下標(biāo)l、t分別表示導(dǎo)邊(取-)和隨邊(取+).

選擇無量綱弦長(zhǎng)s,導(dǎo)邊表示為0,隨邊表示為1,槳葉弦向中點(diǎn)為1/2,槳葉剖面的拱度和厚度分布分別表示為f(s)和t(s),槳葉拱弧面的表達(dá)式為:

式中:下標(biāo)c表示為拱弧面;δk=2π(k-1)/K,k= 1,2…,K,為槳葉數(shù).

變形后各葉切面半徑為rref:

在推導(dǎo)式(9)的過程中,由于螺旋槳的變形量很小,所以認(rèn)為C(r)不變.將和代入式(4)就可得到變形后的縱傾(r).最后將所有變形后的節(jié)點(diǎn)坐標(biāo)代入到式(5)槳葉拱弧面的方程中,就可得到變形后的拱弧f'(s)

6 螺旋槳流固耦合算法的實(shí)現(xiàn)

復(fù)合材料螺旋槳槳葉受到水動(dòng)力載荷和離心力的作用,會(huì)產(chǎn)生較大的變形,那么槳葉結(jié)構(gòu)的離散方程為

式中:K為槳葉剛度矩陣,u槳葉節(jié)點(diǎn)位移矢量矩陣,F(xiàn)為槳葉所受外載荷矩陣.而式(11)中位移矢量矩陣u需采用有限元軟件計(jì)算,而F求解需要流體計(jì)算軟件.兩者求解的平衡實(shí)現(xiàn)需借助流固耦合算法.因此設(shè)計(jì)了一種求解螺旋槳性能的流固耦合算法,求解流程如圖8所示.

圖8 流固耦合的算法求解流程圖Fig.8 Flow chart of computation algorithm of FSI

計(jì)算采用穩(wěn)態(tài)求解,不考慮瞬時(shí)效應(yīng).詳細(xì)求解過程為:

1)通過第2節(jié)中的方法建立螺旋槳的流體計(jì)算模型,計(jì)算出螺旋槳的敞水性能和壓力分布.

2)將1)計(jì)算的壓力載荷結(jié)果通過流固耦合界面的方法傳遞給第3節(jié)中建立的有限元模型,計(jì)算出螺旋槳的變形,將變形后的槳葉節(jié)點(diǎn)坐標(biāo)輸出到文本文件.

3)采用第5節(jié)中的方法確定變形后的螺旋槳幾何參數(shù),建立變形后的螺旋槳幾何模型.

4)將變形后的幾何再次輸入到CFD軟件中求解螺旋槳的敞水性能和壓力分布.

5)判斷是否滿足平衡方程和收斂條件,如果滿足則輸出計(jì)算結(jié)果,包括結(jié)構(gòu)變形量、應(yīng)力場(chǎng)、推力、扭矩以及推進(jìn)效率等.如不滿足收斂條件,重復(fù)迭代2)、3)、4)步,直至結(jié)果收斂.

文中指定的收斂準(zhǔn)則為2個(gè)迭代步內(nèi)的推力系數(shù)和扭矩系數(shù)小于2%.計(jì)算過程一般迭代2次就可達(dá)到收斂.

7 應(yīng)力、變形計(jì)算及變形后的壓力分布

7.1 應(yīng)力水平和變形分布

圖9是不同轉(zhuǎn)速、不同進(jìn)速下的MISE應(yīng)力分布和變形對(duì)照?qǐng)D(變形均放大20倍).設(shè)計(jì)工況,n=10 r/s和 20 r/s時(shí),最大等效應(yīng)力分別為2.3 MPa和8.62 MPa.由圖可以看出,相同轉(zhuǎn)速不同進(jìn)速情況下,低進(jìn)速情況下的MISE應(yīng)力比高進(jìn)速下的要大.不同轉(zhuǎn)速,相同進(jìn)速情況,轉(zhuǎn)速高的應(yīng)力要比轉(zhuǎn)速低的要大.最大MISE應(yīng)力分布均在葉根弦向中心位置.根據(jù)螺旋槳理論可知,相同轉(zhuǎn)速下,在低進(jìn)速時(shí)為螺旋槳的“重載”狀態(tài),推力和扭矩均較大;高進(jìn)速時(shí)為“輕載”狀態(tài),推力和扭矩較小,所以在低進(jìn)速時(shí)螺旋槳的變形要比高進(jìn)速的大,應(yīng)力分布也是一致的.相同進(jìn)速,不同轉(zhuǎn)速下,根據(jù)螺旋槳的無因次理論,推力和扭矩增大數(shù)為2的轉(zhuǎn)速倍數(shù)次方.彈性范圍應(yīng)力和變形也增加同樣倍數(shù).

圖10和圖11是不同轉(zhuǎn)速、進(jìn)速下的槳葉變形分布.從圖10可以看出,槳葉變形引起了槳葉側(cè)斜的改變.4119螺旋槳為無側(cè)斜槳,變形后側(cè)斜角為正值,即向隨邊傾斜.相同轉(zhuǎn)速時(shí),低進(jìn)速的側(cè)斜改變比高進(jìn)速的大,這與前面分析的受力規(guī)律一致.

而圖11則顯示了在水動(dòng)力載荷的作用下,槳葉朝著船體方向變形,且在葉稍附近達(dá)到最大值,變形規(guī)律類似懸臂梁.變形后的槳葉剖面鼻尾線在螺旋槳軸向(x軸)方向的投影有零變?yōu)檎担磳?dǎo)致產(chǎn)生了縱傾的分布.另槳葉朝著船體方向變形,促使各半徑處的螺距角分布改變.即在隨邊附件變形大,導(dǎo)致螺旋槳槳葉螺距的變小.

圖9 不同轉(zhuǎn)速n、進(jìn)速J下的MISE應(yīng)力分布Fig.9 MISE stress distribution at different n and J

圖10 側(cè)斜的改變(線框?yàn)槲醋冃危瑢?shí)體為變形后)Fig.10 Changes of the blade skew

圖11 縱傾的改變(線框?yàn)槲醋冃危瑢?shí)體為變形后)Fig.11 Changes of the blade rake

7.2 變形前、后槳葉的壓力分布

圖12為設(shè)計(jì)進(jìn)速J=0.833時(shí)變形前后槳葉壓力面和吸力面的壓力分布對(duì)比圖.如圖12所示,變形的葉稍改變了葉稍附近壓力的分布.變形后正壓力峰值相應(yīng)減小,負(fù)壓力峰值相對(duì)升高.

圖12 J=0.833螺旋槳變形前后壓力分布(n=10 r/s)Fig.12 Predicted pressure distribution of 4119 in the undefand def-configuration,J=0.833,n=10 r/s

8 結(jié)論

1)對(duì)螺旋槳進(jìn)行穩(wěn)態(tài)流固耦合分析,SST κ-ω湍流模型預(yù)報(bào)精度高且求解時(shí)間合理.

2)實(shí)現(xiàn)了螺旋槳的流固耦合算法,可以求解槳葉的變形和應(yīng)力分布及變形后的推進(jìn)性能.

3)螺旋槳在水動(dòng)力作用下產(chǎn)生的變形,改變了螺旋槳的初始幾何參數(shù),因此改變了螺旋槳的壓力分布,從而改變了螺旋槳的水動(dòng)力性能.對(duì)于易于變形的復(fù)合材料螺旋槳設(shè)計(jì)、計(jì)算,要考慮槳葉變形的影響.

[1]MOURITZ A,GELLERT E,BURCHILL P,et al.Review of advanced composite structures for naval ships and submarines[J].Composite Structures,2001,53:21-41.

[2]高富東,潘存云,蔡汶珊,等.基于CFD的螺旋槳敞水性能數(shù)值分析與驗(yàn)證[J].機(jī)械工程學(xué)報(bào),2010,46(8): 133-139.

GAO Fudong,PAN Cunyun,CAI Wenshan,et al.Numerical analysis and validation of propeller open-water performance based on CFD[J].Journal of Mechanical Engineering,2010,46(8):133-139.

[3]黃勝,王超,王詩洋.不同湍流模型在螺旋槳水動(dòng)力性能計(jì)算中的應(yīng)用與比較[J].哈爾濱工程大學(xué)學(xué)報(bào),2009,30(5):484-485.

HUANG Sheng,WANG Chao,WANG Shiyang.Application and comparison of different turbulence models in the computation of a propeller’s hydrodynamic performance[J]Journal of Harbin Engineering University,2009,30(5): 484-485.

[4]沈海龍,蘇玉民.基于滑移網(wǎng)格技術(shù)的船槳相互干擾研究[J].哈爾濱工程大學(xué)學(xué)報(bào),2010,31(1):1-7.

SHEN Hailong,SU Yumin.Use of the sliding mesh technique to analyze interaction between ship hulls and propellers[J].Journal of Harbin Engineering University,2010,31 (1):1-7.

[5]王超,黃勝,單鐵兵.基于多塊混合網(wǎng)格方法預(yù)報(bào)螺旋槳非正常工作狀態(tài)時(shí)的水動(dòng)力性能[J].船舶力學(xué),2010,14(1/2):51-55.

WANG Chao,HUANG Sheng,SHAN Tiebing.Computations of the propeller’s hydrodynamic performance in abnormal working condition based on multi-block meshes[J].Journal of Ship Mechanics,2010,14(1/2):51-55.

[6]LIN H J,LIN J J.Nonlinear hydro-elastic behavior of propellers using a finite-element method and lifting surface theory[J].Journal of Marine Science and Technology,1996,1:114-124.

[7]YOUNG Y L.Fluid-structure interaction analysis of flexible composite marine propellers[J].Journal of Fluids and Structures,2008,24:799-818.

[8]李巍,王國(guó)強(qiáng),汪蕾.螺旋槳粘流水動(dòng)力特性數(shù)值模擬[J].上海交通大學(xué)學(xué)報(bào),2007,41(7):1200-1203.

LI Wei,WANG Guoqiang,WANG Lei.The numerical simulation of hydrodynamics characteristic in propeller[J].Journal of Shanghai Jiaotong University,2007,41(7):1200-1203.

[9]JESSUP S D.An experimental investigation of viscous aspects of propeller[D].Washington DC:The Catholic University of America,1989:65-154.

[10]王國(guó)強(qiáng),董世湯.船舶螺旋槳理論與應(yīng)用[M].哈爾濱:哈爾濱工程大學(xué)出版社,2007:89-94,113-114.

猜你喜歡
變形模型
一半模型
重要模型『一線三等角』
談詩的變形
中華詩詞(2020年1期)2020-09-21 09:24:52
重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
“我”的變形計(jì)
變形巧算
例談拼圖與整式變形
會(huì)變形的餅
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉(zhuǎn)換方法初步研究
主站蜘蛛池模板: 午夜影院a级片| 在线无码av一区二区三区| 亚洲国产天堂在线观看| 亚洲成人网在线观看| 国产91无毒不卡在线观看| 亚洲有无码中文网| 亚洲成aⅴ人在线观看| 国产毛片片精品天天看视频| 久久中文字幕2021精品| 欧美伊人色综合久久天天| www.91中文字幕| 色综合热无码热国产| 欧美成人精品一级在线观看| 免费jjzz在在线播放国产| 国内精品视频| …亚洲 欧洲 另类 春色| 日韩精品免费一线在线观看 | 久久毛片网| 免费A级毛片无码免费视频| 97超碰精品成人国产| 精品无码日韩国产不卡av| 92精品国产自产在线观看| 国产制服丝袜无码视频| 国产91蝌蚪窝| 国产乱肥老妇精品视频| 美女高潮全身流白浆福利区| 国产精品一区二区久久精品无码| 日韩在线2020专区| 国产91高清视频| 亚洲中文字幕无码mv| 日日拍夜夜操| 五月天久久婷婷| 人妻无码一区二区视频| 亚洲午夜18| 免费va国产在线观看| 国产成人AV综合久久| 中国一级特黄视频| 亚洲综合18p| 久久精品人妻中文系列| 伊人国产无码高清视频| 欧美中文字幕在线视频| 国产理论最新国产精品视频| 色香蕉网站| 2019国产在线| 亚洲国语自产一区第二页| 四虎影视国产精品| 亚洲国产一成久久精品国产成人综合| 国产男女免费完整版视频| 亚洲高清国产拍精品26u| 欧美不卡二区| 综合色在线| 国产丝袜啪啪| 久久精品人人做人人爽电影蜜月| 亚洲中文精品人人永久免费| 免费观看三级毛片| 色悠久久综合| 爆乳熟妇一区二区三区| 日本不卡在线播放| 高潮毛片免费观看| 久久国产乱子伦视频无卡顿| 国产视频大全| 亚洲欧美人成电影在线观看| 19国产精品麻豆免费观看| 国产免费观看av大片的网站| 少妇高潮惨叫久久久久久| 欧美亚洲第一页| 国产精品一区二区不卡的视频| 在线中文字幕网| 中文字幕丝袜一区二区| 色婷婷亚洲综合五月| 欧美激情首页| 久久一色本道亚洲| 国产成人综合亚洲欧美在| 国产成人高清在线精品| 亚洲v日韩v欧美在线观看| 中国黄色一级视频| 在线视频亚洲色图| 自慰网址在线观看| 国产亚洲精久久久久久无码AV| 全部无卡免费的毛片在线看| 国产伦精品一区二区三区视频优播| 欧美日韩动态图|