陳紅兵,何萬生
(天水師范學院數學與統計學院,甘肅 天水 741001)
一類具有收獲率競爭系統的穩定性及Hopf分岔
陳紅兵,何萬生
(天水師范學院數學與統計學院,甘肅 天水 741001)
首先建立了一類具有時滯的捕獲率的競爭系統,該系統具有Holling II功能.接著應用特征方程,發現當τ穿過某些數時出現了Hopf分岔,并用規范型方法和中心流形定理得到Hopf分岔和分岔周期解的穩定性的計算公式.最后舉例論證.
競爭;穩定性;平衡點;Hopf分岔
受到文獻[1-5]的啟發,本文建立具有收獲率的時滯Holling II功能反應系統:













[1]陳蘭蓀.數學生態學建模與研究方法[M].北京:科學教育出版社,1988.
[2]馬知恩.種群生態學的數學建模與研究[M].安徽:安徽教育出版社,1996.
[3]Faria T.Stability and bifurcation for a delayed predator-prey model and the e ff ect of di ff usion[J].J.Math. Appl.,2001,254:433-463.
[4]Yan X P,Li W T.Hopf bifurcation and global periodic solutions in a delayed predator–prey system[J]. Appl.Math.Comput.,2006,177:427-445.
[5]May R M.Time delay versus stability in population models with two and three trophic levels[J].Ecology, 1973,4:315-325.
[6]Hassard B,Kazarino ffD,Wan Y.Theory and Applications of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
[7]Meng X,Wei J.Stability and bifurcation of mutual system with time delay[J].Chaos,Solitons and Fractals, 2004,21:729-40.
[8]Hale J,Lunel S M.Introduction to Functional Di ff erential Equations[M].New York:Springer,1993.
[9]Ruan S,Wei J.On the zeros of transcendental functions with applications to stability of delay di ff erential equations with two delays[J].Dyn.Contin.Discrete Impuls.Syst.Ser.A Math.Anal.,2003,10:863-874.
[10]許丹丹,李艷玲,吳迪.一類帶擴散項的 HIV系統的平衡解的穩定性分析 [J].純粹數學與應用數學, 2011,27(3):369-375.
The Hopf bifurcation and stability of competitive system with rate harvesting
Chen Hongbing,He Wansheng
(School of Mathematics and Statistics Tianshui Normal University,Tianshui741001,China)
First,established a competitive mold with Holling II functional response.Further,by analyzing the associated characteristic equation,it is founded that Hopf bifurcation occurs when τ crosses some critical value. The direction of Hopf bifurcation as well as stability of periodic solution are studied.The method which we used is the normal form theory and center manifold method.An example showed the feasibility of results.
compete,stability,equilibrium point,Hopf bifurcation

圖1 τ=1平衡點漸近穩定

圖2 τ=3 Hopf分岔及周期解穩定
O175.14
A
1008-5513(2012)05-0604-10
2012-04-10.
甘肅省自然科學基金(096RJZE106).
陳紅兵(1983-),碩士,講師,研究方向:應用微分方程.
2010 MSC:34D12