999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

含錳超氧化物歧化酶基因結構及其轉錄調控

2012-08-15 00:45:35王秋悅鄒亞學唐家明李素芬
河北科技師范學院學報 2012年4期

王秋悅,鄒亞學,唐家明,李素芬*

(河北科技師范學院1動物科技學院,2生命科技學院,河北 秦 皇島,066600)

活性氧自由基(Reactive oxygen species,ROS)被認為是許多疾病如衰老、動脈粥樣硬化和神經壞死等的致病因子。另外,ROS通過誘導DNA損傷、誘發腫瘤形成和刺激細胞增殖在腫瘤形成中發揮作用。為預防ROS誘發的損傷,細胞中含有由ROS代謝酶和ROS中和分子組成的抗氧化系統。通過催化超氧離子自由基(O-2)分解為過氧化氫(H2O2)和氧(O2),超氧化物歧化酶(Superoxide dismutase,SOD)為機體提供了清除正常代謝過程或氧化應激中產生的O-2的第一道防線[1]。在真核生物體內有3種SOD:存在于線粒體基質中的含錳超氧化物歧化酶(Manganese-containing superoxide dismutase,MnSOD,又稱為SOD2)和存在于細胞漿中或被分泌到細胞外液中的銅鋅超氧化物歧化酶(Copper-zinc containing superoxide dismutase,CuZnSOD 或SOD1)[2]。由于線粒體是產生 O-2的主要場所,因此MnSOD可能在保護細胞免受O-2氧化損傷中發揮重要作用。MnSOD作為細胞內防止氧化應激保護酶的重要作用已經在基因敲除或轉基因動物模型中得到證實,MnSOD基因敲除小鼠10天內即因為心肌壞死[3]和神經萎縮[4]而死亡。相反,轉基因小鼠線粒體中高度表達人MnSOD即可保護動物免受氧化應激產生的肺損傷[5]、急性阿霉素誘發的心肌損傷[6]和局部缺血引起的腦損傷[7]。近年來,對MnSOD的分子生物學研究和不同動物MnSOD基因和cDNAs的分離,無疑促進了MnSOD生理功能的研究。

1 MnSOD基因結構

人們陸續克隆、測序和分析了人[8,9]、大鼠[10]、小鼠[11,12]和牛[13]MnSOD 全基因序列,這些動物的MnSOD基因序列的結構具有明顯的保守性,均含有5個外顯子和4個內含子。人、小鼠和牛MnSOD全基因均為單拷貝基因,但大鼠可能有2個拷貝。所有這4種動物的啟動子區結構相近,均具有看家基因的典型特征,即無上游 TATA 或 CAAT 盒子,但富含 GC[14,15]。

Meyrick等[13]比較了牛和大鼠MnSOD基因啟動子區,發現2個種屬間明顯不同。在人MnSOD基因轉錄起始部位的上游,有一長約400 bp的區段,G+C含量高達78%,集中分布著7個特異蛋白1(Specificity Protein-1, Sp1,5′-GGGCGG-3′) 和3個激活蛋白-2(Activator Protein-2,AP-2,5′-CCGCGGGCG-3′)轉錄因子結合序列[16]。牛轉錄起始位點前190 bp序列與人相似性較高,有8個Sp1和2個AP-2結合位點。與人和牛MnSOD基因啟動子區分別含有7和8個Sp1結合序列不同,大鼠MnSOD基因啟動子區只有2個Sp1結合序列[10],且含有2個人和牛MnSOD基因啟動子區沒有的SV40核心序列。很顯然,人MnSOD基因啟動子結構與牛的同源性比與大鼠的高,這與大哺乳動物如牛、羊、豬和人與小動物如小鼠和大鼠MnSOD基因轉錄有較大差異的報道相一致。

郝守峰等[17]對肉雞心肌細胞中與MnSOD基因轉錄相關的轉錄因子及其結合序列分析發現,在肉雞心肌細胞的核蛋白中存有與MnSOD基因轉錄調節相關的核轉錄因子Sp1和AP-2,且能與MnSOD基因啟動子區特異性結合位點結合,其中在-79~-58有1個與人和大鼠相同的Sp1結合位點核心序列(5′-GGGGCGGG-3′),在雞MnSOD基因啟動子區中AP-2結合位點核心序列與現有文獻中報道的人和大鼠以及一些病毒AP-2結合位點核心序列不同,分別為位于-34~-14(5′-GGCGCAGGC-3′)和-338~ -319(5′-CCCAAGGTC-3′)。

對人和鼠MnSOD基因啟動子區的分析發現,除多個Sp1和AP-2結合位點外,還含有核因子-卡巴B(Nuclear Factor-κB,NF-κB)和激活蛋白-1(Activator Protein-1,AP-1)等轉錄因子結合序列,可能在 Mn-SOD 基因表達調節中發揮著重要的作用[10,16,18]。Zhang[19]從人白細胞基因組文庫中得到 1個 MnSOD基因組DNA序列,其5′-端上游序列中又發現了一些重要的調節元件,如1個急性期反應序列(Acute response element,ARE)、2 個與早期生長因子 1 基因(Early growth response 1,Egr-1)調節序列(5′-GCGGGGGCG-3′)相近的序列(5′-GCGGGGCG-3′)等。MnSOD 基因結構中存在與 Egr-1 基因類同的調節序列,是其具有輻射誘導特性的有力證據。

2 MnSOD基因轉錄調控

盡管MnSOD在許多組織和細胞中的高水平表達,其表達仍受到多種細胞內和環境因素的誘導,表明MnSOD是一個應激反應型基因[20]。上調MnSOD轉錄的因素有細胞因子如白細胞因子1(Interleukin-1,IL-1)[21~23],腫瘤壞死因子-α(TNF-α)[22,24]、細菌脂多糖(Lipopolysaccharide,LPS)[21]和干擾素-γ(Interferon-γ,IFN-γ)[25]。細胞因子誘導的增強子元件位于小鼠[26]、大鼠和人[27]MnSOD 基因第 2 個內含子的236 bp區,結合位點包括NF-κB,CCAAT增強子結合蛋白(CCAAT enhancer binding proteins,C/EBP)和核因子-1(Nulear factor-1,NF-1)。蛋白激酶 C(Protein kinase C,PKC)刺激因子十四烷酰法波(醇)醋酸酯(12-O-tetradecanoylphorbol-13-acetate,TPA)通過 CREB-1/ATF-1 類轉錄因子誘導 MnSOD 基因轉錄,但與NF-κB或AP-1無關[18]。一些抗腫瘤藥物如長春滅瘟堿(vinblastin)、紫杉酚(taxol)和長春新堿(vincristine)也是通過PKC誘導MnSOD基因轉錄[28]。血小板衍生的生長因子通過轉錄因子Egr-1 誘導 NIH3T3 細胞 MnSOD 基因轉錄[29]。

基因啟動子區DNA順式結合元件與其相應DNA結合蛋白即轉錄因子的互作是調節轉錄的關鍵。MnSOD基因啟動子區轉錄起始部位上游集中分布的核轉錄因子Sp1和AP-2強烈提示,Sp1和AP-2轉錄因子在MnSOD基因的轉錄調節中有重要作用。Sp1是一組具有3個鋅指結構、與富含GC序列DNA結合的蛋白家族[30,31]。Sp1在哺乳動物組織中廣泛表達,以不同的親和力與特異序列結合,參與許多基因的轉錄調節[32~35]。由于重疊排列的Sp1結合位點可以替代TATA或CAAT盒子在起始轉錄中的作用而直接啟動基因的轉錄[36],因此,在啟動子區無TATA或CAAT盒子的基因即所謂的看家基因如二氫葉酸還原酶[37]、胸苷酸合成酶[38]和腺嘌呤脫氨酶[39]等,以及一些非看家基因如胰島素樣生長因子結合蛋白-2[40]、雄激素受體[41]表皮生長因子受體[42]和紅細胞內特異酶基因如丙酮酸激酶[43]轉錄調節中起著非常重要的作用。

由于MnSOD啟動子區無TATA或CAAT盒子,因此Sp1在MnSOD轉錄調節中的作用更加重要。已經發現,Sp1是人MnSOD基因基礎性轉錄必需的正調節轉錄因子[20,44],其調節基因轉錄的機制可能包括以下幾個方面:(1)招募基本轉錄裝置蛋白。Sp1可直接與轉錄起始復合物中的一些蛋白相互作用,從而通過招募基本轉錄裝置或促進其裝配而激活基因轉錄。Sp1可通過谷氨酸富集區或C末端結構域與轉錄起始復合物中的TFIID復合物相互作用[45]。TFIID復合物由多亞基組成,Sp1可與其中的TBP(TATA-box binding protein)和至少1種果蠅[dTAF(Ⅱ)110]和2種人TAFs(TBP associated factors)相互作用[hTAF(Ⅱ)130和hTAF(Ⅱ)55]。TAFs非基本轉錄所必需,但卻是介導多種轉錄因子及增強子轉錄激活作用的必需因子。除TAFs外,Sp1的轉錄激活作用還需要CRSp/Med復合物(cofactor required for Sp1/mediator)。CRSp可介導多種增強子結合因子和核心轉錄裝置之間的相互作用,該復合物亞基間的重組可能是實現轉錄激活作用基因特異性的機制[46]。(2)改變染色質修飾和染色體結構。在啟動子處,Sp1可同時招募組蛋白乙酰化酶和去乙酰化酶來實現對該處組蛋白的乙酰化狀態的快速動態調節,從而激活或抑制基因的表達[47,48]。Sp1可能與染色質重塑復合體SWI/SNF家族的成員相互作用,從而通過改變染色質的可接近性來調節基因的轉錄[49]。Sp1還被發現具有邊界活性,能結合于人β球蛋白基因座[50],從而阻滯異染色質結構的擴布,維持基因的轉錄活性狀態。(3)引發DNA loop的形成。對于含有多拷貝Sp1結合位點的調節序列,Sp1可通過D結構域形成多聚體而拉近相離甚遠的DNA序列,使DNA形成環形,協同激活靶基因的表達[51]。Sp1首先形成4聚體,其后多個4聚體聚集于DNA結合位點。這種高度組織的多聚體起到了濃集蛋白質相互作用位點的作用,從而提高了局部轉錄因子的濃度。

轉錄因子Sp1調節基因轉錄的基本前提是其DNA結合活性。Sp1 DNA結合活性的降低即意味著轉錄起始能力的喪失。Sp1 DNA結合活性提高可能有以下幾個原因:首先,Sp1基因表達量提高。小鼠胚胎發育過程中胸腺、肺、肝和脾臟等器官Sp1 mRNA表達量增加[52]。TPA激活人肝癌細胞HepG2中MnSOD基因轉錄提高時Sp1蛋白表達量也提高[53]。其次,與其他轉錄因子的互作。所有受Sp1調節的啟動子中均含有AP-2結合位點,AP-2通過與Sp1競爭結合位點抑制轉錄[54]。另外,轉錄后修飾、糖基化、磷酸化或形成多聚體都會改變Sp1的DNA結合活性[55]。細胞內的氧化還原狀態也影響Sp1的DNA結合活性。由于半胱氨酸殘基廣泛存在于許多轉錄因子的DNA結合區,其氧化還原狀態直接影響轉錄因子的DNA結合活性,因此轉錄因子的DNA結合活性及其轉錄調節活性對細胞內的氧化還原狀態敏感。體外研究發現,大鼠肝臟中Sp1的DNA結合區隨年齡增長逐漸被氧化,從而發生不可逆性的DNA結合活性降低[56]。衰老和氧化劑可引起Sp1蛋白DNA結合區半胱氨酸殘基氧化,從而降低Sp1的DNA結合活性;相反,還原劑如谷胱甘肽和硫氧還蛋白則可恢復Sp1的DNA結合活性[57,58]。Li等[59]發現,飼糧錳能提高肉雞心肌細胞中Sp1的DNA結合活性,推測錳可能通過MnSOD影響細胞內的氧化還原狀態,從而調節Sp1的DNA結合活性。

細胞內的氧化還原狀態也影響AP-2的DNA結合活性。AP-2蛋白多肽鏈中有7個半胱氨酸殘基,其中6個半胱氨酸殘基位于DNA結合區和二聚體化功能區,2個半胱氨酸殘基位Cys222和Cys243正好位于DNA結合區[60]。AP-2是另一類與DNA特異序列結合的蛋白,其結合序列也富含GC,并以結合位點依賴方式刺激基因的選擇性表達[61,62],在細胞發育、胚胎分化和腫瘤形成中發揮重要調節作用[63,64]。AP-2家族包括 AP-2α,AP-2β和AP-2γ[65]。雖然3種蛋白 N-末端轉錄激活區結構不同,但DNA 結合 區卻高度保守。盡管AP-2在腫瘤基因erbB-2[66],erbB-3[67]和細胞循環調節基因p21WAF1[68]轉錄調節中起激活劑作用,但也發現它對幾個基因如星狀細胞Ⅰ型膠原[69]、K3角蛋白[70]、乙酰膽堿酯酶[54]和C/EBP[71]的轉錄起抑制作用。SV40轉染成纖維細胞中高濃度的AP-2蛋白明顯抑制MnSOD基因的表達,同樣WI38成纖維細胞轉染SV40后MnSODmRNA和蛋白水平明顯降低[72,73],表明AP-2在MnSOD基因轉錄調節中起負調節作用。關于AP-2調節基因轉錄的機制,在前幾個基因的轉錄抑制中,AP-2均是通過取代與AP-2結合位點臨近或重疊的正調節轉錄因子或與其競爭結合位點而發揮其抑制作用,且AP-2蛋白與啟動子區DNA的特異性結合是其發揮抑制作用的必要條件[74]。在MnSOD基因中,由于AP-2與DNA的結合能力比Sp1強,因此,AP-2可能與正調節轉錄因子Sp1互作或競爭結合位點,從而有效抑制MnSOD基因的轉錄[36,74]。也有報道,Sp1與AP-2的比值決定基因的轉錄[70,75]。硒處理降低原代培養肝細胞中AP-2的DNA結合活性,對SP1的DNA結合活性無影響,因此啟動子區Sp1與AP-2的比值升高,MnSOD轉錄上調。另外,AP-2在穩定染色體高級結構中也可能發揮作用。已經發現,MnSOD轉錄激活時染色體結構發生了變化[76]。

NF-κB和AP-1是已知的直接受細胞內ROS激活的轉錄因子[77],同時這2個轉錄因子也是多種信號傳導途徑的下游作用因子[78],是MnSOD基因轉錄調節的正調節因子。NF-κB在核質中與抑制因子IkB結合而無激活活性,一旦IκB被磷酸化激活后(可能是受PKC激活)即降解,NF-κB與IκB分開而進入核內,并與其結合序列結合后激活基因轉錄。許多因素如細胞因子TNF-α和IL-1α[79],細菌脂多糖LPS[21],離子輻射和產生高氧的試劑如H2O2和二酰胺[80]均可引起IκB蛋白降解和NF-κB的激活。抗氧化劑抑制幾乎所有刺激因素引起的NF-κB激活,但是抗氧化劑如巰基還原劑對激活的NF-κB與DNA的結合活性卻有相反的作用,還原性巰基如DTT,半胱氨酸和還原型硫氧還蛋白能夠使NF-κB DNA結合區半胱氨酸殘基保持還原狀態,從而提高激活的NF-κB DNA結合活性。

氧化應激、離子輻射和生長因子通過誘導AP-1組分c-fos和c-jun的表達激活核轉錄因子AP-1,從而誘導人和果蠅MnSOD的表達[81]。AP-1蛋白中DNA結合區保守性半胱氨酸保持還原狀態仍是其DNA結合活性所必需的[82]。

多種信號傳導途徑參與MnSOD基因表達的調節[27]。對ROS敏感的絲裂原激活蛋白激酶(mitogen-activated protein kinases,MAPKs)對細胞內外刺激如紫外線[83]、ROS[84]及病毒[85]等產生應答,并通過直接磷酸化特定的核轉錄因子從而影響其DNA結合活性,或與其它蛋白相互作用間接影響轉錄因子的轉錄活性,調節基因轉錄表達。MAPKs是一組刺激誘導型絲氨酸/蘇氨酸蛋白激酶,主要包括細胞外信號調節激酶(extracellular signal-regulated kinases,ERK)、c-Jun 氨基末端激酶(c-Jun amino-terminal kinases,JNK)和p38MAPK[86,87]。盡管每組MAPK通路都有許多各自獨特的特性,但每組通路都由依次順序激活的3個激酶即MAPK,MAPK激酶(MAPK kinase,MAPKK)和MAPK激酶(MAPKK kinase,MAPKKK)所組成[88,89]。ERKs主要對各種生長刺激發生反應,與細胞增殖和分化有關[90],而 JNKs和p38MAP激酶主要參與細胞應激反應,如代謝、炎癥、氧應激等[91,92]。肝炎病毒復制期引起的氧化應激通過p38MAPK和JNK通路激活AP-1,增加MnSOD基因表達[93]。生理劑量的花生四烯酸通過H2O2激活p38MAPK途徑,誘導HepG2細胞中MnSOD轉錄[84]。

綜上所述,由于MnSOD廣泛參與細胞的生長、分化、增殖和腫瘤的形成,在保護細胞免受氧化應激、炎癥反應、離子輻射和神經毒作用方面發揮重要作用,進一步研究MnSOD基因表達的特點,無論對預防細胞和組織生理性或病理性氧化損傷都具有重要意義。

[1]FRIDOVICH I.Superoxide radical and superoxide dismutase[J].Annu Rev Biochem,1995,64:97-112.

[2]WEISIGER R A,FRIDOVICH I.Mitochondrial superoxide dismutase:Site of synthesis and intra-mitochondrial localisation[J].J Biol Chem,1973,248:4 793-4 796.

[3]LI Y,HUANG T T,CARLSON E J,et al.Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase[J].Nature Genet,1995,11:376-381.

[4]LEBOVITZ R M,H ZHANG,H VOGEL,et al.Neurodegeneration,myocardial injury,and perinatal death in mitochondria superoxide dismutase-deficient mice[J].Med Sci,1996,93:9 782-9 787.

[5]WISPE J R,WARNER B B,Clark J C,et al.Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury[J].J Biol Chem,1992,267:23 937-23 941.

[6]YEN H C,OBERLEY T D,VICHITBANDHA S,et al.The protective role of manganese superoxide dismutase agains t adriamycin-induced acute cardiac toxicity in transgenic mice[J].J Clin Inves,1996,98:1 253-1 260.

[7]KELLER J N,KINDY M S,HOLTSBERG F W,et al.Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury:suppression of peroxynitrite production,lipid peroxidation,and mitochondrial dysfunction[J].J Neurosci,1998,18:687-697.

[8]CHURCH S L,GRANT J W,RIDNOUR L A,et al.Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells[J].Med Sci,1993,90:3 113-3 117.

[9]WAN X S,DEVALARAJA M N,ST CLAIR D K.Molecular structure and organization of the human manganese superoxide dismutase gene[J].DNA Cell Biol,1994,13:1 127-1 136.

[10]HO Y S,HOWARD A J,CRAPO J D.Molecular structure of a functional rat gene for manganese-containing superoxide dismutase[J].Am J Respir Cell Mol Biol,1991,4:278-286.

[11]DISILVESTRE D,KLEEBERGER S R,JOHNS J,et al.Structure and DNA sequence of the mouse MnSOD gene[J].Mamm Genome,1995,6:281-284.

[12]JONES P L,KUCERA G,GORDON H,et al.Cloning and characterization of the murine manganous superoxide dismutaseencoding gene[J].Gene,1995,153:155-161.

[13]MEYRICK B,MAGNUSON M A.Identification and functional characterization of the bovine manganous superoxide dismutase promoter[J].Am J Respir Cell Mol Biol,1994,10:113-121.

[14]DYNAN W S.Promoters for housekeeping genes[J].TIG,1986,2:196-197.

[15]JONES N C,J RIGBY P W,ZIFF E B.Trans-acting protein factors and the regulation of eukaryotic transcription:lessons from studies on DNA tumor viruses[J].Genes Dev,1988,2:267-281.

[16]WAN X S,DEVALARAJA M N,ST CLAIR D K.Molecular structure and organization of the human manganese superoxide dismutase gene[J].DNA Cell Biol,1994,13:1 127-1 136.

[17]郝守峰,呂林,李素芬,等.錳對肉雞心肌細胞MnSOD基因轉錄調節機制的研究[J].營養學報,2010,32(1):47-51.

[18]KIM H P,ROE J H,CHOCK P B,et al.Transcriptional activation of the human manganese superoxide dismutase gene mediated by tetradecanoylphorbol acetate[J].J Biol Chem,1999,74:37 455-37 460.

[19]ZHANG J,HAGOPIAN-DONALDSON S,SERBEDZIJA G,et al.Neural tube,skeletal and body wall defects in mice lacking transcription factor AP-2[J].Nature,1996,381:238-41.

[20]ST CLAIR D.Manganese Superoxide Dismutase:Genetic Variation and Regulation[J].J Nutr,2004,134:3190S-3191S.

[21]VISNER G A,DOUGALL W C,WILSON J M,et al.Regulation of manganese superoxide dismutase by lipopolysaccharide,interleukin-1,and tumor necrosis factor[J].J Biol Chem,1990,265:2 856-2 864.

[22]VISNER G A,CHESROWN S E,MONNIER J,et al.Regulation of manganese superoxide dismutase:IL-1 and TNF induction in pulmonary artery and microvascular endothelial cells[J].Biochem Biophys Res Commun,1992,188:453-462.

[23]DOUGALL W C,NICK H S.Manganese superoxide dismutase:a hepatic acute phase protein regulated by interleukin-6 and glucocorticoids[J].Endocrinol,1991,129:2 376-2 384.

[24]WONG G H W,ELWELL J H.Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor[J].Cell,1989,58:923-931.

[25]HARRIS C A,DERBIN K S,HUNTE-MCDONOUGH B,et al.Manganese superoxide dismutase is induced by IFN-gamma in multiple cell types.Synergistic induction by IFN-gamma and tumor necrosis factor or IL-1[J].J Immunol,1991,147:149-154.

[26]JONES P L,PING D,BOSS J M.Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB[J].Mol Cell Biol,1997,17:6 970-6 981.

[27]ROGERS R J,CHESROWN S E,KUO S,et al.Cytokine-inducible enhancer with promoter activity in both the rat and human manganese-superoxide dismutase genes[J].Biochem J,2000,347:233-242.

[28]DAS K C,GUO X L,WHITE C W.Protein kinase C delta-dependent induction of manganese superoxide dismutase gene expression by microtubule-active anticancer drugs[J].J Biol Chem,1998,273:34 639-34 645.

[29]MAEHARA K,OH-HASHI K,ISOBE K I.Early growth-respon-sive-1-dependent manganese superoxide dismutase gene transcription mediated by platelet-derived growth factor[J].FASEB J,2001,15:2 025-2 026.

[30]BERG J M.Sp1 and the subfamily of zinc finger proteins with guanine-rich binding sites[J].Proc Natl Acad Sci,1992,89:11 109-11 110.

[31]SETO E,LEWIS B,SHENK T.Interaction between transcription factors Sp1 and YY1[J].Nature,1993,365:462-464.

[32]KIM S,ONWUTA U S,LEE Y I,et al.The retinoblastoma gene product regulates Sp1-mediated transcription[J].Mol Cell Biol,1992,12:2 455-2 463.

[33]KINGSLEY C,A WINOTO.Cloning of GT box-binding proteins:a novel Sp1 multigene family regulating T-cell receptor gene expression[J].Mol Cell Biol,1992,12:4 251-4 261.

[34]KRIWACHI R W,SCHULTZ S C,A STEITZ T,et al.Sequence-specificc recognition of DNA by zinc-finger peptides derived from the transcription factor Sp1[J].Med Sci,1992,89:9 759-9 763.

[35]GILL G,PASCAL E,TSENG Z H,et al.A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation[J].Med Sci,1994,91:192-196.

[36]YEH C C,WAN X S,ST CLAIR D K.Transcription regulation of 5′proximal promoter of the human manganese superoxide dismutase gene[J].DNA Cell Biol,1998,17:921-930.

[37]SWICK A G,BLAKE M C,KAHN J W,et al.Functional analysis of GC element binding and transcription in the hamster dihydrofo-late reductase gene promoter[J].Nucleic Acids Res,1989,17:9 291-9 304.

[38]DENG T,DAWEL L,JEHN C,et al.Structure of the gene for mouse thymidylate synthase.Locations of introns and multi-ple transcriptional start sites[J].Biol Chem,1986,261:16 000-16 005.

[39]VALERIO D,DUYVESTEYN M G C,DEKKER B M M,et al.Characterization and expression of a gene with a remarkable promoter[J].EMBO J,1985,4:437-443.

[40]BOISCLAIR Y R,BROWN A L,CASOLA S,et al.Three clustered Sp1 sites are required for efficient transcription of the TATA-less promoter of the gene for insulin-like growth factor-binding protein-2 from the rat[J].J Biol Chem,1993,268:24 892-24 901.

[41]FABER P W,J ROOIJ H C,SCHIPPER H J,et al.Two different,overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter[J].J Biol Chem,1993,268:9 296-9 301.

[42]XU J,THOMPSON K L,SHEPHARD L B,et al.T3 receptor suppression of Sp-1-dependent transcription from the epidermal growth factor receptor promoter via overlapping DNA-binding sites[J].J Biol Chem,1993,268:16 065-16 073.

[43]MAX-AUDIT I,ELEOUET J,ROMEO P.Transcriptional regulation of the pyruvate kinase erythroid-specific promoter[J].J Biol Chem,1993,268:5 431-5 437.

[44]XU Y,PORNTADAVITY S,ST CLAIR D K.Transcriptional regulation of the human manganese superoxide dismutase gene:the role of specificity protein 1(Sp1)and activating protein-2(AP-2)[J].Biochem J,2002,362:401-412.

[45]EMILI A,GREENBLATT J,INGLES C J.Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein[J].Mol Cell Biol,1994,14:1 582-1 593.

[46]TAATJES D J,TJIAN R.Structure and function of CRSp P Med2,a promoter-selective transcriptional coactivator complex[J].Mol Cell,2004,14:675-683.

[47]JANG S I,STEINERT P M.Loricrin expression in cultured human keratinocytesis controlled by a complex interplay between transcription factors of the Sp1,CREB,AP1,and AP2 families[J].J Biol Chem,2002,277:42 268-42 279.

[48]SUN J M,SPENCER V A,LI L,et al.Estrogen regulation of trefoil factor 1 expression by estrogen receptor alpha and Sp proteins[J].Exp Cell Res,2005,302:96-107.

[49]LU F,ZHOU J,WIEDMER A,et al.Chromatin remodeling of the Kaposi sarcoma-associated herpes virus ORF50 promoter correlates with reactivation from latency[J].J Virol,2003,77:11 425-11 435.

[50]ISHII K,LAEMMLI U K.Structural and dynamic functions establish chromatin domains[J].Mol Cell,2003,11:237-248.

[51]NAKATSUKASA T,SHIRAISHI Y,NEGI S,et al.Site-specific DNA cleavage by artificial zinc finger-type nuclease with cerium binding peptide[J].Biochem Biophys Res Commun,2005,330:247-252.

[52]SAFFER J D,JACKSON S P,ANNARELLA M B.Developmental expression of Spl in the mouse[J].Mol Cell Biol,1991,4:2 189-2 199.

[53]PORNTADAVITY S,XU Y,KININGHAM K,et al.TPA-activated transcription of the human MnSOD gene:role of transcription factors Sp-1 and Egr-1[J].DNA Cell Biol,2001,20:473-481.

[54]GETMAN D K,MUTERO A,INOUE K,et al.Transcription factor repression and activation of the human acetylcholinesterase gene[J].J Biol Chem,1995,270:23 511-23 519.

[55]DHARMAVARAM R M,LIU G,MOWERS S D,et al.Detection and characterization of Sp1 binding activity in human chondrocytes and its alterations during chondrocyte dedifferentiation[J].J Biol Chem,1997,272:26 918-26 925.

[56]AMMENDOLA R,MESURACA M,RUSSO T,et al.The DNA-binding efficiency of Sp1 is affected by redox changes[J].Eur J Biochem,1994,225:483-489.

[57]KNOEPFEL L,STEINKUHLER C,CARRI M T,et al.Role of zinc-coordination and of the glutathione redox couple in the redox susceptibility of human transcription factor Sp1[J].Biochem Biophys Res Commun,1994,201:871-877.

[58]MIAO K,J POTTER J,ANANIA F A,et al.Effect of acetaldehyde on Sp1 binding and activation of the mouse alpha 2 collagen promoter[J].Arch Biochem Biophys,1997,341:140-152.

[59]LI S F,LU L,HAO S F,et al.Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens[J].J Nutr,2011,141:189-194.

[60]BUETTNER R,KANNAN P,IMHOF A,et al.An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2[J].Mol Cell Biol,1993,13:4 174-4 185.

[61]MITCHELL P J,WANG C,JIANR T.Positive and negative regulation of transcription in vitro:enhancer-binding protein AP-2 is inhibited by SV40 T antigene[J].Cell,1987,50:847-861.

[62]WANG D,SHIN T H,KUDLOW J E.Transcription factor AP-2 controls transcription of the human transforming growth factor-α gene[J].J Biol Chem,1997,272:14 244-14 250.

[63]KANNAN P,BUETTNER R,CHIAO P J,et al.N-ras oncogene causes AP-2 transcriptional self-interference,which leads to transformation[J].Genes Dev,1994,8:1 258-1 269.

[64]SCHORLE H,MEIER P,BUCHERT M,et al.Transcription factor AP-2 essential for cranial closure and craniofacial development[J].Nature,1996,381:235-238.

[65]WILLIAMSON J A,BOSHER J M,SKINNER A,et al.Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors[J].Genomics,1996,35:262-264.

[66]BOSHER J M,TOTTY N F,HSUAN J J,et al.A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma[J].Oncogene,1996,13:1 701-1 707.

[67]SKINNER A,HURST H C.Transcriptional regulation of the c-erbB-3 gene in human breast carcinoma cell lines[J].Oncogene,1993,8:3 393-3 401.

[68]GEE J M,ROBERTSON J F,ELLIS I O,et al.Immuno-histochemical analysis reveals a tumour suppressor-like role for the transcription factor AP-2 in invasive breast cancer[J].J Pathol,1999,189:514-520.

[69]CHEN A P,BENO D W A,DAVIS B H.Suppression of stellate cell type I collagen gene expression involves AP-2 transmodulation of nuclear factor-1-dependent gene transcription[J].J Biol Chem,1996,271:25 994-25 998.

[70]CHEN T T,LI W R,CASTRO-MUNOZLEDO F,et al.Regulation of K3 keratin gene transcription by Sp1 and AP-2 indierentiating rabbit corneal epithelial cells[J].Mol Cell Biol,1997,17:3 056-3 064.

[71]JIANG M S,TANG Q Q,MCLENITHAN J,et al.Derepression of the C/EBPα gene during adipogenesis:Identification of AP-2α as a repressor[J].Proc Natl Acad Sci USA,1998,95:3 467-3 471.

[72]SAFFORD S E,OBERLEY T D,URANO M,et al.Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase[J].Cancer Res,1994,54:164 261-164 265.

[73]XU Y,KRISHNAN A,WAN X S,et al.Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells[J].Oncogene,1999,8:93-102.

[74]ZHU C H,HUANG Y,OBERLEY L W,et al.A family of AP-2 proteins down-regulate manganese superoxide dismutase expression[J].J Biol Chem,2001,276:144 007-144 013.

[75]CARMEN T,MARYA M,MARIBELIS R,et al.Loss of activator protein-2α results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma[J].J Biol Chem,2003,278:46 632-46 642.

[76]KUO S,CHESROWN S E,MELLOTT J K,et al.In vivo architecture of the manganese superoxide dismutase promoter[J].J Biol Chem,1999,274:3 345-3 354.

[77]SEN C K,PACKER L.Antioxidant and redox regulation of gene transcription[J].FASEB J,1996,414:709-720.

[78]QADRI I,IWAHASHI M,CAPASSO J M,et al.Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication:role of JNK,p38MAPK and AP-1[J].Biochem J,2004,378:919-28.

[79]MASUDA A,LONGO D L,KOBAYASHI Y,et al.Induction of mitochondrial manganese superoxide dismutase by interleukin 1[J].FASEB J,1988,2:3 087-3 091.

[80]OBERLEY T D,OBERLEY L W.Antioxidant enzyme levels in cancer[J].Histol Histopathol,1997,12:525-535.

[81]ANGEL P,KARIN M.The role of jun,fos and the AP-1 complex in cell proliferation and transformation[J].Biochem Biophys Acra,1991,1 072:129-157.

[82]ABATE C,PATEL L,RAUSCHER F J,et al.Redox regulation of fos and jun DNA-binding activity in vitro[J].Sci,1990,249:1 157-1 161.

[83]DEVARY Y,GOTTLIEB R A,LAU L F,et al.Rapid and preferential activation of the c-jun gene during the mammalian UV response[J].Mol Cell Biol,1991,11:2 804-2 811.

[84]BIANCHI A,BECUWE P,FRANCK P,et al.Induction of MnSOD gene by arachidonic acid is mediated by reactive oxygen species and p38 mapk signaling pathway in human HepG2 hepatoma cells[J].Free Rad Biol Med,2002,32:1 132-1 142.

[85]GU Y,WU R F,XU Y C,et al.HIV Tat activates c-Jun amino-terminal kinase through an oxidant-dependent mechanism[J].Virol,2001,286:62-71.

[86]CHEN Z,GIBSON T B,ROBINSON F,et al.MAP kinases[J].Chem Rev,2001,101:2 449-2 476.

[87]KYRIAKIS J M,AVRUCH J.Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J].Physiol Rev,2001,81:807-869.

[88]TORRESA M,FORMANB H J.Redox signaling and the MAP kinase pathways[J].BioFactors,2003,17:287-296.

[89]ROUX P P,BLENIS J.ERK and p38 MAPK-Activated Protein Kinases:a Family of Protein Kinases with diverse biological functions[J].Microbiol Mol Biol Rev,2004,68:320-344.

[90]WADA T,PENNINGER J M.Mitogen-activated protein kinases in apoptosis regulation[J].Oncogene,2004,23:2 838-2 849.

[91]WHITMARSH A J,DAVIS R J.Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways[J].J Mol Med,1996,74:589-607.

[92]PEARSON G,ROBINSON F,BEERS GIBSON T,et al.Mitogen-activated protein(MAP)kinase pathways:regulation and physiological functions[J].Endocrinol Rev,2001,22:153-183.

[93]QADRI I,IWAHASHI M,CAPASSO J M,et al.Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication:role of JNK,p38MAPK and AP-1[J].Biochem J,2004,378:919-928.

主站蜘蛛池模板: 国产门事件在线| 国产精品性| 欧美在线国产| a在线亚洲男人的天堂试看| a级毛片视频免费观看| 91精品啪在线观看国产91| 99这里只有精品6| 国产亚洲现在一区二区中文| 欧美国产综合视频| 一级毛片免费播放视频| 人妻无码AⅤ中文字| 色悠久久久| 亚洲狼网站狼狼鲁亚洲下载| 亚洲精品视频网| 人妻一区二区三区无码精品一区| 久久99热这里只有精品免费看| 十八禁美女裸体网站| 欧美日在线观看| 专干老肥熟女视频网站| AV天堂资源福利在线观看| 91亚洲精选| 亚洲视频二| 国产日韩欧美在线播放| 波多野结衣视频一区二区| 亚洲最大福利视频网| 欧美一级高清免费a| 伦精品一区二区三区视频| 国产免费a级片| 四虎永久免费网站| 三级毛片在线播放| 91热爆在线| 欧美性爱精品一区二区三区| 欧美在线天堂| 亚洲国产精品国自产拍A| 亚洲欧美另类视频| 欧美日韩综合网| 男人天堂亚洲天堂| 老司国产精品视频91| 狠狠亚洲五月天| 沈阳少妇高潮在线| www.亚洲一区二区三区| 中文字幕久久精品波多野结| 日韩黄色在线| 欧美亚洲激情| 亚洲国产精品成人久久综合影院| 色婷婷成人| 午夜激情福利视频| 青草精品视频| 她的性爱视频| 国产精品hd在线播放| 99成人在线观看| 18黑白丝水手服自慰喷水网站| 欧亚日韩Av| 在线观看国产精美视频| 美女毛片在线| 91小视频版在线观看www| 亚洲国产AV无码综合原创| 成人国产三级在线播放| 国产一区二区福利| 老司国产精品视频| 国产午夜在线观看视频| 亚州AV秘 一区二区三区| 日韩第八页| 91色在线视频| 99热这里只有精品在线播放| 激情乱人伦| 青青青国产视频手机| 中文字幕人成乱码熟女免费| 免费毛片a| 一级香蕉人体视频| 亚洲色欲色欲www在线观看| 免费毛片a| 亚洲精品少妇熟女| 欧美性精品| 免费高清自慰一区二区三区| av一区二区三区在线观看| 在线国产欧美| 久久国产成人精品国产成人亚洲| 2021精品国产自在现线看| 国产成人免费手机在线观看视频| 国产99在线观看| 亚洲 欧美 偷自乱 图片 |