張小晶, 林 林, 張佳佳, 賈聰聰, 何金彩, 黃陳平△
(1溫州醫學院環境與公共衛生學院,浙江 溫州 325035;2溫州醫學院附屬第一醫院,浙江 溫州 325000)
1000-4718(2012)09-1577-05
2012-04-08
2012-07-06
國家自然科學基金資助項目(No. 30972509)
△通訊作者 Tel: 0577-86689901;E-mail: wzhcp@263.net
胚胎期鉛暴露對斑馬魚胚胎及幼魚NMDA受體mRNA表達的影響*
張小晶1, 林 林1, 張佳佳2, 賈聰聰1, 何金彩2, 黃陳平1△
(1溫州醫學院環境與公共衛生學院,浙江 溫州 325035;2溫州醫學院附屬第一醫院,浙江 溫州 325000)
目的了解胚胎期鉛暴露對斑馬魚胚胎及幼魚N-甲基-D-天冬氨酸(NMDA)受體mRNA表達的影響。方法野生型AB品系斑馬魚胚胎醋酸鉛暴露濃度分別為0、0.1、0.5、2.5和12.5 μmol/L,提取各組受精后24、48、72、96和120 h(hpf)斑馬魚胚胎或幼魚總RNA,實時定量PCR檢測NMDA受體亞基NR1.1、NR1.2和NR2B的mRNA表達量。結果(1)對照組NR1.1和NR1.2及NR2B表達量在胚胎發育過程中逐漸升高,在孵化期(72 hpf)表達量增加明顯,在幼魚早期(96 hpf)時達到高峰(與24 hpf時比較,P<0.01),在120 hpf時仍處于較高水平。 (2)隨著鉛暴露濃度增高,NR1.1表達量增加并有高峰前移的趨勢,2.5 μmol/L和12.5 μmol/L鉛暴露組NR1.1表達高峰期在72 hpf,并且顯著高于對照組(P<0.05);鉛暴露組NR1.2和NR2B動態表達也呈類似規律,但NR1.2表達高峰期呈平臺化趨勢,橫跨72 hpf至120 hpf階段,NR2B表達高峰期出現在72 hpf和120 hpf階段。(3) NR1.1、NR1.2及NR2B mRNA表達量之間Pearson相關系數值分別為rNR1.1-1.2=0.681、rNR1.1-2B=0.637和rNR1.2-2B=0.514,均有統計學意義(P<0.01)。結論在斑馬魚胚胎發育過程NR1.1、NR1.2及NR2B mRNA表達水平逐漸升高,在幼魚早期達到高峰;胚胎和幼魚階段NR1.1、NR1.2及NR2B之間mRNA表達水平存在關聯;鉛有上調NR1.1、NR1.2和NR2B mRNA表達作用并使表達峰期前移,改變了正常的NMDA受體表達規律。
鉛; 斑馬魚; 受體,NMDA; 基因表達; 胚胎
鉛是常見的環境污染物,具有明顯的神經發育毒性。胚胎階段鉛暴露是導致出生后神經行為發育障礙的關鍵環節,但其機制尚不清楚[1- 2]。N-甲基-D-天冬氨酸(N-methyl-D-aspartiate, NMDA)受體在中樞神經系統中廣泛參與神經發育、突觸可塑性及神經回路形成等過程[3]。NMDA受體是由NR1、NR2和NR3構成的異聚體陽離子通道,NR1為NMDA受體的基本功能單位,NR2和NR3對受體功能起調節修飾作用[4]。近年來斑馬魚胚胎發育毒理學技術發展迅速,在神經發育毒性機制研究方面具有獨特的優勢[5]。已知斑馬魚NR1有2個旁系同源基因NR1.1(Gene ID: 767745)和NR1.2(Gene ID: 100005675)。NR2有NR2A~D四個亞型,NR2B是胚胎期及生后早期主要的NMDA受體調節亞基[6]。本文通過比較研究鉛暴露組與對照組斑馬魚胚胎及幼魚NR1.1、NR1.2和NR2B mRNA動態表達水平,探討早期鉛暴露對NMDA受體亞基mRNA表達的影響。
1動物
野生型AB品系斑馬魚引自美國俄勒岡州立大學,由溫州醫學院水域科學與環境生態研究所斑馬魚實驗室(浙江省模式生物技術與應用重點實驗室)按斑馬魚工具書[7]描述的方法進行養殖。取健康性成熟的斑馬魚,于飼養系統關燈前(約18∶00)按雌雄1∶2的比例放入孵化器,次晨受光刺激后完成交配和產卵,收集胚卵,選取發育時間一致的正常胚胎進行實驗。
2主要試劑與儀器
醋酸鉛[Pb(CH3CO2)2·3H2O,PbAc, Sigma], TRIzol試劑(碧云天生物技術研究所),熒光定量PCR試劑盒(DRR041A,TaKaRa),實時熒光定量反轉錄試劑(TaKaRa)。人工氣候箱(RXZ智能型,寧波江南儀器廠),倒置相差顯微鏡(TS100,Nikon),NanoDrop 2000超微量分光光度計(Thermo),熒光定量PCR儀(7500,ABI)。
3主要方法
3.1斑馬魚胚胎鉛染毒 按照斑馬魚工具書要求配制正常胚胎培養液(embryo medium, EM)(0.137 mol/L NaCl, 5.4 mmol/L KCl, 0.25 mmol/L Na2HPO4,0.44 mmol/L KH2PO4,1.3 mmol/L MgSO4,4.2 mmol/L NaHCO3),用EM液溶解醋酸鉛,配制鉛質量濃度分別為0.1、0.5、2.5及12.5 μmol/L的含鉛EM液。斑馬魚胚胎自受精后1 h(1 hour post fertilization,1 hpf)進行染毒,以不含鉛的EM液孵養的胚胎作為對照,染毒胚胎孵化后改用EM液孵養至120 hpf。培養皿置于(28±1)℃人工氣候箱內,光周期為明14 h∶暗10 h,每天更換培養液。
3.2總RNA提取及cDNA合成 分別收集各組發育至24、48、72、96和120 hpf的斑馬魚胚胎或幼魚各35枚(條),用TRIzol法提取總RNA,逆轉錄合成cDNA,反應條件: 37 ℃ 15 min,85 ℃ 5 s。cDNA于-20 ℃貯存備用。
3.3實時定量PCR檢測NR1.1、NR1.2和NR2BmRNA的表達量 根據斑馬魚NR1.1、NR1.2、NR2B的cDNA序列,設計熒光定量PCR引物,以β-actin作為內參照,引物由南京金斯瑞生物科技有限公司根據設計合成,引物序列見表1。根據熒光定量PCR試劑盒操作步驟,用熒光定量PCR儀對發育至24、48、72、96和120 hpf的斑馬魚胚胎或幼魚NR1.1、NR1.2和NR2B mRNA表達量進行檢測。PCR反應體系為20 μL:SYBR Premix Ex TaqTM(2×) 10 μL,引物(10 μmol/L)各0.8 μL,ROX Reference Dye(50×) 0.4 μL,cDNA 2 μL,加用焦碳酸二乙酯處理的水至20 μL。反應條件:預變性95 ℃ 30 s;PCR反應,95 ℃ 3 s,60 ℃ 30 s,循環40次。重復檢測3次,每次做3個復孔,分別計算同一樣品3個復孔的Ct均值,以同一樣本中的β-actin Ct值作為內參照,以24 hpf對照組胚胎標本為基準。設基準組2-ΔΔCt為1,按式: 2-[( 檢測組NR Ct-檢測組β-actin Ct)-(基準組NR Ct-基準組β-actin Ct)]分別計算各組2-ΔΔCt,用以表示NR1.1、NR1.2和NR2B mRNA相對表達量[8]。
4統計學處理

表1β-actin、NR1.1、NR1.2和NR2B的實時熒光定量PCR引物序列
Table 1. Primer sequences of β-actin, NR1.1, NR1.2 and NR2B used in real-time quantitative PCR

GenenamePrimersequence(5’-3’)Productβ-actinForward:ATGGATGAGGAAATCGCTGCC106bpReverse:CTCCCTGATGTCTGGGTCGTCNR1.1Forward:GAAGCCAGCGGTGTAGGAG218bpReverse:GTGTTTAAAGATGCCGTCACCCNR1.2Forward:ACGCCGTCACCCAAGCCAAC248bpReverse:GGACATGCGGGTGGTCAGGCNR2BForward:TGGGCTGGCAATGTTCAAGGGAC95bpReverse:GGACGCGGCAGTCGGAGAAAG
1NR1.1、NR1.2、NR2B及β-actincDNA擴增片段凝膠電泳
以斑馬魚胚胎cDNA為模板,用設計引物擴增NR1.1、NR1.2、NR2B及β-actin cDNA片段,擴增產物凝膠電泳結果均顯示單一明亮條帶,片段大小與設計預期相符,見圖1。

Figure 1. Gel electrophoresis of β-actin, NR1.1, NR1.2 and NR2B cDNA in zebrafish.
圖1斑馬魚β-actin、NR1.1、NR1.2和NR2BcDNA凝膠電泳圖
2胚胎及幼魚階段NR1.1mRNA的表達
對照組 NR1.1 mRNA表達量在胚胎發育過程中逐漸升高,在孵化期(72 hpf)表達量增加明顯,在幼魚早期(96 hpf)時達到高峰,在120 hpf時仍處于較高水平,相對24 hpf時NR1.1表達量有顯著增高(96 hpf,P<0.01;120 hpf,P<0.05)。各鉛暴露組NR1.1動態表達也呈類似規律,但隨著鉛暴露濃度增高,NR1.1表達量增加并有高峰前移的趨勢。2.5 μmol/L和12.5 μmol/L鉛暴露組其NR1.1表達峰值出現在72 hpf 時點,較對照組提前,而且顯著高于同時點對照組NR1.1表達量(P<0.05);在48 hpf 時,0.5 μmol/L和12.5 μmol/L鉛暴露組NR1.1表達量也較對照組顯著增高(P<0.05),見圖2。


圖2不同鉛暴露組斑馬魚胚胎及幼魚NR1.1mRNA的表達
3胚胎及幼魚階段NR1.2mRNA的表達
24 hpf至72 hpf時點,對照組NR1.2表達量逐漸升高,在72 hpf后,NR1.2表達量快速增加,在96 hpf 時達到高峰,顯著高于其它各時段NR1.2表達量(P<0.01),隨后NR1.2表達量有明顯下降,但在120 hpf時仍處于較高水平。各鉛暴露組NR1.2動態表達也呈類似規律,但NR1.2表達高峰期呈平臺化趨勢,橫跨72 hpf至120 hpf階段,尤以高鉛(2.5 μmol/L和12.5 μmol/L)暴露組為明顯。此外,48 hpf時0.5 μmol/L和72 hpf時2.5 μmol/L鉛暴露組NR1.2表達量較同時段對照組有顯著增加(P<0.05),見圖3。
4胚胎及幼魚階段NR2BmRNA的表達
對照組 NR2B表達量自24 hpf后逐漸升高,72 hpf后表達量升高速度加快,在96 hpf 時達到高峰(P<0.01),之后表達量明顯下降。各鉛暴露組NR2B動態表達高峰期出現在72 hpf和120 hpf階段,72 hpf時2.5 μmol/L組和120 hpf時0.5 μmol/L組NR2B表達量較相同鉛暴露濃度下24 hpf時NR2B表達量有明顯增高(P<0.05)。在48 hpf 時,2.5 μmol/L鉛暴露組NR2B表達量也較對照組顯著增高(P<0.05),見圖4。


圖3不同鉛暴露組斑馬魚胚胎及幼魚NR1.2mRNA的表達


圖4不同鉛暴露組斑馬魚胚胎及幼魚NR2BmRNA的表達
5NR1.1、NR1.2及NR2BmRNA表達量之間相關分析結果
NR1.1與NR1.2、NR1.1與NR2B、NR1.2與NR2B mRNA表達量之間Pearson相關系數值分別為0.681、0.637和0.514,均有統計學意義(P<0.01),提示NR1.1、NR1.2及NR2B mRNA表達量之間存在相關關系。
NMDA受體為谷氨酸離子型受體,通常由2個NR1亞基和2個NR2亞基形成的異四聚體,其構成的離子通道對Ca2+有高通透性,具有化學電壓雙重門控特點,NMDA受體介導的細胞信號轉導與神經發育、突觸可塑性及學習記憶功能等密切相關[3-4, 9]。本實驗中,對照組斑馬魚NR1.1、NR1.2和NR2B的mRNA表達量自24 hpf后逐漸升高,72 hpf后表達量明顯增加,在96 hpf時達到高峰。斑馬魚胚胎發育迅速,72 hpf時處于胚胎孵出前后階段,96 hpf 為幼魚早期階段。本實驗結果顯示NR1.1、NR1.2和NR2B主要在胚胎發育后期及幼魚階段表達。Cox等[10]報道,NR1在24 hpf斑馬魚胚胎就已有明顯表達,表達部位在腦區及脊索等部位,至48 hpf時表達愈加明顯;PCR檢測NR2B基因表達在96 hpf時最顯著。Monyer等[6]研究大鼠神經發育階段NMDA受體亞基分布表達情況,發現各NR2亞基表達水平在生后7~20 d達到高峰。本實驗結果與上述報道結果相符,證實了在出生早期存在NMDA受體表達高峰期。NMDA受體各亞基主要分布于神經元,其表達水平與神經發育有關,生后早期是神經元發育及細胞間連接形成旺盛階段,可能因此誘發NR1.1、NR1.2和NR2B的高表達。
表2NR1.1、NR1.2和NR2BmRNA表達量之間相關分析
Table 2. Correlation analysis of the mRNA expression among NR1.1,NR1.2 and NR2B

GroupnPearson’sCorrelationCoefficientNR1.1-NR1.2NR1.1-NR2BNR1.2-NR2BControl150.942??0.735??0.792??0.1μmol/LPbAc150.5010.810??0.0750.5μmol/LPbAc150.646??0.1460.4742.5μmol/LPbAc150.722??0.806??0.719??12.5μmol/LPbAc150.678??0.896??0.563?Total750.681??0.637??0.514??
*P<0.05,**P<0.01.
鉛屬于神經性毒物,在神經系統發育早期其毒作用尤為明顯,但目前毒作用機制尚未明了。據報道,NMDA受體的亞基組成與神經發育及突觸形成等密切相關,除必需亞基NR1外,構成NMDA受體的亞基主要為NR2A和NR2B,不同亞基構成的NMDA受體在不同發育階段和部位,通過不同的信號轉導通路發揮著不同作用[11]。在胚胎發育階段及出生早期,主要以NR2B高表達為主,在生后成熟期則以NR2A高表達為主,這種在神經發育過程中從以含NR2B的NMDA受體為主向以含NR2A的NMDA受體過渡的轉變,對于神經細胞正常發育可能是十分重要的[6]。Toscano等[12]報道鉛暴露可能延緩或阻礙以含NR2B為主的NMDA受體向以含NR2A為主的NMDA受體過渡,進而影響有關的信號轉導通路。Neal等[13]研究發現,體外原代海馬神經元鉛暴露可減少突觸NR2A-NMDA受體水平,增加NR2B-NMDA受體水平, 增加NR1在突觸后膜致密區(postsynaptic density,PSD)集聚,并認為此與持久性抑制NMDA受體有關,因其結果與使用NMDA受體拮抗劑2-氨基-5-磷戊酸(2-amino-5-phosphonovaleric acid,APV)得到的結果相似。目前認為鉛可能是一種非競爭性NMDA受體拮抗物[14]。在本實驗中,隨著鉛暴露濃度增高,NR1.1表達量增加并有高峰前移的趨勢,NR1.2和NR2B動態表達也呈類似規律,表達高峰期呈平臺化趨勢。本實驗結果證實了鉛暴露能導致胚胎期及孵化后早期NR1和NR2B表達水平增加,改變了NMDA受體亞基原有的表達規律,這種改變可能是由于鉛抑制了NMDA受體而導致NR1和NR2B表達代償性上調所致。
NR1.1與NR1.2、NR1.1與NR2B、NR1.2與NR2B mRNA表達量之間Pearson相關系數值均有統計學意義,提示NR1.1、NR1.2及NR2B mRNA表達量之間存在相關關系。NR1.1和NR1.2是斑馬魚NR1兩個旁系同源基因,轉錄物具有相同功能,因此其表達調控相似。NR2B作為胚胎期和孵化后早期參與NMDA受體構成的NR2亞基主要的類型,其表達量與NR1之間存在密切關系。
綜上所述,得出如下初步結論:(1)在斑馬魚胚胎發育過程NR1.1、NR1.2及NR2B mRNA表達水平逐漸升高,在幼魚早期達到高峰;(2)胚胎和幼魚階段NR1.1、NR1.2及NR2B之間mRNA表達水平存在關聯;(3)鉛有上調NR1.1、NR1.2和NR2B mRNA表達作用并使表達峰期前移,改變了正常的NMDA受體表達規律。
[1] Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates[J]. Brain, 2003,126(Pt 1):5-19.
[2] Bellinger DC. Very low lead exposures and children’s neurodevelopment[J]. Curr Opin Pediatr, 2008,20(2):172-177.
[3] Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function[J]. Mol Cell Neurosci, 2011,48(4):308-320.
[4] Paoletti P. Molecular basis of NMDA receptor functional diversity[J]. Eur J Neurosci, 2011,33(8):1351-1365.
[5] Sipes NS, Padilla S, Knudsen TB. Zebrafish: as an integrative model for twenty-first century toxicity testing[J]. Birth Defects Res C Embryo Today, 2011,93(3):256-267.
[6] Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors[J]. Neuron, 1994,12(3):529-540.
[7] Westerfield M. The zebrafish book: A guide for the laboratory use of zebrafish (Daniorerio)[M]. 4th ed. Eugene: University of Oregon Press, 2000.
[8] Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CTmethod[J]. Nat Protoc, 2008,3(6):1101-1108.
[9] 王玉梅, 劉永平, 曹 凱, 等. 黃芩莖葉黃酮對慢性腦缺血大鼠腦內NMDA受體和VEGF表達的影響[J]. 中國病理生理雜志, 2012, 28(2):353-357.
[10]Cox JA, Kucenas S, Voigt MM. Molecular characterization and embryonic expression of the family ofN-methyl-D-aspartate receptor subunit genes in the zebrafish[J]. Dev Dyn, 2005,234(3):756-766.
[11]Kim MJ, Dunah AW, Wang YT, et al. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking[J]. Neuron, 2005,46(5):745-760.
[12]Toscano CD, Hashemzadeh-Gargari H, McGlothan JL, et al. Developmental Pb2+exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain[J]. Brain Res Dev Brain Res, 2002,139(2):217-226.
[13]Neal AP, Worley PF, Guilarte TR. Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition[J]. Neurotoxicology, 2011,32(2):281-289.
[14]Gavazzo P, Zanardi I, Baranowska-Bosiacka I, et al. Molecular determinants of Pb2+interaction with NMDA receptor channels[J]. Neurochem Int, 2008,52(1-2):329-337.
EffectofleadexposureonmRNAexpressionofNMDAreceptorsinzebrafishembryosandlarvae
ZHANG Xiao-jing1, LIN Lin1, ZHANG Jia-jia2, JIA Cong-cong1, HE Jin-cai2, HUANG Chen-ping1
(1SchoolofEnvironmentalScienceandPublicHealth,WenzhouMedicalCollege,Wenzhou325035,China;2TheFirstAffi-liatedHospitalofWenzhouMedicalCollege,Wenzhou325000,China.E-mail:wzhcp@263.net)
AIM: To investigate the effect of lead exposure on mRNA expression ofN-methyl-D-aspartate (NMDA) receptors in zebrafish embryos and larvae.METHODSZebrafish embryos (wild type; AB line) were exposed to lead acetate (PbAc) at concentrations of 0, 0.1, 0.5, 2.5 and 12.5 μmol/L, respectively. Total RNA was extracted from zebrafish embryos or larvae at the time points of 24, 48, 72, 96 and 120 hours post fertilization (hpf). The mRNA levels of NR1.1, NR1.2 and NR2B were determined by real-time quantitative PCR.RESULTSThe mRNA expression of NR1.1, NR1.2 and NR2B gradually increased during embryonic development, raised rapidly at 72 hpf, peaked at 96 hpf (vsthat at 24 hpf,P<0.01), and still kept in high level at 120 hpf in control group. The impact of lead exposure on the mRNA expression of NR1.1, NR1.2 and NR2B varied with lead concentrations. With the increasing concentrations of PbAc, the mRNA expression of NR1.1 generally increased and reached the highest level ahead of 96 hpf. The peak mRNA level of NR1.1 was observed at 72 hpf under the condition of PbAc exposure at the concentrations of 2.5 and 12.5 μmol/L, and were higher than that in control group (P<0.05). Similarly, the mRNA levels of NR1.2 and NR2B showed an increasing trend with PbAc exposure. However, the peaking time of NR1.2 and NR2B in mRNA expression spanned from 72 to 120 hpf. The significant correlations between the expression levels of NR1.1, NR1.2 and NR2B were observed (P<0.01) and the Pearson’s correlation coefficient values ofrNR1.1-1.2,rNR1.1-2Band rNR1.2-2Bwere 0.681, 0.637 and 0.514, respectively.CONCLUSIONThe mRNA expression of NR1.1, NR1.2 and NR2B gradually increases throughout the embryonic development of zebrafish and reaches the highest levels at early stage of larva. Close correlations between the mRNA expression of NR1.1, NR1.2 and NR2B are present during the period of embryo and larva. Lead exposure induces up-regulation and forward shift of NR1.1, NR1.2 and NR2B at mRNA level, indicating that lead induces abnormal expression of NMDA receptors.
Lead; Zebrafish; Receptors, NMDA; Gene expression; Embryo
R363
A
10.3969/j.issn.1000-4718.2012.09.008