各種原因導致的慢性皮膚潰瘍是臨床諸多疾病的常見并發癥之一,具有病程長,反復發作,花費巨大的特點,對患者生活、心理和工作質量都具有極大影響。對創面愈合機制的研究一直以來都是國內外學者研究的熱點與難點,研究顯示Wnt信號通路與創面愈合密切相關。Wnt信號通路分為經典與非經典信號通路,近年來,兩種通路在創面愈合中的作用見諸多文獻報道,本文就Wnt信號通路與創面愈合的關系綜述如下。
1 Wnt信號通路簡介
1973年,Sharma等[1]在對果蠅胚胎發育的研究中發現了無翅基因(Wingless)。1982年,Nusser等[2]對小鼠乳腺腫瘤研究時發現一種可以在細胞間傳遞增殖分化信號的蛋白質,當時稱其為Intl。后經研究發現果蠅的無翅基因(Wingless)即為Wnt樣基因,所以統一命名為Wnt1基因。迄今為止,包括Wnt1基因在內,在人和脊椎動物中共發現了19種Wnt基因[3]。這些基因編碼Wnt蛋白家族,是一組富含半胱氨酸的分泌性糖蛋白。Wnt蛋白在多種組織細胞中均有表達,它們通過自分泌或旁分泌的方式激活膜受體而發揮作用。Wnt信號通路多種分泌型Wnt蛋白已被證明存在于從線蟲到人類的多種生物中[4]。Wnt基因編碼的Wnt蛋白及其受體、調節蛋白等一起組成了復雜的信號通路;稱為Wnt信號轉導通路。它與胚胎正常發育、細胞的增殖與分化以及腫瘤形成密切相關[5]。目前,研究顯示Wnt信號轉導通路有主要3條途徑:①經典Wnt-β-catenin-LEF/TCF通路:這條通路激活后將募集細胞內的β-catenin,將后者活化后轉移入細胞核,與轉錄因子LEF/TCF等共同作用激活特異基因的轉錄;②細胞極性通路:主要調控細胞骨架的重排;③Wnt/Ca2+通路:通過鈣依賴性激酶、鈣調蛋白和轉錄因子NF-AT(nuclear factor of activated T cell)起作用[6]。已有研究證實Wnt/β-catenin信號通路能促進創面愈合,Wnt信號通路相關糖蛋白也與創面愈合有密切關系[7]。
2 經典Wnt/β-catenin信號通路與創面愈合
既往研究顯示Wnt信號通路主要與毛囊發育相關,是控制動物胚胎發育和組織器官形態發生的重要信號轉導途徑之一[8]。隨著研究的深入,越來越多的證據顯示,Wnt信號通路具有多種不同的生理功能,包括影響干細胞增殖與自我更新[9],與創面愈合也密切相關[10]。Carre等[11]采用Wnt3a腺病毒模擬激活經典Wnt信號通路,研究Wnt信號通路、TGF-β與透明質酸在創面愈合與瘢痕形成的關系。結果顯示經典Wnt信號通路在新生小鼠皮膚創面表達明顯增高,而在胚胎小鼠創面模型中未發現增高。重組Wnt3a模擬激活Wnt信號通路后能促進出生后小鼠成纖維細胞增殖,而對胚胎小鼠成纖維細胞卻此無效。Wnt信號通路激活可使出生后小鼠成纖維細胞中HAS1和Hyal2基因表達增強,從而顯著提高I型膠原表達。Barcelos[12-13]研究顯示,CD133+祖細胞能激活Wnt信號通路,并通過旁分泌刺激內皮細胞增殖、遷移,促進血管增生而促進糖尿病缺血性潰瘍愈合,同時,這一效應能被Wnt信號拮抗分子sFRP-1所阻斷。在經典Wnt信號通路中,β-catenin是Wnt/β-catenin信號通路的重要組成部分,是控制動物胚胎發育和組織器官形態發生的重要信號轉導途徑元件之一[8]。正常情況下,成年機體Wnt基因則多處于相對靜止狀態。皮膚損傷后,TGF-β能暫時提高創面β-catenin表達。TGF-β通過Smad3和p38 MAPK 通路激活β-catenin介導的人上皮成纖維細胞轉錄,并且TGF-β在肥大瘢痕和瘢痕疙瘩中也誘導Wnt/β-catenin信號通路的上調[14]。β-catenin在真皮成纖維細胞核內持續增高,有利于成纖維細胞增殖與遷移,同時又反饋激活TGF-β信號通路。但在慢性皮膚潰瘍中,這一過程因TGF-β信號通路持續激活而得到增強[15]。增強的Wnt/β-catenin信號通路在TGF-β1誘導的正常皮膚從成纖維細胞到肌成纖維細胞的轉化中發揮了負反饋作用,而這種轉化是創面愈合的關鍵[16]。近年來還報道mircoRNA通過直接影響β-catenin的編碼蛋白對Wnt/β-catenin信號通路抑制的作用[17]。Wnt分子通過旁分泌和自分泌的方式作用于細胞膜(目前已知Wnt蛋白家族成員中,能激活經典Wnt-β-catenin-LEF/TCF通路的有Wnt1[18-19]、Wnt3a[20]和Wnt8[3]),其中Wnt3a以β-catenin依賴的方式通過Smad2上調TGF-β,誘導肌成纖維細胞的分化[21]。Wnt分子與跨膜受體frizzelds及其共同受體低密度脂蛋白受體相關蛋白結合,進而降低β-catenin磷酸化的降解,使得β-catenin在細胞內聚集,最后進入細胞核與T細胞因子(T-cell factor ,Tcf)結合,激活下游靶基因,例如cyclin D1, c-Jun, c-myc, E-cadherin, and EGFR等[6,22-23]。Nguyen[24]研究顯示Tcf3與Tcf4敲除小鼠表皮變薄,毛囊發育受阻,創面上皮化功能亦受到顯著影響。因此,在正常皮膚中β-catenin表現為膜表達,而在進入細胞核后則表現為核表達。研究表明,β-catenin蛋白在創面愈合增殖期間質細胞中表達增高[25],并影響真皮成纖維細胞的增殖與遷移[26]。有另外的相反研究卻顯示,正常組織創面后β-catenin蛋白水平在4周后到達高峰,12周恢復到正常水平。增生性難愈性創面的β-catenin蛋白水平持續偏高并延長達2年。老鼠創面愈合模型研究表明,潰瘍創面大小與β-catenin蛋白表達水平密切相關,β-catenin通過間接影響TGF-β效應影響創面愈合[27]。Stojadinovic[28]通過對難愈性潰瘍與正常人皮膚相比較發現,慢性皮膚潰瘍患者創面β-catenin核表達、c-myc蛋白表達明顯增強。將潰瘍創緣β-catenin核表達的角質形成細胞進行體外培養,發現其遷移能力與正常對照組相比顯著降低。Carrie Fathke等[29]的研究進一步證實,異常激活的Wnt/β-catenin通路使毛囊間表皮細胞再生模式被誘導改變,上皮過度分化,形成表皮囊腫與不成熟的毛囊結構。其研究提示恰當的Wnt信號通路激活又誘使皮膚及其附屬器再生的潛能。
β-catenin激活后的下游靶基因c-myc能夠促進細胞從Go期進入S期,因而目前認為它可能與細胞的增殖及分化密切相關。在正常人表皮中,c-myc的表達僅局限在基底細胞層,提示c-myc可能與表皮干細胞分化存在某種內在關系。然而,有研究提示,在慢性皮膚潰瘍中,c-myc則在表皮全層表達增強,失衡的c-myc可能使干細胞耗竭,而抑制細胞生長并刺激其終末分化[30]。還可導致細胞外骨架物質K6/K16蛋白降低,影響細胞遷移,不遷移的終末分化細胞堆積在創周阻礙上皮化形成。Saha 等[31]應用基因表達系列分析(serial analysis of gene expression,SAGE)篩選了多種靶基因后,發現c-myc基因可能是核內受異常Wnt信號轉導途徑調控的最重要的靶基因之一。而Wnt信號通路中最主要的成員即是β-catenin和靶基因c-myc[32]。
3 非經典Wnt信號通路與創面愈合
非經典Wnt信號通路,也即細胞極性通路和Ca2+-蛋白激酶A通路。該通路無需激活靶基因即可引起細胞效應,即直接作用于胞質效應蛋白。激活非經典Wnt信號通路的主要蛋白為Wnt5a與Wnt11。且Wnt5a能夠以不依賴GSK-3β的方式,通過Siah2和APC降解β-catenin,從而和經典Wnt/β-catenin信號途徑相互作用。
內皮細胞之間相互作用是影響創面血管增生與血管功能的重要因素。研究顯示[33]VEGF與胎盤生長因子通過受體VEGFR-1促進血管增生,且兩者具有協同效應。Cheng等[34]運用siRNA或Wnt5a拮抗劑阻斷Wnt/Ca2+信號通路可抑制內皮細胞增殖與遷移,添加VEGF可糾正這一阻斷現象。表明Wnt5a介導的非經典Wnt通路(Wnt/Ca2+)在內皮細胞增殖與遷移中發揮正面作用。此外,細胞因子刺激體外培養內皮細胞則可發現Wnt5a mRNA表達上調。Wnt5a介導下的Wnt/Ca2+信號通路可能通過調節內皮細胞生長而有助于炎性血管新生,并可成為治療該類疾病的潛在靶點[34-35]。另一研究顯示,黑素細胞遷移與侵襲能力增強與Wnt/Ca2+信號通路Wnt5a高表達有關,通過阻斷Wnt5a受體Frizzled-5可以降低黑素細胞侵襲能力[36]。盡管有文獻顯示Wnt5a介導的Wnt/Ca2+通路對于不同的細胞起不同的作用,或促進或抑制。但大多數研究顯示Wnt/Ca2+信號通路與經典Wnt/β-catenin信號通路存在拮抗效應,而前者能提高細胞遷移與增殖[37-39]。另外,Lyu [40]研究發現Wnt7a在角膜創面處快速升高,有利于角膜上皮增殖,促進創面愈合。Wnt7a使細胞膜內β-catenin聚集,激活Rac,后者協同轉錄MMP-12。在增殖區域上皮中檢測到MMP-12,而在細胞遷移中心MMP-12則減少。阻斷MMP-12功能表達,將使Wnt7a誘導的創面愈合顯著延遲。
綜上所述,Wnt信號通路與創面修復關系密切,涉及成纖維細胞[26]、角質形成細胞的增殖與遷移功能[41]、細胞外基質及膠原收縮[42]、血管新生[12]等諸多方面。近來的研究更加關注創面愈合過程中多種信號通路之間的相互作用,如Wnt信號通路與TGF-β信號通路[11,42],Wnt信號通路與整合素等之間的相互作用[43]。創面修復機制復雜,涉及諸多因素,深入了解創面修復不同時期、不同信號通路的相互作用,對于提高創面治愈率具有重要意義。
[參考文獻]
[1]Cadigan KM,Nusse R.Wnt signaling: a common theme in animal development[J].Genes Dev,1997,11(24): 3286-3305.
[2]Nusse R,Varmus HE.Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome [J].Cell,1982,31(1):99-109.
[3]向陽,高基民,胡志明,等. Wnt基因的類別及功能[J].生命的化學,2007,27(2):138-141.
[4]Prestwich TC,Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism [J].Curr Opin Cell Biol,2007,19(6): 612-617.
[5]Hu M,Kurobe M,Jeong YJ,et al.Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells [J].Gastroenterology,2007,133(5):1579-1591.
[6]Bienz M.beta-Catenin: a pivot between cell adhesion and Wnt signalling [J].Curr Biol,2005,15(2): R64-67.
[7]Katoh M,Katoh M.WNT signaling pathway and stem cell signaling network [J].Clin Cancer Res,2007,13(14): 4042-4045.
[8]DasGupta R,Kaykas A,Moon RT,et al.Functional genomic analysis of the Wnt-wingless signaling pathway [J]. Science,2005,308(5723): 826-833.
[9]Fleming HE,Janzen V,Lo CC,et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo [J].Cell Stem Cell,2008,2(3):274-283.
[10]Sue NS,Mahmoudi T,Li VS,et al.MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway [J].Biol Chem,2010,391(2-3):171-180.
[11]Carre AL,James AW,MacLeod L,et al.Interaction of wingless protein (Wnt), transforming growth factor-beta1, and hyaluronan production in fetal and postnatal fibroblasts[J]. Plast Reconstr Surg.2010, 125(1):74-88.
[12]Barcelos LS,Duplaa C,Krankel N,et al.Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling [J].Circ Res,2009, 104(9):1095-1102.
[13]Chen CH,Dixon RA,Ke LY,et al.Vascular progenitor cells in diabetes mellitus: roles of Wnt signaling and negatively charged low-density lipoprotein [J].Circ Res,2009,104(9):1038-1040.
[14]Madoka S.Upregulation of the Wnt/β-catenin Pathway Induced by Transforming Growth Factor-βin Hypertrophic Scars and Keloids[J]. Acta Derm Venereol,2006,86:300-307.
[15]Maki H.Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitu tion mutageneses [J].Annu Rev Genet,2002,36:279-303.
[16]Liu J,Wang Y,Pan Q,et al. Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to-myofibroblast transition[J].J Dermatol Sci,2012,65(1):38-49.
[17]Su J,Zhang A.MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin[J].Int J Oncol,2012,;40(4):1162-1170.
[18]Hlubek F,Brabletz T,Budczies J,et al.Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer [J].Int J Cancer,2007,121(9):1941-1948.
[19]Manolagas SC,Almeida M.Gone with the Wnts: beta-catenin,T-cell factor,forkhead box O,and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism [J].Mol Endocrinol,2007,21(11): 2605-2614.
[20]Jia L,Zhou J,Peng S,et al.Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells [J].Biochem Biophys Res Commun,2008,368(3):483-488.
[21]Carthy JM,Garmaroudi FS.Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner[J]. PLoS One,2011,6(5):e19809.
[22]Bienz M.beta-Catenin: a pivot between cell adhesion and Wnt signalling [J].Curr Biol,2005,15(2): R64-67.
[23]Anna CH,Iida M,Sills RC,et al.Expression of potential beta-catenin targets, cyclin D1, c-Jun, c-Myc, E-cadherin, and EGFR in chemically induced hepatocellular neoplasms from B6C3F1 mice [J].Toxicol Appl Pharmacol,2003,190(2):135-145.
[24]Nguyen H,Merrill BJ,Polak L,et al.Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia [J].Nat Genet,2009,41(10):1068-1075.
[25]Sophia C,Roon P,Chunying Y,et al.Prolonged beta-catenin stabilization and tcf-dependent transcriptional activation in hyperplastic cutaneous wounds [J]. Laboratory Investigation,2005,85:416-425.
[26]Cheon SS,Cheah AY,Turley S,et al.beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds [J].Proc Natl Acad Sci USA,2002,99(10): 6973-6978.
[27]Sophia S,Cheon QW,Ananta G,et al. Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing [J]. The FASEB J,2006,20(6):692-701.
[28]Stojadinovic O,Brem H,Vouthounis C,et al.Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing [J].Am J Pathol,2005,167(1): 59-69.
[29]Fathke C,Wilson L,Shah K,et al.Wnt signaling induces epithelial differentiation during cutaneous [J]. BMC Cell Biology. 2006. 7(4): 1741-1749.
[30]Brem H,Stojadinovic O,Diegelmann RF,et al. Molecular markers in patients with chronic wounds to guide surgical debridement [J].Mol Med,2007,13(1-2): 30-39.
[31]Saha S,Sparks AB,Rago C,et al. Using the transcriptome to annotate the genome [J]. Nat Biotechnol,2002, 20(5):508-512.
[32]Morin PJ,Sparks AB,Korinek V,et al.Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC [J].Science,1997,275(5307):1787-1790.
[33]Carmeliet P,Moons L,Luttun A,et al.Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions [J]. Nat Med, 2001,7(5):575-583.
[34]Cheng CW,Yeh JC,Fan TP,et al.Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration [J]. Biochem Biophys Res Commun,2008,365(2):285-290.
[35]Kurayoshi M,Oue N,Yamamoto H,et al.Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion [J].Cancer Res,2006,66(21): 10439-10448.
[36]Weeraratna AT,Jiang Y,Hostetter G,et al.Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma [J].Cancer Cell,2002,1(3):279-188.
[37]Ishitani T,Kishida S,Hyodo-Miura J,et al.The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling [J].Mol Cell Biol,2003,23(1): 131-139.
[38]Kuhl M,Geis K,Sheldahl LC,et al.Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling [J].Mech Dev,2001,106(1-2):61-76.
[39]Weidinger G, Moon RT. When Wnts antagonize Wnts [J]. J Cell Biol,2003,162(5): 753-755.
[40]Lyu J,Joo CK.Wnt-7a up-regulates matrix metalloproteinase-12 expression and promotes cell proliferation in corneal epithelial cells during wound healing [J].J Biol Chem,2005,280(22): 21653-21660.
[41]Stojadinovic O,Brem H,Vouthounis C,et al.Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing [J].Am J Pathol,2005,167(1): 59-69.
[42]Poon R,Nik SA,Ahn J,et al.Beta-catenin and transforming growth factor beta have distinct roles regulating fibroblast cell motility and the induction of collagen lattice contraction [J].BMC Cell Biol, 2009,10:38.
[43]Crampton SP,Wu B,Park EJ,et al.Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2 [J]. PLoS One,2009,4(11): e7841.
[收稿日期]2012-04-09 [修回日期]2012-05-25
編輯/李陽利