于 航 徐道強
(1.天津理工大學自動化學院,300222,天津;2.天津市地下鐵道運營公司,300222,天津∥第一作者,講師)
天津市軌道交通目前規劃共有13條線路,隨著新線的建成和運營籌備工作的深入,對無障礙換乘情況下的多線路之間票務收入的清分,成為網絡化運營需要解決的一個重要問題。
軌道交通網絡化運營情況下的清分方法,可以人為的分為精確法和近似法兩類。由于軌道交通線網內每一個乘客的具體乘車路徑很難精確得到,因此精確法需要增加建設投資和維護成本,可操作性很低;近似方法對乘客實際乘車路徑做近似處理,可以兼顧可操作性和公平合理性。
目前的軌道交通清分方法多屬于近似方法。“最短路徑法”是一種使用較多的典型近似法,即:在路網中任意兩個車站之間找出一條確定的最短路徑,然后按照各運營線路在此最短路徑中所占的比例對每筆換乘交易的票款收益進行清分,即稱為最短路徑方法。作為一種經典的尋徑方案,最短路徑算法已經得到廣泛的應用。然而在很多實際環境中,最短路徑并不一定是首選的路徑。在城市軌道交通或公路交通中,由于路網中理論上的最短路徑舒適度不夠或比較擁擠,旅客或車輛往往會出于方便及節省時間的目的而實際選擇了其他的徑路。這就說明,為了解決某些實際問題,有時必須兼顧網絡中其他的優選路徑。
在軌道交通網絡中,確定路徑時必須首先確定優選的準則。乘客在乘坐軌道交通出行時往往會選擇運營里程最短、換乘總時間最少或換乘站點個數最少的線路。目前影響乘客選擇出行徑路的因素主要有線路運營里程;乘軌道交通出行的總時間;換乘站點數;換乘步行距離或換乘所需時間;新路服務水平(運營服務時間、行車時間、行車間隔)等。因此,在優選換乘路徑的過程中可以以運營里程最短、換乘時間最短或換乘站點數最少作為尋徑的標準。此外,考慮到客流分布的概率,還可以在上述標準的基礎上,通過影響條件的不同組合來確定更逼近實際情況的尋徑方案。
這里需要特別說明的是,不管采用何種清分方法,都只能實現相對的合理和公平。
清分的實質是計算線網中各條線路(參與服務的線路)的經濟貢獻。而體現各條線路經濟貢獻的因素有很多,如建設投資成本、路網的具體屬性、運營服務水平、客流量(包括換乘)及行車時間、行車間隔等。在這些主要因素中,建設投資成本主要體現為投資貢獻,屬于短期因素;其他各類規則則主要體現運營貢獻,屬于長期因素。因此按運營貢獻清分更為合理,更為有效。
在線網的各種屬性中,里程、站數、換乘站、換乘便捷性等這些重要屬性可變程度低,可視為靜態屬性;而體現運營服務水平的行車間隔、站間行車時間、運營服務時間等屬性可變程度高,可視為動態屬性。
從運營貢獻的角度來看,票務收入的運營貢獻已幾乎完全包含了客流量的貢獻。按運營貢獻對線網票務收入清分時,必須與體現路網結構的靜態屬性和體現運營服務水平的動態屬性結合。
因此,結合以上分析,軌道交通系統線網票務收入的清分原則應為:滿足線網的發展趨勢,適應路網規劃要求;滿足票價規定的調整要求;按線路或按運營商清分;體現清分的權重和路網重要屬性的相關性;體現清分的權重與運營服務水平的相關性。
以軌道交通路網結構為基礎的清分算法,應該建立在嚴格的數學模型之上,通用靈活,高效快捷,能夠生成一套科學、規則、合理的票務清分規則表;依據清分規則表,清分中心及時、公平地進行票務清分,使清分業者對象能夠獲得其應該獲取的票款份額。
在軌道交通長遠規劃中,天津城市軌道交通將建成13條線路,這要求清分規則算法在滿足現有路網清分要求的同時,必須考慮到增加線路、車站后算法結果是否能符合清分業者對象的利益,因此清分算法模型應具有很強的通用性、合理性、靈活性和擴展性等特點。
在清分算法模型中確定乘車路徑是關鍵,現在確定乘車路徑的算法主要有最短路徑法和多路徑法。在以最短路徑的清分算法中只考慮到路徑這一關鍵要素,而實際上時間、換乘車站間步行距離、線路和車站的擁擠情況等都可能成為乘客決定其乘車路線的因素,所以單純以乘車里程數為要素的最短路徑法不符合清分算法模型的合理性及靈活性。多路徑法是指路網中任意兩個車站之間每條可能的路徑都確定一個被乘客選擇的概率,在確定參與票款計算的合理選擇路徑后,按照確定的公式計算各運營線路的各自收益。多路徑法充分考慮影響乘客確定乘車路徑的各要素,確定一到多條的乘車路徑進行清分,這既接近乘客乘車路線的實際選擇,也符合運營公司的利益。因此在天津軌道交通路網尋徑方案確定時,以多路徑法作為確定乘車路徑算法。
清分算法模型考慮到通用性以及今后的擴展性,算法模型中的各個算式可以由各運營公司共同設計調整,模型將根據設計出的算式計算各路徑上線路的票款分配比例。當某種乘車要素的影響力足夠大到能夠決定乘客乘車路線的選擇并最終涉及到票款分配時,清分算法能夠在不修改其算法模型結構的基礎上加入此要素,得到合理的清分規則。
以下內容中提及的一些名詞解釋如下:①線路——指軌道交通路網拓撲圖中被標示為不同的線路,并隸屬于不同的運營公司;②路徑——從站點1出發,到達站點2的路線,因為軌道交通的網狀拓撲,存在1站到2站的多條路徑;③路段——對于跨越多條線路的換乘路徑,是以實際換乘點為斷點的線段組成,而每條線段屬于且僅屬于一條線路,此線段即為路段;④遍歷——遍歷是指沿著某條搜索路線,依次對網絡中每個點均做一次且僅做一次訪問,如圖1遍歷圖示;⑤換乘次數——遍歷路網拓撲時經過換乘點且發生實際換乘的最大換乘次數。

圖1 遍歷圖示
根據目前的天津軌道交通路網規劃建立整個路網模型,以后可根據實際路網建設情況進行部分調整。這種方法可以評估清分模型算法在處理整個路網時的性能,避免設計風險以及未來修改模型所帶來的風險。
遍歷的目的是找出在軌道交通路網拓撲中一對進站和出站之間可能的路徑。因為在網狀拓撲圖中,換乘車站即是兩條線路的交叉點,三個換乘站可能形成環路,所以為避免在遍歷時算法線路無窮的循環,需要控制從一條線路換乘到另條線路的次數,即換乘次數控制。對于乘客,一般不會選擇超過3次以上的換乘的乘車路徑,最終遍歷結果得到在換乘次數控制下的一對進站和出站之間所有可能的路徑。
遍歷結果的數據量取決于車站與線路的數量,并隨著線路和車站的增長呈比例增長。根據天津市軌道交通規劃的長遠目標,最終將有13條線路,338個車站,24個換乘站,因此任意兩個可達車站的數量為C2338=338×(338-1)/2=56 953(對)。
但對于同條線路的車站,認為乘客是不換乘的,考慮到13條線路,338個車站,平均每條線路26個車站,則不經過換乘的進站和出站為C226=26×(26-1)/2×13=4 225(對)。
所以需通過換乘才能到達的車站對大概有52 728對。考慮到換乘次數的控制,則換乘遍歷結果的可能路徑數目

式中:
W——在換乘次數控制下所有換乘路徑數目;
S——路網中車站站點總數;
Cj——路網中j條線相交換乘站點總數;
L——路網中線路總數;
n——系統定義的最多換乘次數;
m——路網中相交于同一站點的最多線路條數。
路網結構中2條路線相交的換乘節點23個,3線相交的換乘節點數為1個,且系統定義最大換乘次數為3。路網結構中有13條線路,338個車站,平均每條線路近似有26個車站。假定平均每條線路有換乘車站約為2個,則依據公式,所有換乘路徑有338×(26+2×(26+2×(26+2×26))=131 820(條)。考慮到實際的路網結構中可能有4條線相交一個換乘點的情況,所以路徑條數還會有所增長。
4.2.1 交叉線
在路網拓撲結構中存在多條線路在一個換乘點交匯的情況,在遍歷算法中是以深度優先遍歷的。在遍歷完一條線路所有車站后將退回到上一換乘點,再遍歷該換乘點上另條線路的站點(如圖2交叉線路徑遍歷所示)。

圖2 交叉線路徑遍歷
在遍歷算法中,從起始站點1出發的遍歷過程如下:1→x,判斷x點是否是換乘點;遍歷經過x換乘點的線路;遍歷該線路所屬車站中無換乘點,記錄所有遍歷的到達車站;退回x換乘點,檢查是否還有其他線路經過x點,如果有跳轉到3,否則退回到上一換乘點,直到退回到起始站點,結束本起始站點的遍歷。
4.2.2 環線
在路網拓撲結構中某條線路成為封閉的環。在遍歷算法中的一個重要特點是無向性,只記錄起點車站、換乘車站、到達車站,而不記錄在該條路徑上經過每個車站以及站點順序,但在權值計算時需要考慮到路徑里程和時間的不同。
以圖3路網示意圖為例,從A1車站進站,B1車站出站,在乘客選擇乘車路徑時可能的有:路徑一——A1→A2→A3→B1;路徑二——A1→An→A4→A3→B1;路徑三——A1→An→BnA3→B1;
在這里討論路徑一和路徑二,在遍歷算法中記錄的是兩個路段:A1→A3、A3→B1,所以對遍歷算法而言,這兩條路徑其實是一條。
4.2.3 共線
在路網拓撲結構中有2條線路甚至多條線路的部分共線重疊的情況,該共線上的車站同屬于2條或多條線路。
在遍歷算法剔除掉不合理路徑的過程中,首先刪除起始站點與到達站點在同一條線路的,因此在共線以外共線線路站點出發、在共線范圍內出站的票款應屬于該線路;如果使用了共線車站其他線路的出站閘機,因為閘機所屬線路提供了服務,可以酌情收取相應手續費。對于在共線內車站出發,共線線路車站出站的情況也可做同樣處理。對于共線車站進站(出站)、在共線外線路車站出站(進站)的,以及換乘經過共線范圍的,共線路段應由共線線路按比例清分此份票款收益。

圖3 路網示意圖
天津軌道交通目前有4條線路,呈交叉網狀結構,有3個換乘站,其中1個換乘站為1條線路的起止站點。未來規劃的路網呈交叉網狀放射結構,即包涵交叉線路及環形交叉線路,路網覆蓋面較廣,兩站之間可乘客選擇的路徑較多,清分算法較為復雜。
在清分模型建立過程中,應用遍歷算法計算出路網中任意兩站之間的所有換乘路徑,但是由于路網中影響乘客出行的因素較多,遍歷方法算出的有些路徑乘客的選擇概率可能是零,因此天津軌道交通路網清分模型在路徑選擇時采用了多因素修訂綜合優選的方法,對遍歷路徑進行甄選。將影響乘客換乘選擇的權重因素作為因子,如乘車時間、換乘時間、舒適度、換乘次數等,在因子作用下,利用模型計算出各遍歷路徑的換乘概率,然后由各受益方共同決策確定可接受的路徑選擇概率值,最后按照每條被選線路各運營商提供的服務計算出票款的清分比例。
在模型建立過程中,甄選所有遍歷路徑中參與票款清分計算的有效路徑是優化清分尋徑方案的關鍵。在這個方面考慮了以下幾個限制條件:①有效路徑倍增限制值,超過最短有效路徑因子n倍的路徑,則放棄該路徑;②有效路徑增長限制值,超過最短有效路徑因子一定數量m的路徑,則放棄該路徑;③有效路徑最大數量,限制每次尋徑時最多的有效路徑,其余舍棄。通過以上幾個限制條件將參與票款清分計算的有效路徑減到合理的范圍。
尋徑方案模型的建立是清分算法模型必不可少的一部分,是清分清算的前提。選擇路網遍歷操作加多因素綜合優選法是眾多尋徑模型中的一種,具有高效、準確的尋徑特點,能為清分清算提供有效的乘客動向依據。以上內容對于龐大且復雜的清分算法模型只是冰山一角。每個城市的交通路網都有其特殊性,因此軌道交通尋徑模型、清分算法模型必須以當前軌道交通路網為基礎來建立。
天津軌道交通清分方法的確定還在探索和研究階段。在軌道交通網絡化大趨勢面前,確定軌道交通清分規則和建立清分模型,是公平、公正、合理的服務票款收入清分公正的前提和基礎。在清分規則和清分模型確立之后,再根據乘客出行習慣和具體問卷調查的方式,對清分規則進行修訂,以期達到更精確、更公平的清分結果。
[1] 呂利民,黎卓明.城市軌道交通乘客換乘路徑分配比例算法[J].地鐵科技.2006,(3):7.
[2] 朱滬生.上海城市軌道交通清分系統的建設[J].都市快軌交通.2006,19(5):12.
[3] 毛保華,四兵鋒.城市軌道交通網絡管理及收入分配理論方法[M].北京:科學出版社.2007.
[4] 上海申通軌道交通研究咨詢有限公司.城市軌道交通網絡化探索和實踐[M].北京:人民出版社.2010.
[5] 閆彬.城市軌道交通自動售檢票系統研析[J].鐵路通信信號工程技術,2004(2):32.
[6] 范巍.城市軌道交通自動售檢票中央清分系統概論[J].鐵路通信信號工程技術,2004(2):37.
[7] 孫波,邱繼紅,孫澤俊.動態規劃在軌道交通清分系統中的應用[J].城市軌道交通研究,2011(8):54.