薛富民,程傳格,韓術鑫,李福偉,劉靜,丁尚志
(山東省分析測試中心,山東 濟南 250014)
發光稀土配合物具有獨特的光學特性,如特定的發射峰波長、銳線發射、發光壽命較長和Stokes位移大等,使其在生物分析和醫學成像方面得到了廣泛的應用[1-9]。為了開發關于生物樣品的高靈敏度、大穿透深度和低損傷的發光探針,設計、制備能夠可見光敏化、高效發光的銪配合物受到了研究者的青睞。
由于f-f躍遷宇稱禁阻的特性,稀土離子本身的光吸收能力很弱,對其直接光激發的效率較低,因此單純的稀土離子難以獲得高的發光強度,要引入其他的介質來敏化稀土離子發光。稀土有機配合物的光致發光是將有機配體作為“天線分子”來敏化稀土離子發光,此過程可描述為:配體吸收環境的光能(激發)→能量傳遞→中心金屬離子發光(圖 1)[10]。
近年來,文獻報道可敏化稀土配合物發光的有機配體大部分是N-雜環類,包括吡啶類、鄰二氮雜菲、苯并咪唑、吡唑、惡唑、羥基喹啉、氮雜呫噸酮和四氮三聯苯[11-25]。

圖1 稀土發光敏化機制——天線效應示意圖Fig.1 Illustration of the sensitization mechanism oflanthanide luminescence (antenna effect)
在有機稀土配合物的光敏化過程中,配體到中心離子的能量轉移過程(圖2中的灰色箭頭所示)是敏化發光的關鍵步驟[26]。文獻中報道較多的是配體通過三重態向金屬離子傳遞能量,即三重態傳能機制[27-29]。


三重態傳能途徑是一種常見的敏化發光方式,即配體吸收光后電子由第一激發單線態經系間竄躍至第一激發三線態,然后由三線態轉移至稀土離子的發射態上進而發光。除此之外,大量的文獻從理論上或者從實驗結果中推測出配合物中存在單重態能量轉移途徑的可能性[30-40]。2004年,Wang等合成了有機敏化配體 dpbt(2-(N,N-二乙基苯胺-4-基)-4,6-二(3,5-二甲基吡唑-1-基)-1,3,5-三嗪)及其配合物Eu(tta)3dpbt(tta為噻吩甲酰三氟丙酮負離子),并利用時間分辨熒光光譜系統研究了Eu(tta)3dpbt的傳能及發光動力學過程,發現主配體(敏化配體)dpbt向Eu3+離子傳能的主要途徑為單重態能量傳遞途徑,單重態能量傳遞機制擺脫了三重態能級的限制,使得Eu(tta)3dpbt具有很高的可見光敏化發光效率[41]。這是首次通過實驗方法直接觀察到單重態傳能途徑的報道,并得到了國際上相關領域專家的認可[26]。Eu(tta)3dpbt傳能發光機理如圖3所示[41]。隨著研究的不斷深入,又進一步證實在此單重態能量傳遞過程中存在一個配體到中心金屬離子的電荷轉移態(LMCT*態),并由此態向Eu3+離子的發射態傳能(圖 4)[42]。
在有機稀土發光配合物的制備及其應用領域,如何提高稀土配合物的發光性能一直是個活躍的研究方向。研究人員通過改變不同的條件來調控稀土配合物的光學性質,例如可以通過改造主配體(我們認為對中心離子的敏化發光起主要作用的配體為主配體)的結構得到較高的發光量子產率和拓展稀土配合物的激發窗口、設計不同的輔助配體增加配合物在極性溶劑中的穩定性等。在熒光免疫分析和生物成像領域,紫外線激發對生物組織的傷害較大,且產生的較強背景熒光會對檢測信號造成干擾。因此,設計可見光激發的稀土發光標記物具有重要意義。可見光的波長范圍一般指390~770 nm之間,開發可見光敏化、高效發光的銪配合物是一項具有挑戰性的課題。

圖4 Eu(tta)3dpbt配合物激發態的馳豫和能量轉換途徑示意圖Fig.4 Illustration of the detailed excitation relaxation and energy conversion pathways in the Eu(tta)3dpbt complex


關于可見光敏化銪配合物發光的例子已經有了一些報道,但相對于紫外光激發銪配合物發光的例子還是非常有限的[7,41,43-55]。圖 5a 表示配合物 Mk-Eu(fod)3(Mk=Michler ketone,fod=6,6,7,7,8,8,8-七氟-2,2-二甲基辛烷-3,5-二酮)的結構式,其中,Mk表示主配體,fod表示輔助配體,圖6a表示它的激發光譜和發射光譜。配合物Mk-Eu(fod)3的激發窗口已經拓展到了可見光區,在極性較強的乙腈中激發峰位于407 nm,窗口延伸到460 nm,苯中用420 nm光激發測得的發光量子產率為0.17。在發射譜圖中,可以看到Eu3+離子的特征性發射。圖5b表示吖啶酮衍生物與Eu(fod)3形成配合物的結構式,它們的激發光譜和發射光譜如圖6b和6c所示。其中,N-乙基-吖啶酮Eu(fod)3在乙腈中的可見光區激發峰值在419 nm,激發窗口尾部延伸至440 nm,而N-乙基-2,7-二溴-吖啶酮-Eu(fod)3在乙腈中可見光區激發峰值在432 nm。雖然這類配合物激發波長均處于可見光區,但這些芳香酮配合物在可見光激發下發光效率并不高。這類單齒天線配體與中心離子在溶液中的配位穩定性差,限制了該類配合物的應用。有學者認為這些芳香酮配合物在可見光激發下的傳能發光過程屬于分子間敏化過程。圖5c表示吖啶酮衍生物和羧基取代的四氮雜環飽和碳鍵形成的敏化分子與Eu(fod)3形成的配合物的結構,其中吖啶酮基團是通過“空間傳能的方式”將能量傳遞給中心的Eu3+離子而不是直接與Eu3+離子形成配位點。因此,即使配合物有較寬的可見光激發窗口和良好的穩定性及水溶性,但化合物27、28、29在水中的發光量子產率仍比較低,其值分別為0.014、0.010和0.053,這也大大限制了它們在熒光免疫分析方面的使用。
具有 D-π-A(donor-π-acceptor)結構的敏化分子是一類非常重要的、可見光敏化銪離子發光的天線分子,這類分子具有典型的“推-拉”電子效應。2004年,Yang等合成了一種新型有機敏化配體 dpbt及其配合物 Eu(tta)3dpbt[41],后分別在 2007、2010年通過改造敏化分子 dpbt的化學結構制備了 Eu(tta)3dmbpt[55](2-(N,N-二乙基-2,6-二甲基苯胺-4-基)-4,6-二(3,5-二 甲 基 吡 唑-1-基)-1,3,5-三 嗪)及 Eu(tta)3bpt[56](bpt=2-(N,N - 二乙基-4-基)-4,6-二(吡唑-1-基)-1,3,5-三嗪)一系列的銪配合物,它們的分子結構式如圖7a所示。Eu(tta)3dpbt、Eu(tta)3dmbpt和Eu(tta)3bpt在甲苯溶液中的最大激發峰分別位于402 nm、409 nm、410nm處,但是Eu(tta)3dmbpt在409 nm處的摩爾消光系數比其他兩個配合物的都低,Eu(tta)3dpbt稀溶液(1×10-5mol·L-1)的激發窗口最遠能延伸到440 nm,Eu(tta)3dmbpt和 Eu(tta)3bpt則能延伸到460 nm(圖8)。室溫下,Eu3+發光量子產率均達到40%以上。從配合物 Eu(tta)3dpbt到 Eu(tta)3dmbpt,再到 Eu(tta)3bpt,其設計思路是在選定輔助配體tta的基礎上對敏化配體進行改造,敏化分子dmbpt較dpbt在苯環的2,6位上多了兩個甲基,以增加分子Donor端的推電子能力;而bpt較dpbt在吡唑的3,5位上用氫基取代了甲基,以增加Acceptor端的吸電子能力,設計配合物Eu(tta)3dmbpt和Eu(tta)3bpt的目的是提高該類配合物的可見光敏化Eu3+發光能力。2008年,Charbonnière課題組報道了如圖 7b(EuL3(TTA)3)(L3=N,N-二甲基胺基苯三聯吡啶)和7c(EuL4(TTA)3)(L4=4′-(4-乙炔基-苯胺基)--2,2′/6′,2″-三聯吡啶)所示配合物的制備及其光學性質[50]。EuL3(TTA)3和EuL4(TTA)3的吸收窗口主要位于紫外區,僅僅是尾部延伸到了可見光區(如圖9所示),室溫下,二者在二氯甲烷中的發光量子產率分別為0.25和0.27(λex=350 nm)。

圖7 具有D-π-A結構敏化分子所形成銪配合物的分子結構式Fig.7 Molecular structures of D-π-A structural sensitizers to europium complex


除了利用修飾敏化分子的化學結構來達到可見光激發銪配合物發光之外,另外一條途徑是利用“配合物作為天線分子”來完成長波敏化稀土離子發光[57-58]。文獻中報道較多的是基于Pt和Ir化合物作為“天線分子”敏化Eu3+離子發光的。但是,基于Pt的化合物,利用其3MMLCT(金屬-金屬-配體電荷轉移)激發態來敏化Eu3+離子的光致發光效率是比較低的(<3%)[59]。2008年,黃春輝院士課題組報道了一種新的Ir- Eu 雙金屬化合物{[(dfppy)2Ir(u-phen5f)]3EuCl}Cl2-[dfppy=2-(4′,4′-二氟苯基)-吡啶-N,C2′,phen5f=4,4,5,5,5-5 氟-1-1(1′,10′-臨二氮雜菲-2′-基)-戊烷-1,3-二酮],如圖 10a 所示[54],實現了 Ir的化合物作為“天線分子”長波敏化Eu3+離子發光。文獻中報道,當該配合物在乙醇溶劑中的濃度為1×10-3mol·L-1時,其激發窗口達到了530nm。
2009年,王河洲等[52]報道了一種新型的可見光敏化銪發光的化合物,其結構式如圖10b所示。該配合物在乙腈稀溶液中可見光區吸收峰值達到了485 nm,吸收窗口拖尾至575 nm(圖11),敏化配體DEASPI的最大吸收峰在形成配合物Eu(tta)4DEASPI后并沒有發生紅移,這說明DEASPI沒有直接參與Eu3+離子的配位。在乙腈溶液中,在352 nm光激發下,Eu(tta)4DEASPI的發光量子產率為0.28。然而,配體DEASPI較寬的熒光發射波段與Eu3+的特征性發射處于同一區域,因此很難評估Eu3+離子的發光效率。
圖10c和10d分別表示配合物Eu(2-TFDBC)3phen[2-(4′4′4′-三氟-1′3′-雙二氧代丁基)-咔唑]和 Eu2(2,7 - BTFDBC)3(phen)2[2,7-二(4′4′4′-三氟-1′3′-雙二氧代丁基)-咔唑]的結構式[53]。它們的紫外可見光吸收光譜如圖12所示。這兩個配合物的吸收峰主峰仍位于紫外區,在可見光區僅有弱的吸收,配合物Eu2(2,7-BTFDBC)3(phen)2的吸收窗口比 Eu(2-TFDBC)3phen 要更寬一些。



有機稀土發光配合物在發光探針領域受到研究者的廣泛關注,在發光探針前期的制備中,研究難點主要集中在如何制備高效發光、且在水溶液中能夠穩定存在的配合物。近年來,關于制備敏化銪離子發光的有機配體的報道層出不窮,但從目前研究來看,能夠在可見光激發下高效敏化三價銪離子發光的有機分子還是非常有限的。基于可見光敏化銪離子發光性能的配合物作為發光標記物,相對于基于紫外光敏化銪離子發光性能的配合物作為發光標記物具有更好的免疫分析應用前景,因為可見光的激發光源可以使用發光二極管,相對于使用高能氙燈的紫外光激發光源具有更低的生產成本;另外,可見光激發代替紫外光激發具有安全、穿透能力更強的特點。因此,設計、合成這類敏化配體以及研究配體結構和配合物發光效率、穩定性之間的內在聯系具有非常現實的意義,并且將長期成為有機稀土發光配合物研究領域一個重要的課題。
[1]BENDER J L,FRASER C L,METCALF D H,et al.Site-Isolated luminescent europium complexes with polyester macroligands:metal-centered heteroarm stars and nanoscale assemblies with labile block junctions[J].Journal of the American Chemical Society,2002,124(29):8526-8527.
[2]HANDL H L,VAGNER J,YAMAMURA H I,et al.Lanthanide based time-resolved fluorescence of in cyto ligand-receptor interactions[J].Biochemistry,2004,330(2):242 - 250.
[3]SANTOS M,ROY B C,GOLCOECHA H,et al.An investigation on the analytical potential of polymerized liposomes bound to lanthanide ions for protein analysis[J].Journal of the American Chemical Society,2004,126(34):10738 -10745.
[4]POOLE R,KIELAR A,F,RICHARDSON S L,et al.A ratiometric and non-enzymatic luminescence assay for uric acid:differential quenching of lanthanide excited states by anti-oxidants[J].Chemical Communications,2006(39):4084 - 4086.
[5]YU G H,PARKER D,PAL R,et al.A europium complex that selectively stains nucleoli of cells[J].Journal of the American Chemical Society,2006,128(7):2294-2299.
[6]FAULKNER S,POPE S J A,BURTON-PYE B P,Lanthanide complexes for luminescence imaging applications[J].Applied Spectroscopy Reviews,2005,40(1):1 -31.
[7]ARONS R J,NOTTA J K,MELONI M M,et al.A luminescent probe containing a tuftsin targeting vector coupled to a terbium complex[J].Chemical Communications,2006(8):909 -911.
[8]BEEBY A,BUSHBY L M,MAFFEO D,et al.The efficient intramolecular sensitisation of terbium(Ⅲ)and europium(Ⅲ)by benzophenone-containing ligands[J].Journal of the Chemical Society,Perkin Transactions 2,2000(7):1281 -1283.
[9]RODA A,GUARDIGLI M,ZIESSEL R,et al.Molecular luminescence imaging[J].Microchemical Journal,2007,85(1):5 -12.
[10]MULLER G.Luminescent chiral lanthanide(Ⅲ)complexes as potential molecular probes[J].Dalton Transactions,2009(44):9692-9707.
[11]MUKKALA V M.,KWIATKOWSKI M,KANKARE J,et al.Influence of chelating groups on the luminescence properties of europium(Ⅲ)and terbium(Ⅲ)chelates in the 2,2′-bipyridine series[J].Helvetica Chimica Acta,1993,76(2):893 -899.
[12]MUKKALA V M,KANKARE J J.New 2,2′-bipyridine derivativesand their luminescence properties with europium(Ⅲ)and terbium(Ⅲ)ions[J].Helvetica Chimica Acta,1992,75(2):1578 -1592.
[13]DESSING A.Luminescence from lanthanide(3+)ions in solution[J].European Journal of Inorganic Chemistry,2005(8):1425-1434.
[14]GAWRYSZEWSKA P,SOKOLNICKI J,DOSSING A,et al.Characterization of the electronic excited-state energetics and solution structure of lanthanide(Ⅲ)complexes with the polypyridine ligand 6,6′-bis(2-pyridylme-thyl)aminomethyl-2,2′-bipyridine[J].Journal of Physical Chemistry A,2005,109(17):3858 -3863.
[15]PETOUD S,BüNZLI J C G,SCHENK K J,et al.Luminescent properties of lanthanide nitrato complexes with substituted bis(benzimidazolyl)pyridines[J].Inorganic.Chemistry,1997,36(7):1345 - 1353.
[16]PIGUET C,BüNZLI J C G,BERNARDINELLI G,et al.Self-assembly and photophysical properties of lanthanide dinuclear triple - helical complexes[J].Journal of the American Chemical Society,1993,115(18):8197 -8206.
[17]SWALLEY S E,BAIRBD E E,DERVAN P B,et al.A pyrrole-imidazole polyamide motif for recognition of eleven base pair sequences in the minor groove of DNA[J].Chemistry-A European Journal,1997,3(10):1660 -1667.
[18]RENAUD F,PIGUET C,BERNARDINELLI G,et al.In search for mononuclear helical lanthanide building blocks with predetermined properties:triple-stranded helical complexes with N,N,N′,N′-tetraethylpyridine-2,6-dicarbox amide[J].Chemistry-A European Journal,1997,3(10):1646 -1659.
[19]MONTGOMERY C P,PARKER D,LAMARQUE L.Effective and efficient sensitisation of terbium luminescence at 355 nm with cell permeable pyrazoyl-1-azaxanthone macrocyclic complexes[J].Chemical Communicationsn,2007(37):3841 - 3843.
[20]van DEUN R,FIAS P,NOCKEMANN P,et al.Rare-earth quinolinates:infrared-emitting molecular materials with a rich structural chemistry[J].Inorganic Chemistry,2004,43(26):8461 -8469.
[21]SHAVALEEV N M,SCOPELLITI R,GUMY F,et al.Near-infrared luminescence of nine-coordinate neodymium complexes with benzimidazole substituted 8-hydroxyquinolines[J].Inorganic Chemistry,2008,47(19):9055 -9068.
[22]ATKINSON P,FINDLAY K S,KIELAR F,et al.Azaxanthones and azathioxanthones are effective sensitisers for europium and terbium luminescence[J].Organic & Biomolecular Chemistry,2006(9):1707 -1722.
[23]van der TOL E B,van RAMESDONK H J,VERHOEVEN J W,et al.Tetraazatriphenylenes as extremely efficient antenna chromophores for luminescent lanthanide ions[J].Chemistry-A European Journal,1998,4(11):2315 - 2323.
[24]ALBRECHT M,OSETSKA O,KLANKERMAYER J,et al.Enhancement of near-IR emission by bromine substitution in lanthanide complexes with 2-carboxamide-8-hydroxyquinoline[J].Chemical Communications,2007(18):1834 - 1836.
[25]COPPO P,DUATI M,KOZHEVNIKOV V N,et al.White-light emission from an assembly comprising luminescent iridium and Europium complexes[J].Angewandte Chemie International Edition,2005,44(12):1806 -1810.
[26]ELISEEVA S V,BüNZLI J C G.Lanthanide luminescence for functional materials and bio-sciences[J].Chemical Society Reviews,2010(1):189 -227.
[27]SABBATINI N,GUARDIGLI M,LEHN J M.Luminescent lanthanide complexes as photochemical supramolecular devices[J].Coordination Chemistry Reviews,1993,123(1/2):201-228.
[28]BUONO-CORE G E,LI H,MARCINIAK B.Quenching of excited states by lanthanide ions and chelates in solution[J].Coordination Chemistry Reviews,1990(99):55 -87.
[29]HORROCKS W D Jr,ALBIN M.Lanthanide ion luminescence in coordination chemistry and biochemistry[J].Progress Inorganic Chemistry,1984,31:1-104.
[30]KLEINERMAN M.Energy migration in lanthanide chelates[J].Journal of Chemical Physics,1969,51:2370 -2381.
[31]HORROCKS W D Jr,COLLIER W E.Lanthanide ion luminescence probes.Measurement of distance between intrinsic protein fluorophores and bound metal ions:quantitation of energy transfer between tryptophan and terbium(Ⅲ)or europium(Ⅲ)in the calcium-binding protein parvalbumin[J].Journal of the American Chemical Society,1981,103(10):2856 -2862.
[32]BRUNO J,HORROCKS W D Jr.Europium(Ⅲ)luminescence and tyrosine to terbium(Ⅲ)energy-transfer studies of invertebrate(octopus)calmodulin[J].Biochemistry,1992,31(31):7016 -7026.
[33]KIM Y H,BAEK N S,KIM H K.Sensitized emission of luminescent lanthanide complexes based on 4-naphthalen-1-yl-benzoic acid derivatives by a charge-transfer process[J].Chem Phys Chem,2006,7(1):213 -221.
[34]de Sá G F,MALTA O L,de MELLO DONEGá C,et al.Spectroscopic properties and design of highly luminescent lanthanide coordination complexes[J].Coordination Chemistry Reviews,2000,196(1):165 -195.
[35]HEBBINK G A,KLINK S I,GRAVE L,et al.Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+luminescence by dansyl and lissamine dyes[J].Chem Phys Chem,2002,3(12):1014 -1018.
[36]WERTS M H V,HOFSTRAAT J W,GEURTS F A J,et al.Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(Ⅲ),neodymium(Ⅲ)and erbium(Ⅲ)chelates[J].Chemical Physics Letters,1997,276(3/4):196-201.
[37]V?GTLE F,GORKA M,VICINELLI V,et al.A dendritic antenna for near-infrared emission of Nd3+ions[J].ChemPhysChem,2001,2(12):769-773.
[38]e SILVA F R G,MALTA O L,REINHARD C,et al.Visible and near-infrared luminescence of lanthanide containing dimetallic triple-stranded helicates:energy transfer mechanisms in the SmⅢ and YbⅢ molecular edifices[J].Journal of Physical Chemistry A,2002,106(9):1670-1677.
[39]THORNE J R G,REY J M,DENNING R G,et al.Excited state dynamics of organo-lanthanide electroluminescent phosphors:the properties of Tb(tb-pmp)3and Gd(tb-pmp)3[J].Journal of Physical Chemistry A,2002,106(16):4014 -4021.
[40]VICINELLI V,CERONI P,MAESTRI M,et al.Luminescent lanthanide ions hosted in a fluorescent polylysin dendrimer.antenna-Like sensitization of visible and near-Infrared emission[J].Journal of the American Chemical Society,2002,124(22):6461-6468.
[41]YANG C,FU L M,WANG Y,et al.A highly luminescent europium complex showing visible-light-sensitized red emission:direct observation of the singlet pathway[J].Angewandte Chemie International Edition,2004,43(38):5010 -5013.
[42]FU L M,AI X C,LI M Y,et al.Role of ligand-to-metal charge transfer state in nontriplet photosensitization of luminescent europium complex[J].Journal of Physical Chemistry A,2010,114(13):4494 -4500.
[43]BENDER J L,CORBIN P S,FRASER C L,et al.Site-isolated luminescent europium complexes with polyester acroligands:metal-centered heteroarm stars and nanoscale assemblies with labile blockjunctions[J].Journal of the American Chemical Society,2002,124(29):8526-8527.
[44]WERTS M H V,DUIN M A,HOFSTRAAT J W,et al.Bathochromicity of michler′s ketone upon coordination with lanthanide(Ⅲ)β-diketonates enables efficient sensitisation of Eu3+for luminescence under visible light excitation[J].Chemical Communications,1999(9):799 -800.
[45]DADABHOY A,FAULKNER S,SAMMERS P G.Small singlet-triplet energy gap of acridone enables longer wavelength sensitisation of europium(Ⅲ)luminescence[J].Journal of the Chemical Society,Perkin Transaction 2 ,2000(12):2359 -2360.
[46]BRETONNIERE Y,CANN M J,PARKER D,et al.Ratiometric probes for hydrogencarbonate analysis in intracellular or extracellular environments using europium luminescence[J].Chemical Communications,2002(17):1930 -1931.
[47]DADABHOY A,FAULKNER S,SAMMERS P G.Long wavelength sensitizers for europium(Ⅲ)luminescence based on acridone derivatives[J].Journal of the Chemical Society,Perkin Transactions 2,2002(2):348 - 357.
[48]PISZCZEK G,MALINAL B P,GRYCZYNSKI I,et al.Multiphoton ligand-enhanced excitation of lanthanides[J].Journal of Fluorescence,2001,11(2):101-107.
[49]WERTS M H V,NERAMBOURG N,PéLéGRY D,et al.Action cross sections of two-photon excited luminescence of some Eu(Ⅲ)and Tb(Ⅲ)complexes[J].Photochemical& Photobiological Sciences,2005(4):531 -538.
[50]KADJANE P,CHARBONNIéRE L,CAMEREL F et al.Improving visible light sensitization of luminescent europium complexes[J].Journal of Fluorescence,2008,18(1):119 -129.
[51]FU L M,WEN X F,AI X C,et al.Efficient two-photon-sensitized luminescence of a europium(Ⅲ)complex[J].Angewandte Chemie International Edition,2005,44(5):747-750.
[52]SHI M,DING C R,DONG J W,et al.A novel europium(Ⅲ)complex with versatility in excitation ranging from infrared to ultraviolet[J].Physical Chemistry Chemical Physics,2009(11):5119 -5123.
[54]CHEN F F,BIAN Z Q,LIU Z W,et al.Highly efficient sensitized red emission from europium(Ⅲ)in Ir-Eu bimetallic complexes by 3MLCT energy transfer[J].Inorganic Chemistry,2008,47(7):2507 - 2513.
[55]HAO R,LI M,WANG Y,et al.A europium complex with excellent two-photon-sensitized luminescence properties[J].Advanced Functional Materials,2007,17(17):3663 -3669.
[56]XUE F M,MA Y,FU L M,et al.A europium complex with enhanced long-wavelength sensitized luminescent properties[J].Physical Chemistry Chemical Physics,2010(12):3195 -3202.
[57]SHAVALEEV N M,BELL Z R,WARD M D.A simple general synthesis of mixed df complexes containing both{Re(CO)3Cl(diimine)}and lanthanide-tris(diketonate)luminophores linked by bis-diimine bridging ligands[J].Journal of the Chemical Society,Dalton Transaction,2002(21):3925 -3927.
[58]SHAVALEEV N M,MOORCRAFT L P,POPE S J A,et al.Sensitised near-infrared emission from lanthanides using a covalently-attached Pt(Ⅱ)fragment as an antenna group[J].Chemical Communications,2003(10):1134 -1135.
[59]XU H B,SHI L X,MA E,et al.Diplatinum alkynyl chromophores as sensitisers for lanthanide luminescence in Pt2Ln2and Pt2Ln4(Ln=Eu,Nd,Yb)arrays with acetylide-functionalized bipyridine/phenanthroline[J].Chemical Communications,2006,21(15):1601-1603.