摘要: 為探討橋梁斷面的非線性自激氣動力,基于平衡位置的Taylor級數展開式,建立了簡諧運動下橋梁斷面非線性自激氣動力模型,獲得了其復數和實數表達式,并說明了表達式中非線性氣動參數的識別方法.該模型反映了簡諧運動下橋梁斷面非線性自激氣動力的諧波疊加特性,可應用于橋梁的非線性氣動穩定性分析.最后,應用該模型對某橋梁斷面在簡諧運動下的非線性自激氣動力風洞試驗時程數據進行了擬合.擬合結果表明,兩者的誤差在3%以內,驗證了該模型的正確性.
關鍵詞: 橋梁斷面;非線性自激氣動力;經驗模型;風洞試驗
中圖分類號: V211.24文獻標志碼: AEmpirical Mathematical Model for Nonlinear MotionInduced
當橋梁斷面在氣流中運動時,會對流場產生干擾,引起表面壓力的變化,從而產生隨時間變化的空氣動力,稱為自激氣動力.
1971年,Scanlan提出了用顫振導數表示的橋梁斷面自激氣動力模型[1],將氣動力表示為斷面運動狀態的線性函數,并在此基礎上提出了橋梁顫振臨界風速的計算方法.事實上,橋梁斷面屬于鈍體,其自激氣動力應是非線性的,并已在風洞試驗中獲得證實[26].尤其對于形式上為典型鈍體的橋梁斷面,其自激氣動力的非線性效應更加突出.因此,橋梁斷面自激氣動力應考慮非線性效應.
徐旭和曹志遠基于瞬態風攻角推導了橋梁等柔長結構沿跨向分布的非線性氣動力表達式[78].Diana基于墨西拿大橋斷面的風洞試驗結果,提出了以瞬態攻角(位移)及其一階導數(速度)為變量的非線性氣動力表達式[56,910].Chen和Ma基于橋梁的軟顫振現象,提出了用范德波爾方程來描述非線性氣動力和軟顫振現象的思路[11].Wu和Kareem從橋梁斷面的非線性響應出發,提出了一個基于Volterra泛函級數的非線性氣動力模型[1213].Zhang、Chen等通過對大跨度橋梁非線性顫振的分析,分別提出了考慮紊流風影響的非線性氣動力模型[1415].
在上述非線性氣動力的典型模型中,徐旭提出的模型過于復雜,也沒有給出非線性氣動參數的識別方法,因此在實踐中無法應用.Diana提出的模型能夠較好地描述試驗獲得的非線性氣動力,但模型的適用性和適用范圍還需要進一步研究;Chen和Ma提出的范德波爾模型無法描述非線性氣動系數隨振幅變化的非定常性,并暗含氣動力只含有三次諧波分量,因此該模型具有很大的局限性;Wu和Kareem提出的Volterra泛函級數模型能夠描述氣動力的非線性和非定常性,但目前還處于初步研究階段,并需要可靠的風洞試驗數據作為支撐;Zhang、Chen等提西南交通大學學報第48卷第2期王騎等:橋梁斷面非線性自激氣動力經驗模型出的模型,實際上是考慮主梁的幾何非線性效應和風攻角的非線性后提出的修正氣動力模型,其實質為參數非線性變化的線性氣動力模型.
綜上所述,目前對于橋梁斷面非線性自激氣動力模型的研究還處于起步階段.因此,合理、適用、簡便的自激氣動力模型亟待研究.
本文以簡諧運動下橋梁斷面的自激氣動力為
研究對象,基于平衡位置的Taylor級數展開式,建立了由不同諧波分量疊加的非線性氣動力數學模型,推導了非線性自激氣動力的復數和實數表達式,并簡要介紹了表達式中非線性氣動參數的識別方法;基于某橋梁斷面非線性自激氣動力的風洞試驗測試數據,用該模型進行了擬合,兩者的誤差小于3%,從而驗證了該模型的正確性.1簡諧運動下的Taylor展開式處于均勻流場中的橋梁斷面,自激氣動力為其運動狀態的函數,并可表示為動態的氣動力形式(某一時刻的氣動力).
考慮到橋梁斷面的自激氣動力主要與其豎向和扭轉運動狀態相關,其氣動升力L和力矩M可分別表示為:
6結語以在氣流中保持簡諧運動的橋梁斷面為研究對象,基于平衡位置的Taylor級數展開式,建立了橋梁斷面的非線性氣動力模型,推導了不同運動條件下非線性自激氣動力的表達式,從理論上闡述了簡諧運動下橋梁斷面的非線性自激氣動力由不同倍頻或非倍頻諧波分量共同組成的特性,并基于等效關系,給出了非線性氣動參數的表達式.
風洞試驗結果表明,簡諧運動下橋梁斷面的自激氣動力是由不同諧波分量組成的,且以二次和三次諧波分量為主.對試驗信號的擬合結果表明,所提出的氣動力模型能夠準確地描述橋梁斷面的非線性自激氣動力.
由于試驗條件限制,只選取了一種試驗斷面,并在單自由度條件下對模型進行了驗證.為了深入研究橋梁斷面自激氣動力的非線性效應,今后還需要針對更多斷面形狀、在不同運動形式下(包括耦合運動和任意運動形式)進行理論研究和風洞試驗,以擴展和補充理論模型.
參考文獻:
[1]SCANLAN R H, TOMKO J. Airfoil and bridge deck flutter derivatives[J]. ASCE Journal of Engineering Mechanics, 1971, 97(6): 17171737.
[2]陳政清,于向東. 大跨橋梁顫振自激氣動力的強迫振動法研究[J]. 土木工程學報,2002,35(5): 3441.
CHEN Zhengqing, YU Xingdong. A new method for measuring flutter selfexcited forces of longspan bridges[J]. China Civil Engineering Journal, 2002, 35(5): 3441.
[3]FALCO M, CURAMI A, ZASSO A. Nonlinear effects in sectional model aeroelastic parameter identification[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41/42/43/44: 13211332.
[4]DIANA G, BRUNI S, ROCCHI D. A numerical and experimental investigation on aerodynamic nonlinearity in bridge response to turbulent wind[C]∥Proceedings of the Fourth European Africa Conference on Wind Engineering. Prague: [s.n.], 2005: 127134.
[5]DIANA G, RESTA F, ZASSO A, et al. Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(6): 441462.
[6]DIANA G, RESTA F, ROCCHI F, et al. Aerodynamic hysteresis: wind tunnel tests and numerical implementation of a fully nonlinear model for the bridge aeroelastic forces[C]∥Proceedings of the 4th International Conference on Advance in Wind and Structural, Jeju, Korea: [s.n.], 2008: 944960.
[7]XU Xu, CAO Zhiyuan. New expressions of nonlinear aerodynamic forces in civil engineering[C]∥Proceedings of ICNM3. Shanghai: Shanghai University Press, 1998: 396401.
[8]徐旭,曹志遠. 柔長結構氣固耦合的線性與非線性理論[J]. 應用數學和力學,2001,22(12): 5765.
XU Xun, CAO Zhiyuan. Linear and nonlinear aerodynamic theory of interaction between flexible structure and wind[J]. Applied Mathematics and Mechanics, 2002, 22(12): 5765.
[9]DIANA G, RESTA F, ROCCHI F. A new numerical approach to reproduce bridge aerodynamic nonlinearities in time domain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 18711884.
[10]DIANA G, ROCCHI D, ARGENTINI T, et al. Aerodynamic instability of a bridge deck section model linear and nonlinear approach to force modeling[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98: 363374.
[11]CHEN A, MA R. Selfexcited force model and parameter identification for soft flutter[C/OL]∥The 13th International Conference of Wind Engineering, Amsterdam, July 1015, 2011. [20110809]. http://folk.ntnu.no/karpa/ICWE%2013/ICWE13%20Proceedings/start/papers/412_8page_self-excited_force_model_and_identification_of_soft_flutter.pdf.
[12]WU T, KAREEM A. Nonlinear modeling of bridge aerodynamics[C/OL]∥The 13th International Conference of Wind Engineering, Amsterdam, July 1015, 2011. [20110811]. http://folk.ntnu.no/karpa/ICWE%2013/ICWE13%20Proceedings/start/papers/382_8page_nonlinear_modeling_of_bridge_aerodynamics.pdf.
[13]WU T, KAREEM A. Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 378388
[14]ZHANG X, XIANG H, SUN B. Nonlinear aerostatic and aerodynamic analysis of longspan suspension bridges considering wind structure interactions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(9): 10651080.
[15]CHEN X, KAREEM A. Aeroelastic analysis of bridges: turbulence effects and aerodynamic nonlinearities[J]. ASCE Journal of Engineering Mechanism, 2003, 129(8): 885895.
[16]LIAO H, WANG Q, LI M, et al. Aerodynamic hysteresis effects of thin airfoil and streamline box girder under large amplitude oscillation[C/OL]∥The 13th International Conference of Wind Engineering, Amsterdam, July 1015, 2011. [20110811]. http://folk.ntnu.no/karpa/ICWE%2013/ICWE13%20Proceedings/start/papers/539_8page_aerodynamic_hysteresis_effects_of_thin_airfoil_and_stream-line_box_girder_with_large_amplitude_oscillation.pdf.
(中、英文編輯:付國彬)